Prof. Dr. Erwin Böttinger

Chair Digital Health - Personalized Medicine


  • Vaid, A., Jaladanki, S.K., Xu, J., Teng, S., Kumar, A., Lee, S., Somani, S., Paranjpe, I., Freitas, J.K.D., Wanyan, T., Johnson, K.W., Bicak, M., Klang, E., Kwon, Y.J., Costa, A., Zhao, S., Miotto, R., Charney, A.W., Böttinger, E., Fayad, Z.A., Nadkarni, G.N., Wang, F., Glicksberg, B.S.: Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach.JMIR Medical Informatics.9,e24207 (2021).
  • Dellepiane, S., Vaid, A., Jaladanki, S.K., Paranjpe, I., Coca, S., Fayad, Z.A., Charney, A.W., Bottinger, E.P., He, J.C., Glicksberg, B.S., Chan, L., Nadkarni, G.: Temporal Trends in COVID-19 associated AKI from March to December 2020 in New York City. (2021).
  • Paranjpe, I., Chaudhary, K., Johnson, K.W., Jaladanki, S.K., Zhao, S., Freitas, J.K.D., Pujdas, E., Chaudhry, F., Bottinger, E.P., Levin, M.A., Fayad, Z.A., Charney, A.W., Houldsworth, J., Cordon-Cardo, C., Glicksberg, B.S., Nadkarni, G.N.: Association of SARS-CoV-2 viral load at admission with in-hospital acute kidney injury: A retrospective cohort study.PLOS ONE.16,e0247366 (2021).


  • Musmann, F., Sasso, A., Arnrich, B.: ALPS: A Web Platform for Analysing Multimodal Sensor Data in the Context of Digital Health.2020 IEEE International Conference on Healthcare Informatics (ICHI). pp. 1-12. IEEE Computer Society, Los Alamitos, CA, USA (2020).
  • Sigel, K., Swartz, T., Golden, E., Paranjpe, I., Somani, S., Richter, F., Freitas, J.K.D., Miotto, R., Zhao, S., Polak, P., Mutetwa, T., Factor, S., Mehandru, S., Mullen, M., Cossarini, F., Bottinger, E., Fayad, Z., Merad, M., Gnjatic, S., Aberg, J., Charney, A., Nadkarni, G., Glicksberg, B.S.: Coronavirus 2019 and People Living With Human Immunodeficiency Virus: Outcomes for Hospitalized Patients in New York City.Clinical Infectious Diseases. (2020).
  • Hirten, R.P., Danieletto, M., Tomalin, L., Choi, K.H., Zweig, M., Golden, E., Kaur, S., Helmus, D., Biello, A., Pyzik, R., Charney, A., Miotto, R., Glicksberg, B.S., Levin, M., Nabeel, I., Aberg, J., Reich, D., Charney, D., Bottinger, E.P., Keefer, L., Suarez-Farinas, M., Nadkarni, G.N., Fayad, Z.A.: Physiological Data from a Wearable Device Identifies SARS-CoV-2 Infection and Symptoms and Predicts COVID-19 Diagnosis: Observational Study (Preprint).Journal of Medical Internet Research. (2020).
  • Schmitt, F., Sundermeier, J., Bohn, N., Morassi Sasso, A.: Spotlight on Women in Tech: Fostering an Inclusive Workforce when Exploring and Exploiting Digital Innovation Potentials.ICIS Proceedings (2020).
  • Konak, O., Wegner, P., Arnrich, B.: IMU-Based Movement Trajectory Heatmaps for Human Activity Recognition.Sensors.20,7179 (2020).
  • Borchert, F., Lohr, C., Modersohn, L., Langer, T., Follmann, M., Sachs, J.P., Hahn, U., Schapranow, M.-P.: GGPONC: A Corpus of German Medical Text with Rich Metadata Based on Clinical Practice Guidelines.Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis. p. 38--48. Association for Computational Linguistics, Online (2020).
  • da Cruz, H.F., Pfahringer, B., Martensen, T., Schneider, F., Meyer, A., Bottinger, E., Schapranow, M.-P.: Using Interpretability Approaches to Update textquotedblleftBlack-Boxtextquotedblright Clinical Prediction Models: an External Validation Study in Nephrology.Artificial Intelligence in Medicine.101982 (2020).
  • Vaid, A., Somani, S., Russak, A.J., Freitas, J.K.D., Chaudhry, F.F., Paranjpe, I., Johnson, K.W., Lee, S.J., Miotto, R., Richter, F., Zhao, S., Beckmann, N.D., Naik, N., Kia, A., Timsina, P., Lala, A., Paranjpe, M., Golden, E., Danieletto, M., Singh, M., Meyer, D., OtextquotesingleReilly, P.F., Huckins, L., Kovatch, P., Finkelstein, J., Freeman, R.M., Argulian, E., Kasarskis, A., Percha, B., Aberg, J.A., Bagiella, E., Horowitz, C.R., Murphy, B., Nestler, E.J., Schadt, E.E., Cho, J.H., Cordon-Cardo, C., Fuster, V., Charney, D.S., Reich, D.L., Bottinger, E.P., Levin, M.A., Narula, J., Fayad, Z.A., Just, A.C., Charney, A.W., Nadkarni, G.N., Glicksberg, B.S.: Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation.Journal of Medical Internet Research.22,e24018 (2020).
  • Chan, L., Jaladanki, S.K., Somani, S., Paranjpe, I., Kumar, A., Zhao, S., Kaufman, L., Leisman, S., Sharma, S., He, J.C., Murphy, B., Fayad, Z.A., Levin, M.A., Bottinger, E.P., Charney, A.W., Glicksberg, B.S., Coca, S.G., Nadkarni, G.N.: Outcomes of Patients on Maintenance Dialysis Hospitalized with COVID-19.Clinical Journal of the American Society of Nephrology.CJN.12360720 (2020).
  • Drimalla, H., Scheffer, T., Landwehr, N., Baskow, I., Roepke, S., Behnia, B., Dziobek, I.: Towards the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT).npj digital medicine.3, (2020).
  • Somani, S.S., Richter, and F., Fuster, V., Freitas, J.K.D., Naik, N., Sigel, K., Bottinger, E.P., Levin, M.A., Fayad, Z., Just, A.C., Charney, A.W., Zhao, S., Glicksberg, B.S., Lala, A., Nadkarni, G.N.: Characterization of Patients Who Return to Hospital Following Discharge from Hospitalization for COVID-19.Journal of General Internal Medicine.35,2838--2844 (2020).
  • Kraus, M., Mathew Stephen, M., Schapranow, M.-P.: Eatomics: Shiny exploration of quantitative proteomics data.Journal of Proteome Research. (2020).
  • Sasso, A.M., Datta, S., Jeitler, M., Steckhan, N., Kessler, C.S., Michalsen, A., Arnrich, B., Boettinger, E.: HYPE: Predicting Blood Pressure from Photoplethysmograms in a Hypertensive Population.International Conference on Artificial Intelligence in Medicine. p. 325--335. Springer (2020).
  • Chan, L., Chaudhary, K., Saha, A., Chauhan, K., Vaid, A., Zhao, S., Paranjpe, I., Somani, S., Richter, F., Miotto, R., Lala, A., Kia, A., Timsina, P., Li, L., Freeman, R., Chen, R., Narula, J., Just, A.C., Horowitz, C., Fayad, Z., Cordon-Cardo, C., Schadt, E., Levin, M.A., Reich, D.L., Fuster, V., Murphy, B., He, J.C., Charney, A.W., Böttinger, E.P., Glicksberg, B.S., Coca, S.G., Nadkarni, G.N., Li, L.: AKI in Hospitalized Patients with COVID-19.Journal of the American Society of Nephrology.ASN.2020050615 (2020).
  • Remy, S., Pufahl, L., Sachs, J.P., Böttinger, E., Weske, M.: Event Log Generation in a Health System: A Case Study.Lecture Notes in Computer Science. p. 505--522. Springer International Publishing (2020).
  • Paranjpe, I., Chaudhary, K., Paranjpe, M., O'Hagan, R., Manna, S., Jaladanki, S., Kapoor, A., Horowitz, C., DeFelice, N., Cooper, R., Glicksberg, B., Bottinger, E.P., Just, A.C., Nadkarni, G.N.: Association of APOL1 Risk Genotype and Air Pollution for Kidney Disease.Clinical Journal of the American Society of Nephrology.15,401--403 (2020).
  • Paranjpe, I., Russak, A., Freitas, J.K.D., Lala, A., Miotto, R., Vaid, A., Johnson, K.W., Danieletto, M., Golden, E., Meyer, D., Singh, M., Somani, S., Manna, S., Nangia, U., Kapoor, A., OtextquotesingleHagan, R., OtextquotesingleReilly, P.F., Huckins, L.M., Glowe, P., Kia, A., Timsina, P., Freeman, R.M., Levin, M.A., Jhang, J., Firpo, A., Kovatch, P., Finkelstein, J., Aberg, J.A., Bagiella, E., Horowitz, C.R., Murphy, B., Fayad, Z.A., Narula, J., Nestler, E.J., Fuster, V., Cordon-Cardo, C., Charney, D.S., Reich, D.L., Just, A.C., Bottinger, E.P., Charney, A.W., Glicksberg, B.S., Nadkarni, G.: Clinical Characteristics of Hospitalized Covid-19 Patients in New York City.medRxiv.Version 1 (April 23, 2020 - 03:18) (2020).
  • Slosarek, T., Wohlbrandt, A., Böttinger, E.: Using CEF Digital Service Infrastructures in the Smart4Health Project for the Exchange of Electronic Health Records.arXiv preprint arXiv:2001.01477. (2020).
  • Chaudhary, K., Vaid, A., Duffy, Á., Paranjpe, I., Jaladanki, S., Paranjpe, M., Johnson, K., Gokhale, A., Pattharanitima, P., Chauhan, K., O'Hagan, R., Vleck, T.V., Coca, S.G., Cooper, R., Glicksberg, B., Bottinger, E.P., Chan, L., Nadkarni, G.N.: Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury.Clinical Journal of the American Society of Nephrology.CJN.09330819 (2020).


  • Slosarek, T., Kraus, M., Schapranow, M.-P., Bottinger, E.: Qualitative Comparison of Selected Indel Detection Methods for RNA-Seq Data.International Work-Conference on Bioinformatics and Biomedical Engineering. pp. 166-177. Springer (2019).
  • Freitas da Cruz, H., Pfahringer, B., Schneider, F., Meyer, A., Schapranow, M.-P.: External Validation of a “Black-Box” Clinical Predictive Model in Nephrology: Can Interpretability Methods Help Illuminate Performance Differences?Proceedings of 17th Conference on Artificial Intelligence in Medicine. pp. 191-201 (2019).
  • Konak, O., Freitas Da Cruz, H., Thiele, M., Golla, D., Schapranow, M.-P.: An Information and Communication Platform Supporting Analytics for Elderly Care.5th International Conference on Information for Ageing Well, Communication Technologies e Health (2019).
  • Freitas da Cruz, H., Schneider, F., Schapranow, M.-P.: Prediction of Acute Kidney Injury in Cardiac Surgery Patients: Interpretation using Local Interpretable Model-agnostic Explanations.Proceedings of the 12th International Conference on Biomedical Engineering Systems and Technologies. pp. 380-387. , Prague, Czech Republic (2019).
  • Drimalla, H., Baskow, I., Roepke, S., Behnia, B., Dziobek, I.: Imitation und Erkennung von Emotionen bei Autismus-Spektrum-Störungen - eine computerbasierte Analyse des fazialen Emotionsausdrucks.12. Wissenschaftliche Tagung Autismus-Spektrum. (2019).
  • Wojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haessler, J., Gignoux, C.R., Highland, H.M., Patel, Y.M., Sorokin, E.P., Avery, C.L., Belbin, G.M., Bien, S.A., Cheng, I., Cullina, S., Hodonsky, C.J., Hu, Y., Huckins, L.M., Jeff, J., Justice, A.E., Kocarnik, J.M., Lim, U., Lin, B.M., Lu, Y., Nelson, S.C., Park, S.-S.L., Poisner, H., Preuss, M.H., Richard, M.A., Schurmann, C., Setiawan, V.W., Sockell, A., Vahi, K., Verbanck, M., Vishnu, A., Walker, R.W., Young, K.L., Zubair, N., Acuna-Alonso, V., Ambite, J.L., Barnes, K.C., Boerwinkle, E., Bottinger, E.P., Bustamante, C.D., Caberto, C., Canizales-Quinteros, S., Conomos, M.P., Deelman, E., Do, R., Doheny, K., Fernandez-Rhodes, L., Fornage, M., Hailu, B., Heiss, G., Henn, B.M., Hindorff, L.A., Jackson, R.D., Laurie, C.A., Laurie, C.C., Li, Y., Lin, D.-Y., Moreno-Estrada, A., Nadkarni, G., Norman, P.J., Pooler, L.C., Reiner, A.P., Romm, J., Sabatti, C., Sandoval, K., Sheng, X., Stahl, E.A., Stram, D.O., Thornton, T.A., Wassel, C.L., Wilkens, L.R., Winkler, C.A., Yoneyama, S., Buyske, S., Haiman, C.A., Kooperberg, C., Le Marchand, L., Loos, R.J.F., Matise, T.C., North, K.E., Peters, U., Kenny, E.E., Carlson, C.S.: Genetic analyses of diverse populations improves discovery for complex traits.Nature.570,514--518 (2019).
  • Freitas da Cruz, H., Horschig, S., Nusshag, C., Schapranow, M.-P.: Knowledge Distillation from Machine Learning Models for Prediction of Hemodialysis Outcomes.International Journal On Advances in Life Sciences.11,33-43 (2019).
  • Freitas da Cruz, H., Bergner, B., Konak, O., Schneider, F., Bode, P., Lempert, C., Schapranow, M.-P.: MORPHER – A Platform to Support Modeling of Outcome and Risk Prediction in Health Research.Proceedings of the 19th IEEE International Conference on Bioinformatics and Biomedicine. , Athens, Greece (2019).
  • Datta, S., Schraplau, A., da Cruz, H.F., Sachs, J.P., Mayer, F., Böttinger, E.: A Machine Learning Approach for Non-Invasive Diagnosis of Metabolic Syndrome.2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE). p. 933--940. IEEE (2019).
  • Drimalla, H., Landwehr, N., Hess, U., Dziobek, I.: From face to face: the contribution of facial mimicry to cognitive and emotional empathy.Cognition and Emotion.33,1672-1686 (2019).
  • Belbin, G.M., Wenric, S., Cullina, S., Glicksberg, B.S., Moscati, A., Wojcik, G.L., Shemirani, R., Beckmann, N.D., Cohain, A., Sorokin, E.P., Park, D.S., Ambite, J.-L., Ellis, S., Auton, A., Bottinger, E.P., Cho, J.H., Loos, R.J.F., Abul husn, N.S., Zaitlen, N.A., Gignoux, C.R., Kenny, E.E., and,: Towards a fine-scale population health monitoring system. (2019).


  • Kraus, M., Hesse, G., Slosarek, T., Danner, M., Kesar, A., Bhushan, A., Schapranow, M.-P.: DEAME-Differential Expression Analysis Made Easy.Heterogeneous Data Management, Polystores, and Analytics for Healthcare. p. 162--174. Springer (2018).
  • Freitas da Cruz, H., Horschig, S., Nusshag, C., Schapranow, M.-P.: Prediction of Patient Outcomes after Renal Replacement Therapy in Intensive Care.Proceedings of the 3rd International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing (2018).
  • Freitas da Cruz, H., Gebhardt, M., Becher, F., Schapranow, M.-P.: Interactive Data Exploration Supporting Elderly Care Planning.Proceedings of the 10th International Conference on eHealth, Telemedicine, and Social Medicine (2018).