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Abstract—In many predictive maintenance scenarios, the
costs for not accurately detecting or anticipating faults can be
considerably higher than the cumulative costs for inspections
or premature maintenance. However, conventional symmetric
loss functions widely used in machine learning cannot reflect
such different costs. In this paper, we propose a method to
construct asymmetric loss functions for regression tasks that are
capable to better reflect this cost imbalance during the training
of machine learning models and that allow for modeling the loss
function to a) precisely match the cost relation for both kinds
of errors where they can be estimated, b) control the impact
of outliers, and c) manage the risk of over- or underestimation
of the target variable, even when exact costs for (at least) one
side are not known. We demonstrate on a realistic data set
that the customized asymmetric loss functions can significantly
reduce the impact of overestimations of the remaining useful life
and can help to take more informed decisions on maintenance
planning, leading to more cost-efficient production processes.

Keywords—predictive maintenance, loss functions, cost func-
tions, machine learning, cost-sensitive, regression

I. INTRODUCTION

Machine learning (ML) techniques are increasingly em-
ployed for fault detection or anticipation in the context of
condition monitoring and predictive maintenance for tech-
nical assets (e.g., machines and plants) [1]. For this, asset
and process data (e.g., power draw, vibration, noise, power
consumption) serve as the basis for training and testing ML
models that can be used for on-line assessment of asset
condition and remaining useful life (RUL).

In many scenarios, the costs for not accurately detecting
or anticipating faults can be considerably higher than the
cumulative costs for inspections or premature maintenance.
These higher costs result, e.g., from reduced machine effi-
ciency (output, availability, and product quality), unplanned
production downtimes, higher expenditures for corrective
maintenance due to overtime payments, express charges for
urgent supply of tools and material, subsequent damages of
machines or their environment, or even physical harm of
employees. By planning and executing maintenance activities
earlier based on the asset condition, many of these costs can
be avoided [2].

A. Example Use Case

Asymmetric costs can be observed not only in manu-
facturing. In aircraft maintenance, it is much cheaper to
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exchange wear parts of the turbofan early than to overhaul
it completely later. Even if casualties can be averted in case
of a failing turbofan, there are high costs resulting from the
incurred delay of operation due to a rejected take-off or in-
flight turnback.

Consider, for example, the flight compensation regulation
of the EU that entitles passengers to financial compensation
[3]. If an incident occurred off-station, e.g., at a remote
holiday destination, the airline needs to fly in a maintenance
crew and replacement material. The cost for aircraft on
ground (AOG) can amount up to €925,000 per day for an
Airbus A380 [4]. In case the aircraft can be returned to
service, it has to wait for a new takeoff slot; the knock-
on delay affects all subsequent flights (up to ten for low-
cost carriers), if it cannot be replaced by another aircraft
(tail swap). For lengthy maintenance, a wet lease (aircraft +
crew) is required, resulting in high cost. Another factor to
consider is the passenger goodwill loss, i.e. the loss resulting
from reduced customer satisfaction.

These high costs explain the large amount of effort airlines
undertake to maintain their fleet, with direct maintenance
costs (DMC) accounting for 10 to 20 percent of the operating
costs of an aircraft [S]. Due to increasing competition in
the aviation market, operators are under constant pressure to
increase the block hour utilization and minimize expenses.
Efficiency drivers such as the reduction of backup aircraft
manifest the role of predictive maintenance to prevent un-
expected breakdowns. Even though the maintenance-related
regulatory requirements are designed to be safe and aircraft
are built with redundancy so that the breakdown of a part
usually does not pose a significant risk to passengers, an
unexpected failure still entails that the aircraft cannot take
off again. Therefore, it may be economical for airlines to
exchange parts based on their condition before it is required
by regulation.

Due to the cost imbalance for early maintenance vs. engine
failures as outlined above, overestimating the RUL and risk-
ing potential engine failures is much worse than planning the
maintenance too early. In other scenarios where failures may
not cause life-threatening situations and early predictions
instead involve substantial economic burden, these costs
may change and optimistic predictions would be preferable.
Hence, the loss function should reflect such aspects to match
specific requirements. However, conventional symmetric loss
functions, such as the mean squared error (MSE) or Huber
loss [6] cannot model asymmetric costs.



B. Contributions

In this paper, we propose a method to construct asym-
metric loss functions for regression tasks that are capable
to better reflect a cost imbalance during the training of
ML models. The proposed loss functions are continuously
differentiable and convex, which is desirable for optimization
methods based on gradient descent.

They can be parameterized to penalize overestimates more
than underestimates or vice versa while being much more
flexible than LINEX loss [7], which only supports stretching
or shrinking the function as a whole. In contrast, with the
proposed asymmetric loss functions the growth characteristic
(i.e., linear, quadratic or exponential) and slope can be
freely adjusted for both losses of under and overestimates
separately. This allows us to model a loss function to a)
precisely match the cost relation for both kinds of errors
where they can be estimated, b) control the impact of
outliers, and ¢) manage the risk of over or underestimation
of the target variable (RUL), even when exact costs for (at
least) one side are not known. So it can better represent real-
world costs for too early vs. too late maintenance and their
relation already during the training phase of a ML model.

II. RELATED WORK

Asymmetric loss functions have been studied by
economists in the context of econometric modeling and
forecasting. Varian [7] introduced the LINEX loss for the
prediction of real estate prices. It grows exponentially on
one side and approximately linearly on the other side and
has been applied to other areas, such as Bayesian estimation
problems in statistics [8]. The LINEX loss can be extended
to a Double-LINEX loss, which is exponential on both
sides [9]. It has been shown that properties of optimal
forecasts under MSE loss such as unbiasedness fail to hold
in the optimal forecast under asymmetric loss [10]-[12]. A
drawback of LINEX loss functions is that it is not possible
to control the slope of the loss function for both sides
independently.

In the context of ML, the most frequently used loss
functions for regression are the (linear) symmetric mean
absolute error (MAE) loss and the (quadratic) MSE loss.
Both loss functions have been proposed and studied in their
generalized, asymmetric variant. The use of an asymmetric
linear loss is known as quantile regression; the use of
an asymmetric quadratic loss is also known as expectile
regression [13]-[15].

Berk [16] applies quantile regression to forecasts in a
criminal justice setting to find forecasting procedures that
are more sensitive to the real consequences of forecasting
errors than statistical procedures relying on symmetric loss
functions typically used for forecasting.

Huber [6] introduces a loss function that is quadratic (and
therefore strictly convex) when the error is small but behaves
like the MAE loss when the error is larger than a specified
threshold. This leads to a continuously differentiable function
which remedies properties of the MAE loss which are
adverse for convergence while retaining the advantage of the
MAE of being less sensitive to outliers than the MSE loss.
Recently, Gupta et al. [17] proposed using an asymmetric

version of this loss function for predicting sediment transport
in hydrology.

An approach to cost-sensitive regression that does not
rely on asymmetric loss functions is post hoc tuning, in
which a model that has been trained without incorporating
asymmetric costs is retroactively adjusted to account for
those costs [18].

III. PROPOSED METHOD

All model-based supervised ML approaches rely on loss
functions which are used during the model building process
to evaluate candidate solutions and for optimization. The loss
(or, strictly speaking, cost) function has to reduce all aspects
of the model down into a single scalar value in such a way
that improvements in that number indicate a better model.
It must therefore capture the properties of the problem and
specifies design goals for the search of an optimal solution.

The objective of regression analysis is to estimate the
relationships between a dependent target variable and inde-
pendent variables called features. In the context of predictive
maintenance, the target variable is the RUL which specifies
the amount of time a machine can be operated until it
becomes undesirable to do so and maintenance is necessary,
e.g., because of excessive wear and damage to the machine
or quality deterioration. The residual x of a prediction is the
difference of the true value of the target variable y and the
model’s estimation ¢: x = y — ¢. If the residual is positive,
the RUL has been underestimated which is preferable in our
scenario to an overestimated RUL (negative residual).

A. Asymmetric Loss Function

We define our asymmetric loss functions piece-wise, so
that the loss for residuals that are greater than 0 differs from
those smaller than 0:

o) = {&(x),z<0 "

l(z),z > 0.

As ¢; and /,. can be examined independently, we will focus
on /,; the left-hand side can be treated analogously.

To ensure convexity and continuous differentiability, we
construct the loss function in a way, that £,.(x) is quadratic
for small residuals, i.e. /() = a,z2 up to a point denoted
as 60,, and append another function f featuring the desired
growth characteristic at 6, > 0, unless the desired growth
is quadratic. This function f needs to be attached in a way
that (1) f(6,) = a,.6% and (2) f'(0,) = 2a,.0,..

In this work, we consider two types of functions for the
attachments: linear and exponential functions. In the linear
case, this holds for f(x) = «,.0,(2z — 6,.).

In the case of an exponential loss, 't.hs corresponding
attachment is f(z) = a0, (6, + 2, (e 7 — 1)), where
1 > 0 is a parameter allowing to control the growth of the
exponential function. So, if the right-hand side ¢,. of the loss
function £ shall be exponential (Fig. 1):

z—6,
" >
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Fig. 1. An asymmetric loss function with exponential growth
on both sides in contrast to the symmetric MSE loss.

Considering only three options (linear, quadratic and ex-
ponential growth) for ¢; and ¢, respectively, nine families of
loss functions (including the asymmetric Huber loss) can be
constructed that are parameterized by up to six parameters.

B. Weighting

In predictive maintenance, it is often much more important
to be precise about the RUL near the end of useful life.
An overestimation of RUL by, e.g., 10 flight cycles in the
case of turbofan engines is very serious when only a few
cycles remain and immediate action is crucial. In contrast,
if dozens of flight cycles remain, the impact of inaccurate
estimates on decision making is negligible. However, this is
not reflected in how the loss functions usually are computed.
In both cases, the residual is —10. Hence, both instances have
the same loss function value and are given equal importance
during the optimization of the model.

As it is even more difficult to predict further into the future
than predicting at a time closer to the end-of-life, it can be
expected that the residuals are larger for the less important
instances than important ones, leading to a misdirected focus
during the model optimization.

Hence, instance weighting should be taken into consid-
eration when designing a predictive maintenance solution.
A model-independent way of including instance weights in
the training procedure is to factor it into the calculation of
the loss function by weighting the residual: x = w(y, 3). A
plausible choice for w is to return the relative residual rather
than the absolute residual (y — ):

wiy,§) = =~

=22 (3)
where ¢ is y if y # 0 and some constant 0 < ¢ < 1
otherwise. In reality, the real importance of a training in-
stance might have to be determined by a more sophisticated
weighting function. E.g., in the case of turbofan engines, the
same relative overestimation of the true RUL is worse for a
small RUL than when it is very large.

IV. EXPERIMENTS & DISCUSSION

To evaluate the impact of choosing an asymmetric loss
instead of standard symmetric loss functions, we trained gra-
dient boosted decision trees (GBDTs) [19] on the NASA tur-
bofan engine degradation data set [20], [21] with symmetric
and asymmetric losses. The data consists of a run-to-failure
simulation with multiple noisy multivariate time series from

different engines of unknown initial degrees of wear and
manufacturing variation. Each time step corresponds to one
cycle (flight) and comprises snapshot measurements of 21
different sensors. The task is to predict the number of
remaining cycles of the turbofan engine until it fails.

To train the GBDTs we construct the training data by
splitting each of the multivariate time series into windows
of different lengths and starting points and label them with
the remaining number of cycles, i.e., the number of following
time steps. For each window, we extract features using the
FRESH algorithm [22] and select the 500 most relevant
features with univariate linear statistical tests. Each model
has been trained with 400 boosting iterations, a different
loss function and is evaluated with 5-fold cross validation.
The influence of the asymmetry of the loss functions on the
error distribution is shown in Fig. 2 for three different loss
functions with exponential loss and relative weighting on
both sides; corresponding summary statistics can be found
in Tab. L.

All three models trained with asymmetric loss functions do
not only overestimate the RUL less often but also less severe
than models trained with MSE loss. The asymmetric loss
functions also overestimate the RUL, but mostly by small
amounts, which are not so severely penalized by the loss
function. The opposite applies to underestimates which are
less penalized by the loss functions and more acceptable in
our scenario.

TABLE I. Summary statistics and loss function values
(rounded average of 5 CV-rounds) for different loss func-
tions.

MSE Exp1 Exp2 Exp3
MAE 11.98 14.15 18.98 26.77
vMSE 18.32 23.87 32.48 42.35

% Over-/Underest. 55/45 47/53 30/70 22/78

Max —» — 40.4/84.5 28.5/106.1 16.8/127.9 14.9/146.7
Avg —» — 10.0/145 6.3/21.2  3.4/259 1.5/33.7
Median —» — 74778 3.4/144  23/208  0.44/22.1

The MAE is larger for the asymmetric loss functions
than for the MSE loss. A reason for this is weighting,
which leads the model to not giving attention to training
instances with large MAE because of a large RUL. However,
if only instances with short RULs of 30 cycles or less
are considered, the MAE of the models trained with the
asymmetric loss functions is smaller. The MAE accounts
neither for asymmetric costs nor for different instance
importance. Experimental results show that the impact of
asymmetric loss functions is significant, even for relatively
small asymmetries. In experiment Exp;, the average and
median overestimation could approximately be halved, with
only a marginal increase of the MAE over all instances. The
MAE for the most relevant instances with a RUL of 30 cycles
or less even decreased from 3.96 (MSE loss) to 2.71 (Exp;
loss). Depending on the risk aversion, the parameters can be
adjusted in a way that severe overestimations become very
unlikely, with the median overestimation of models trained
with loss Exps of 0.44 being insignificant.

Experiments showed that the asymmetry and parameter-
ization of the loss function affects the appropriate param-
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Fig. 2. The error distribution for estimations from models trained with asymmetric loss functions with increasing asymmetry
from (a) to (c). For comparison, the error distribution of models trained with the standard MSE loss is also shown.

eterization of the optimizer. Therefore, the learning rate
should be adjusted so that Gradient Descent takes step sizes
corresponding to the slope of the loss function.

V. CONCLUSION

In this paper, we introduced a method to construct loss
functions that can be adapted to problems with asymmetric
costs and different instance importance needed in fields such
as predictive maintenance. We motivate asymmetric costs
with a case study from commercial aviation and demonstrate
that the number and impact of overestimates of the RUL
can be significantly reduced and controlled according to the
respective risk aversion. This leads to ML models that reflect
the real business situation far better than models trained with
standard symmetric loss functions.

Future work includes studying the convergence behavior
of optimization methods for different degrees of asymmetry,
methods for choosing the right parameters such as the
learning rate to ensure a fast convergence, examination the
impact of custom asymmetric loss functions on different
ML models, and to find and evaluate different weighting
schemes.
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