
Service-Oriented Interactive 3D Visualization of
Massive 3D City Models on Thin Clients

Dieter Hildebrandt, Jan Klimke, Benjamin Hagedorn, Jürgen Döllner
Hasso-Plattner-Institut

University of Potsdam, Germany
{dieter.hildebrandt|jan.klimke|benjamin.hagedorn|doellner}@hpi.uni-potsdam.de

ABSTRACT
Virtual 3D city models serve as integration platforms for
complex geospatial and georeferenced information and as
medium for effective communication of spatial information.
In this paper, we present a system architecture for service-
oriented, interactive 3D visualization of massive 3D city
models on thin clients such as mobile phones and tablets.
It is based on high performance, server-side 3D rendering
of extended cube maps, which are interactively visualized
by corresponding 3D thin clients. As key property, the com-
plexity of the cube map data transmitted between server and
client does not depend on the model’s complexity. In addi-
tion, the system allows the integration of thematic raster
and vector geodata into the visualization process. Users
have extensive control over the contents and styling of the
visual representations. The approach provides a solution
for safely, robustly distributing and interactively presenting
massive 3D city models. A case study related to city mar-
keting based on our prototype implementation shows the
potentials of both server-side 3D rendering and fully inter-
active 3D thin clients on mobile phones.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/server, distributed applica-
tions; C.5.5 [Computer System Implementation]:
Servers; D.2.11 [Software Engineering]: Software Ar-
chitectures—Service-oriented architecture (SOA); D.2.1
[Software Engineering]: Requirements/Specifications;
I.3.2 [Computer Graphics]: Graphics Systems—Dis-
tributed/network graphics

General Terms
Algorithms, Design, Performance, Standardization

Keywords
Service-oriented architecture, mobile device, distributed geo-
visualization, 3D geovirtual environment, virtual 3D city

model, 3D computer graphics

1. INTRODUCTION
3D geovirtual environments (3DGeoVEs) are a conceptual
and technical framework for the integration, management,
editing, analysis, and visualization of complex 3D geospatial
information. Virtual 3D city models as a specialized and fre-
quent type of 3DGeoVE serve as integration platforms for
complex geospatial and georeferenced information. For ap-
plication areas such as city planning and marketing, virtual
3D city models turned out to be effective means for the com-
munication of planning related information, e.g., about land
usage, transportation networks, public facilities, and real
estate markets. Such systems have to provide up-to-date
data, most efficient interaction capabilities, as well as effec-
tive, high-quality visual representations. Typically, the geo-
data required for representing virtual 3D city models in real
world software applications have massive storage require-
ments. To give users interactive access to high-quality vir-
tual 3D city models, the resources required by a 3D geovisu-
alization system in terms of storage and computing capacity
can be significant. This currently restricts the applicability
of 3D geovisualization especially on mobile devices and for
service-based and web-based systems.

Until today only “monolithic” geovisualization systems can
cope with all these challenges of providing high-quality, in-
teractive 3D visualization of massive 3D city models, but
still have a number of limitations. Such systems typically
consist of a workstation that is equipped with large storage
and processing capabilities, as well as specialized rendering
hardware and software, and is controlled by an expert who
controls the virtual camera and decides which information
to integrate into the visualization through a graphical user
interface. Typically, only a single view is available on a sin-
gle screen or projection; multi-user access and collaboration
is usually not supported; and these systems mostly lack the
emotional factor that is immanent to today’s presentation
and interaction devices such as smartphones and tablets.
Often, such a system does not allow for easy and seamless
integration of new or updated information, as data needs
to be preprocessed to fit a specific internal format for en-
abling high-performance rendering. Furthermore, it may be
difficult to adapt such an encapsulated visualization system
to specific data and usages that require new, advanced vi-
sualization techniques. Even for today’s high-performance
visualization systems, it is a challenging task to combine the
visualization of massive, large-scale 3D data with the visu-

alization in a high quality and high level of detail, e.g., with
detailed facades or including indoor models. Due to their
specific hardware configuration, such a system for 3D geo-
visualization cannot be moved physically ad-hoc and easily;
but it requires time and effort to break it down, move it,
and set it up again.

In addition to these drawbacks of monolithic 3D geovisual-
ization systems, there is a strong demand to make virtual
3D city models interactively available on thin clients such
as smartphones and tablets. While today, the usage of 2D
maps on such devices is a common application, this has not
been reached for massive, complex 3D geodata to the same
extend. As a common solution, visualization systems can
be deployed that distribute geodata and functionality over
computers connected by a network using visualization clients
(e.g., Google Earth). Thus, visualization clients and devices
are required to provide locally only a fraction of the over-
all required resources while the major part is provided by
the client’s context. However, these techniques for 3D geo-
visualization have not been fully adapted to thin clients yet.
3D geovisualization for thin clients has to cope with barri-
ers such as potentially limited bandwidth, limited rendering
capabilities, and especially constrained energy resources.

In this paper, we present a system architecture for service-
oriented, standards-based, interactive 3D visualization of
massive 3D city models on thin clients such as smartphones
and tablet computers that has the potential to overcome
the aforementioned limitations of today’s 3D geovisualiza-
tion systems. It is based on a high performance, scalable,
state-less 3D rendering service that implements the Web
View Service (WVS) and provides sets of 2D images of pro-
jective views of 3DGeoVEs. Additionally, it is capable of
organizing the geodata to be visualized based on layers, in-
tegrating thematic layers of raster or vector geodata into the
visualization, and styling the visual representations accord-
ing to declarative specifications. The visualization client in-
teractively visualizes the 3DGeoVE based on extended cube
maps, which it retrieves from the 3D rendering service. The
client can control the visual representations through select-
ing desired layers and providing a styling specification when
invoking the rendering service. As key property of the ap-
proach, the complexity of the cube map data transmitted
between service and client and the rendering costs on client’s
side do not depend on the model’s complexity. The use of
service-orientation and standards facilitates designing dis-
tributed 3D geovisualization systems that are open, interop-
erable, and easily adaptable to changing requirements. The
approach provides a solution for safely, robustly distribut-
ing and interactively presenting massive 3D city models. A
case study related to city marketing based on our proto-
type implementation shows the potentials of both server-side
3D rendering and fully interactive 3D thin clients running
on touch-enabled devices such as smartphones.

The contribution of this paper is to identify requirements
and conceptually layout a system architecture for service-
oriented, standards-based, interactive 3D visualization of
massive, complex 3D city models on thin clients, to de-
scribe corresponding server and client architectures and im-
plementations, and to evaluate the overall system architec-
ture based on a case study. The remainder of this paper

is structured as follows: Section 2 describes related work.
Section 3 introduces requirements of the desired service-
oriented 3D geovisualization system. Section 4 describes
the overall system architecture for service-oriented, image-
based visualization of and interaction with massive 3D city
models. Section 5 provides details of a prototype service im-
plementation. Section 6 presents details of a corresponding
client implementation. In section 7, we provide preliminary
evaluation results. Section 8 evaluates the architecture and
implementation based on a case study. Finally, section 9
concludes the paper.

2. FUNDAMENTALS & RELATED WORK
The service-oriented architecture (SOA) paradigm promotes
the idea of assembling application components into a net-
work of services that can be loosely coupled to create flexi-
ble, dynamic business processes and agile applications that
span organizations and computing platforms [22]. For cat-
egorizing services in a SOA, a common set of categories
consists of data, functionality, process, and interaction each
defining a layer in a distributed layered software architec-
ture (Fig. 1). In the geospatial domain, the Open Geospatial
Consortium (OGC) adopted the SOA paradigm and pro-
poses standards for service interfaces, data models, and en-
codings. For the presentation of information to humans,
the OGC proposes stateless portrayal services. For 3D por-
trayal, the Web 3D Service (W3DS) [24] and the Web View
Service (WVS) [11, 10] are proposed as different approaches
that are both still in the early stages of the standardiza-
tion process. The W3DS delivers scene graphs that can be
rendered by a client, whereas the WVS delivers rendered
images of projected views that are ready for display. In
addition, the WVS provides thematic image layers storing
information such as color, depth, object ID, surface normal,
and mask encoded in standard formats for a specified virtual
camera specification (Fig. 3). This concept is based on the
G-buffer [23] concept from 3D computer graphics. Com-
plementary, the Styled Layer Descriptor (SLD) and Sym-
bology Encoding (SE) [20] are standardization proposals for
user-defined styling of 3D visual representations. Portrayal
services may include support for SLD. The SLD and SE
follow the most common way to implement styling in the
mapping stage of the visualization pipeline (M-styling). In
addition, we propose to implement styling after the render-
ing stage by image post-processing (R-styling) offering dif-
ferent trade-offs [12]. In both cases, clients specify styling
in a declarative, rule-based styling language. For managing
and providing geodata in different representations, the OGC
proposes services such as the Web Coverage Service (WCS),
Web Map Service (WMS), and Web Feature Service (WFS).
Web Processing Services (WPS) can provide arbitrary func-
tionality through a generic interface.

For distributed visualization systems, most commonly visual
representations based on scene graphs, geometry such as tri-
angle meshes, and textures are proposed and applied (such
as in the W3DS [24], Google Earth, Microsoft Bing Maps
3D). Here, we focus on image-based representations since we
estimate that they have the potential to support better the
stated requirements (Sec. 3). For interactive, image-based,
distributed visualization, the proposed approaches include
streaming videos of rendered 3D models from a server to
a tightly coupled client [18], applying image-based model-

ing and rendering (IBMR) [25] and warping a representa-
tion based on color and depth images retrieved from a re-
mote server for rendering novel views [4], applying point-
based modeling and rendering (PBMR) [9] and utilizing re-
motely rendered color and depth images as input for client-
side PBMR [6], and rendering novel views on the client by
warping between image-based panoramas retrieved from a
server [5]. In addition, proposals exist for designing visual-
ization systems as distributed systems (e.g., [3]), distributed
systems based on SOA (e.g., [27]), or distributed systems
based on SOA and OGC standards (e.g., [13, 2]). However,
to the best of our knowledge, we are not aware of related
work that proposes designing 3D geovisualization systems
based on SOA, OGC standards, and image-based represen-
tations with the aim of meeting the stated requirements
(Sec. 3). In particular, related work often does not address
at the same time improving integration by loose coupling,
interoperability, supporting lightweight clients, and the ap-
plication to 3DGeoVEs.

3. REQUIREMENTS
In this section, we identify a set of requirements for 3D geovi-
sualization systems. This particular set is valid for a specific,
practically relevant class of 3D geovisualization systems and
is informed by existing literature [14]. We place a particular
focus on 3DGeoVEs and virtual 3D city models. Further-
more, we focus on 3D rendering for generating 2D images
of projective views of primarily static CAD-based models
with real-time interaction and navigation using six degrees
of freedom.

Support for integration is required to connect computer sys-
tems effectively and efficiently on different levels of abstrac-
tion such as data, functionality, process, visualization, in-
teraction, and system. It should improve the flexibility and
efficiency of adapting systems to changing requirements and
ease the reuse of software components. Interoperability in-
creases the effectiveness and efficiency of the integration on
the different abstraction levels and can be improved by ap-
plying standards. In the geospatial and the geovisualization
domain, insufficient interoperability has been identified as a
major barrier for progress in the respective domain. Typ-
ically, in real world applications, systems are required to
facilitate processing, visualizing and interacting with mas-
sive amounts of geodata. In particular, this applies to vir-
tual 3D city models. Providing effective, high quality visual
representations improves the effectiveness of a geovisualiza-
tion system and is facilitated by advanced, complex, inno-
vative visualization algorithms and in certain cases massive
amounts of data (e.g., for virtual 3d city models), for both
realistic and abstract views. Support for platform indepen-
dency comprises the relative independency of a system solu-
tion from software and hardware platforms on different levels
of abstraction and adaptive and moderate use of platform
resources. It can improve dissemination and reduce costs.
A high degree of interactivity is a key defining characteristic
as well as a crucial requirement for geovisualization systems
and should be effective and efficient. Support for styling
visual representations allows for controlling what (e.g., fil-
tering of features) and how to portray (e.g., mapping of fea-
tures to geometries and visual attributes) and is essential
for interaction and generating different visualizations from
the same base data. A distributed geovisualization system

Interaction
Layer

Process
Layer

Functionality Layer

Data
Layer

Explorer

Proprietary Model
Storage (File System)

Geometry Textures

R

Administrator

Content Management
Process (WPS)

R

Raw Data Raw Data

R

R R

Admin Web-Client 3D Visualization Client

3D Rendering
(WVS-I)

Geodata Mapping
(WPS)

Geodata Filtering
(WPS)

R
R

Textures

Thematic Data
Storage
(WFS)

Thematic Data
Storage
(WMS)

CityGML
Storage
(WFS)

R

R

R

Figure 1: Overview of the system architecture.

has to scale according to the number of users working with
the system and the size and complexity of the underlying
geodata.

4. SYSTEM ARCHITECTURE
In this section, we present an architecture for a service-
oriented, standards-based, distributed system that imple-
ments a specific configurable, service-oriented geovisualiza-
tion pipeline for 3DGeoVE (Fig. 1). The main purpose of
the system is to enable a user with a lightweight client (e.g.,
web browser, mobile application) to explore interactively a
massive, static, virtual 3D city model through the Internet
based on server-side 3D rendering. Additionally, a user can
control the contents and styling of the visual representa-
tions by selecting from predefined lists of layers to include
in the visualization (including thematic layers based on vec-
tor data), a style for each selected layer (including styles
based on thematic raster data), and a post-processing style
that can affect the whole scene across layers. To facilitate
these purposes, the system offers functionality for import-
ing and preprocessing the input geodata that comprises the
virtual 3D city model into a representation that is ready
to be rendered. In this section, we present an overview of
the proposed architecture. In the following two sections,
we focus on and present details on two components of this
architecture: the 3D rendering service (Sec. 5) and the 3D
visualization client (Sec. 6).

In the filtering stage, the purpose of the WPS-based Geodata

Filtering service is to transform raw geodata into an inte-
grated, semantic representation of a virtual 3D city model.
For this, the service first imports raw geodata (e.g., shape
files from the cadastre, digital terrain models, aerial pho-
tographs, CAD building models) from potentially different
external organizations. Then, it transforms the raw data
into a model adhering to the CityGML [26] data model and
texture images referenced by the CityGML data model. The
CityGML representation is then transferred to and stored
by a CityGML Storage service that is based on a Web Fea-
ture Service (WFS). The texture images are stored sepa-
rately on a file server. The Geodata Filtering service is im-
plemented in C++ based on OpenSceneGraph (OSG, www.

openscenegraph.org). OSG is used for this and other ser-
vices (see below) since it already provides considerable func-
tionality for processing, rendering, importing and exporting
geometry, texture and scene graphs in different data formats.
For the importer, the rendering functionality of OSG is not
used and extensions are implemented for accepting WPS re-
quests, reading shape files, and exporting CityGML. The
services for Raw Data and textures are implemented as file
servers. The CityGML Storage service is implemented using
the Java-based WFS provided by deegree (www.deegree.org)
and a 3D geo database for CityGML [26] based on Ora-
cle 10G R2.

In the mapping stage, the WPS-based Geodata Mapping ser-
vice transforms the standards-based CityGML and texture
representations into proprietary, internal representations op-
timized for 3D rendering. For this, the CityGML and tex-
ture representations are retrieved from the respective ser-
vices, processed, and stored by a Proprietary Model Storage

service in proprietary data models. The 3D Rendering service
provides 2D images of projected views of 3DGeoVEs (e.g.,
virtual 3D city models). For this, the service retrieves data
from the Proprietary Model Storage, accepts requests from
service consumers containing virtual camera specifications
and SLD styling specifications, and generates and returns
2D images. Additionally, the 3D Rendering service accesses
the CityGML Storage service to satisfy clients requesting addi-
tional properties of portrayed features. The Geodata Mapping

and 3D Rendering services are implemented in C++ based on
OSG and associated projects (such as OSG Earth, Virtu-
alPlanetBuilder, GDAL) with specific extensions including
components for importing and exporting the respective data
formats and implementing the respective WPS and WVS in-
terfaces.

The architecture defines two user roles and their tasks: Ad-

ministrator and Explorer. An Administrator uses the Admin

Web-Client for content management (CM) tasks. The out-
lined architecture only supports the basic task of importing
raw geodata into the system and preprocessing it into a rep-
resentation ready to be rendered. Based on inputs from
the administrator, the Admin Web-Client invokes the WPS-
based Content Management Process service. This service uses
the Geodata Filtering and Geodata Mapping services for the
implementation of its process and is capable of handling
occurrences of long download durations, network failures,
invalid or corrupt data and so on. The Admin Web-Client

is implemented as a browser-based web application. The
Content Management Process is implemented using the Java-
based WPS provided by deegree. An Explorer uses the 3D

Visualization Client for interactively exploring the virtual
3D city model. In a short, closed loop, the 3D Visualiza-

tion Client requests images from the 3D Rendering service,
displays the images, and requests new images based on the
users input. The 3D Visualization Client is implemented
using C++, Objective-C, OSG and OpenGL ES for run-
ning on the iOS platform (smartphones, tablet computers),
and using Java, JOGL and OpenGL for executing as a Java
applet inside web browsers.

5. 3D RENDERING SERVICE
In this section, we describe the 3D Rendering service. Its pri-
mary purpose is to provide 2D images of projected views

of 3DGeoVEs. The primary operation of the service is the
GetView operation. A view can be defined by a virtual cam-
era specification, a list of requested image layer and their
requested encodings, a list of requested geodata layer to in-
clude in the visualization, and styling specifications. To re-
duce network round trip times, a service consumer can re-
quest several views each consisting of several image layers
with one call of the operation. In the following, we describe
the software components and general workflow of the service
(Fig. 2).

5.1 Service Endpoint
The Web Server initially receives service requests from ser-
vice consumers. To allow the service to process a predefined
number r of requests concurrently, the Web Sever creates at
most r threads for executing instances of the WVS Endpoint,
WVS GetView, and Encoder. A request is either passed directly
to an available WVS Endpoint or queued for later execution.
The WVS Endpoint parses the request according to the WVS
specification [10] and calls the appropriate operation han-
dler. The WVS specification proposes several of operations.
Here, we focus on the GetView operation. Moreover, the
specification defines the WVS as a stateless service. The
WVS GetView performs parsing on the request specific to the
operation and passes it to the Render Master.

5.2 Parallel Processing of Requests
The purpose of the Render Master is to distribute the work-
load represented by incoming requests to resources avail-
able for processing the requests represented by several Ren-
der Workers. The Render Master and Web Server are the two
primary components of the architecture that perform pro-
cess synchronization for the purpose of managing shared re-
sources. The major goals in both cases are optimizing re-
source utilization, maximizing throughput, and minimizing
response times. For achieving these goals, the Render Master

proceeds as follows. First, it is capable of receiving requests
concurrently from different WVS GetView instances. Incoming
requests are queued. Either if at least one Render Worker is
already available for processing or as soon as at least one
becomes available, the next available request is taken from
the queue. When processing a request, it is split into a set
of tasks. Each Render Worker can process exactly one task at
a time. For load balancing, we propose the following algo-
rithm. First, for each view in a request a task is created. If
the number of tasks of the current request t is equal to the
number of available worker w, then each task is assigned
to an available worker. If t > w, then the tasks are pro-
cessed iteratively: Tasks are assigned to available workers
until no more worker is available. When a worker has fin-
ished a task from the current or a previous request, it is
assigned the next task from the current request. Workers
that become available are always assigned to tasks from the
current request. The next request is not pulled from the re-
quest queue until each task of the current request was or is
assigned to a worker. The iteration stops when all tasks of
the request have been processed. If t < w, then two options
exist. The first option is to assign each task to a worker.
This allows to pull further requests from the request queue
and to start processing them with the available worker. The
second option is to split some tasks into smaller tasks not
exceeding w in number. The split and the unsplit tasks are
then assigned to the workers. This option allows to compute

a single request faster. The heuristic for choosing an option
takes into account factors such as the current length of the
request queue and the estimated response time for the cur-
rent request in the split and unsplit case. For splitting tasks
into smaller tasks, we use sort-first decomposition [19]. Each
view (represented by the original task) is split in the view
plane into a set of rectangular 2D tiles (represented by the
split tasks replacing the original task) covering the complete
view.

Interaction
Layer

Process
Layer

Functionality
Layer

Data
Layer

3D Visualization Client

3D Rendering

Explorer

Controler

View

R

Model

R

R

R
HTTPR HTTP

R

HTTP

Geodata
Mapping

(OOC Model
Preprocessor)

WVS Endpoint

EncoderRender Master

Web Server

WVS GetView

WFS Adapter

Worker

GBuffer
GeneratorPost-Processor

Render Worker
R R

R

R

Proprietary Model Storage
(File System)

Geometry Textures

Thematic Data
Storage
(WFS)

CityGML
Storage
(WFS)

Figure 2: Architecture of the 3D rendering service
and the 3D visualization client.

For deciding which task to assign to which available worker
and for deciding when and how to split tasks, the Render

Master can estimate how much time a given worker would
take for processing a given task. We assume that the amount
of time a specific worker takes for processing a task is a func-
tion of its hardware and software configuration, the current
task, and the history of already processed tasks. The lat-
ter is of importance since we assume that the 3DGeoVE
is massive and exceeds the main memory and GPU mem-
ory capacity of a worker. Thus, we use out-of-core (OOC)
rendering techniques [8] that store the complete data of a
3DGeoVE on external storage and keep only a fraction of
it required for rendering at least the current task in mem-
ory. Therefore, typically, a worker can process a rendering
task faster, if data for previous tasks is still in memory and
caches and can be reused for the current task. Following
these assumptions, a function estimates the time a given
worker would take to process a given task using a heuristic.
This function is then used, e.g., to compute for a number of
tasks and available workers a configuration of assignments
that minimizes the maximum response time.

A Render Worker processes tasks assigned to it from the Ren-

der Master. Each Render Worker has its own thread of exe-
cution and a GPU associated to it. Either it executes on
the same CPU as the Render Master, on a different CPU on
the same computer or a different computer connected via
a network. Each task processed by the Render Worker rep-
resents a view of the 3DGeoVE. A set of tasks can be the
result of a sort-first decomposition of an original task. Each
view consists of one or more image layer. For decomposing
tasks, we use the sort-first scheme instead of other schemes
such as sort-last [19] in order to be able to execute the post-
processing of a view on the same worker that generated the
view. This has several advantages. First, not only the ren-
dering and G-buffer generation but also the post-processing,
which can also be costly to compute [12], can execute con-
currently on workers. In addition, generated G-buffers still
reside in GPU memory and can be used in place for post-
processing. Finally, temporary G-buffers created only for
specific post-processing effects never have to be transferred
from the GPU memory and can be discarded after use. In
contrast, when using, e.g., sort-last decomposition, post-
processing of the view cannot be executed before all its parts
are transferred (over the network or via main memory) and
the final view is composited. When building or splitting
tasks, the image layers requested for a view are never dis-
tributed to different tasks. Tasks are never split along image
layers. This has several advantages. First, multiple image
layers for a single view can be most efficiently created on
the same worker in one rendering pass using the GPU tech-
nique multiple rendering targets. Additionally, since OOC
rendering techniques must be applied, the data required for
generating an image layer must be transferred from the ex-
ternal storage prior to rendering. This data can be reused
for generating multiple image layers. Finally, since post-
processing might require the requested image layers, they
can be made available efficiently for this purpose directly on
the GPU.

5.3 Rendering and Post-Processing
When receiving a task, the Render Worker first invokes the
Post-Processor for preparing the task for the subsequent
post-processing, then invokes the GBuffer Generator for gen-
erating the image layers by rendering the 3DGeoVE as spec-
ified in the task, and, finally, invokes the Post-Processor

again to execute effectively the post-processing on the im-
age layers. The purpose of the Post-Processor is to style im-
ages of the 3DGeoVE according to a given product-specific,
company-specific cartographic and thematic design. The
Post-Processor implements styling by post-processing im-
ages [12] (R-styling). The Post-Processor accepts as input a
styling specification and a set of image layers representing a
view of the 3DGeoVE. The output consists of a set of image
layers representing a styled view (Fig. 3). The styling lan-
guage offers a range of operators for, e.g., data integration,
feature abstraction, increasing photorealism (e.g., by global
illumination), and focus and context visualization. In partic-
ular, operators are provided for projecting thematic raster
data on the geometry of the 3DGeoVE, and blending dif-
ferent level of abstraction (LOA) [7] represented as geodata
layer seamlessly in image space. When executing styling
specifications, the WFS Adapter is used to query properties
of the original geodata (e.g., thematic attributes) no longer
available in the Proprietary Model Storage. For processing

a given styling specification, the Post-Processor typically re-
quires a set of image layers with specific types. If image lay-
ers are required internally for styling but are not required
from the external service consumer as output, then the Post-
Processor adds these image layers to the current task before
rendering and disposes them again after the post-processing.

The purpose of the GBuffer Generator is to generate a se-
quence of image layers by rendering the 3DGeoVE as speci-
fied in a task. This component accepts as input a task that
specifies a virtual camera specification, a list of requested
image layer, a list of requested geodata layer, and styling
specifications. The output is a sequence of generated image
layers. To render massive 3DGeoVE efficiently, the geodata
representing the 3DGeoVE has to be transformed into a rep-
resentation optimized for 3D rendering. Since this represen-
tation can exceed main memory capacities, the optimized
representation is stored on external storage and only parts
of it required for at least processing the current task are kept
in main memory.

The Geodata Mapping service (Sec. 4) is responsible for trans-
forming geodata into a representation that is styled and op-
timized for efficient 3D rendering. The Geodata Mapping ser-
vice accepts as input references to geodata in standardized
representations, a specification for controlling how the ser-
vice divides the geodata into geodata layers containing sets
of features, a styling specification for controlling how the ser-
vice maps geodata to geometries and appearance attributes
(M-styling). As output, the service writes to the Propri-

etary Model Storage a representation optimized for render-
ing by the 3D Rendering service. The styling language offers
basic operators (e.g., for defining polygon material proper-
ties) and high-level operators such as computing LOA rep-
resentations for building models [7]. Additionally, the Geo-

data Mapping service supports managing the data contained
in the Proprietary Model Storage. It supports adding new
data to already existing data, updating or deleting existing
data, and storing and managing multiple versions of data
that resulted from transforming the same original geodata
with different styling specifications. The access to the data
in the Proprietary Model Storage is synchronized allowing
the 3D Rendering service to serve requests while the Geodata

Mapping service is updating the underlying data concurrently.

The data optimized for 3D rendering is organized in OOC,
hierarchical, multi-resolution data structures [1]. For effi-
cient rendering, we distinguish the following types of data
and organize them in specific, separated, interlinked data
structures: terrain geometry (quadtree), terrain textures
(clipmaps), features with unique geometry such as build-
ings, transportation, and water bodies (quadtree for geome-
try, virtual textures), and features with instanced geometry
such as city furniture and vegetation (quadtree for storing
references to instanced geometry, texture atlases). More-
over, we follow general principles that are crucial for effi-
cient rendering such as drawing geometry in large batches
and minimizing GPU state changes (aggregating features
in vertex buffer objects, texture atlases, state sorting), and
using level of detail representations (LOD, hierarchical sim-
plified geometry in the quadtree, static LOD versions for
instanced geometry, texture mipmaps). For rendering, the
GBuffer Generator traverses the hierarchical data structures,

Figure 3: Example image layer provided by the 3D
rendering service: color image layer with advanced,
post-processing-based styling (center), plain color,
depth, object ID image layer without styling (inset
top to bottom).

identifies the appropriate LOD of geometries and textures
that contribute best to the current view and that are part
of requested geodata layer, retrieves data from disk that is
required but not yet loaded, and, finally, draws geometries
using referenced textures writing in parallel to multiple ren-
der targets. Each render target represents a requested image
layer. The generated image layers are returned as output.
In contrast to common real-time rendering, here, we expect
far less frame-to-frame coherence from one requested view
to the next making common optimization techniques less ef-
fective. In addition, when data is required for rendering but
is not yet loaded form the external storage, the rendering
cannot finish until all required data has been loaded.

5.4 Composition and Encoding of Results
For each request, the Render Master collects the results of the
tasks the request was split into from the individual Render
Workers. If the Render Master split a task and its view by
sort-first decomposition, then now it composes the complete
view from the results of the split tasks. To exploit paral-
lelism, once the Render Master has completed the work on
an individual image layer, it is immediately passed to the
Encoder of the thread the request originated from for further
processing. Thus, available image layers as results of a re-
quest are already passed to the next stage of the processing
pipeline while other image layers might still be worked on
by Render Workers.

The Encoder receives as input an individual image layer and
an encoding specification. Conceptually, each sample value
(e.g., depth) in an image layer is first transformed from a
computer graphic (e.g., nonlinear, normalized) to a geo-
graphic coordinate system (e.g., linear, meters), and then
into a compressor specific representation (e.g., 32bit float
value masked as RGBA). Subsequently, the image layer is
compressed (e.g., LZ77 and Huffman coding) and encoded
in a standardized format (e.g., PNG). Since the straight-

forward compression of depth images using standard image
compression encodings [10] proves to be far less efficient than
it is with different image layer types [11], we offer as an al-
ternative the encoding of depth images as adaptively trian-
gulated meshes (depth mesh, or DMesh [21]) encoded using
the X3D standard. Each encoded image is passed in turn
to the WVS GetView and the WVS Endpoint components. The
WVS Endpoint streams each image layer over an HTTP out-
bound socket stream to the service consumer once an image
is received. Thus, parts of the result are already streamed
to the service consumer even if the complete result is not
yet computed.

6. 3D VISUALIZATION CLIENT
In this section, we present the 3D Visualization Client as in-
troduced in section 4 (Fig. 2). The purpose of the client is to
enable a user to explore and interact with a remote, massive
3DGeoVE rendered by a 3D Rendering service implementing
the WVS interface through the Internet. The client retrieves
sets of 2D images of projective views of the 3DGeoVE from
the service. The fundamental challenge when using image-
based representations are to provide a high degree of inter-
activity while making efficient use of the network channel
in the course of interactions, and to put low hardware re-
quirements on the client. We propose three different con-
cepts for implementing clients that address these challenges
with different trade-offs [15]. The concepts differ in how
they exploit images retrieved from the service and use addi-
tional service-side functionality. The concepts are based on
1) image retrieval and display, 2) image-based modeling and
rendering (IBMR), and 3) point-based modeling and render-
ing (PBMR). In this paper, we focus on a client based on
IBMR (Fig. 4).

The client requests cube maps for user specified virtual cam-
era locations in several information dimensions (color, depth,
object ID) from the WVS. We refer to cube maps with multi-
ple information dimensions as extended cube maps to differ-
entiate them from the common concept of cube maps known
from 3D computer graphics [1] that typically contain only a
single information dimension, i.e., color. The cube maps are
transferred as image sequences to the client. The client rein-
terprets the images as a description of the remote 3DGeoVE
consisting of 3D surface patches with attributes including
3D position, color, and object ID. From the surface patches,
3D meshes are constructed. In case the WVS supports the
DMesh encoding for depth images, the client requests this
encoding and directly uses the DMesh as 3D mesh. The
meshes represent the local, partial, approximated 3D recon-
struction of the remote 3DGeoVE.

To support navigation and interaction, novel views can be
rendered of the local 3D reconstruction from arbitrary vir-
tual camera viewpoints in real-time with interactive frame
rates. Thus, the client applies a latency hiding technique by
rendering novel views from the 3D reconstruction with low
latency while retrieving additional images from the WVS
concurrently with high latency. The client supports inter-
action tools including common direct navigation techniques
(e.g., rotate virtual camera, pan, zoom, and orbit), field of
view-based zoom with selective refinement of the cube map,
goto navigation with smooth virtual camera animation, se-
lection and highlighting of object features (e.g., buildings)

within the 3DGeoVE, retrieving and displaying additional
thematic information for object features from the WVS, and
measuring the Euclidean distance between arbitrary spatial
positions.

7. EVALUATION
In this section, we discuss how the proposed 3D Rendering

service, the 3D Visualization Client, and the general ap-
proach support meeting the requirements identified in sec-
tion 3. Additionally, we present preliminary quantitative
results of our initial implementations.

7.1 Discussion
The proposed 3D Rendering service presented in section 5
supports meeting the requirements identified in section 3 as
follows. Integration is supported by the concurrent integra-
tion of the new or updated geodata in the Proprietary Model

Storage. Interoperability is supported by applying standards
for the service interface and input and output data where
applicable. It is currently limited by the fact that standards
do not exist for efficiently representing massive geodata op-
timized for 3D rendering and image layer types other than
color. Massive geodata is supported by concurrent data inte-
gration and applying OOC, LOD and general principles for
efficient rendering. Effective, high quality visual represen-
tations are supported by the styling capabilities (M-styling
and R-styling) and the offered powerful high-level operators
such as the LOA operator and the capability to render mas-
sive geodata sets. A high degree of interactivity is supported
by answering service requests with low latency by applying
parallelism, efficient rendering algorithms and data struc-
tures, and by efficiently encoding image layers. Styling is
supported by specific styling capabilities (M-styling and R-
styling). Scalability is supported by exploiting parallelism
when processing a request on different levels and by tak-
ing advantage of available hardware resources (e.g., multiple
CPUs, GPUs).

As we have reported in [15], advantages of the 3D Visual-

ization Client based on IBMR (section 6) include that its
implementation, hardware resource requirements, and inte-
gration efforts are only moderately complex, it effectively
provides low latency interaction and display updates, sup-
ports several interaction techniques efficiently by exploiting
the retrieved G-buffers from the WVS, reuses the images re-
trieved from the WVS over several frames rendered locally
on the client, and displays results of WVS requests with
changed styling specifications as soon as the limited set of
locally maintained depth meshes and images with previously
requested styling are evicted from local memory. On the
other hand, aggregating locally a 3D reconstruction of vi-
sual representations of the remote 3DGeoVE based on depth
meshes is not optimally effective and efficient, retrieved im-
ages can only be reused for a limited number of frames ren-
dered locally, and the locally rendered novel views are ap-
proximations that suffer from hard to control under- and
oversampling issues.

The general approach of building 3D geovisualization sys-
tems based on SOA and standards has specific potential and
challenges. In [14], we present a discussion on this topic.

7.2 Quantitative Results
In the following, we present preliminary quantitative results
of our initial, not yet optimized implementations of the 3D

Rendering service and the 3D Visualization Client based on
IBMR.

In the first experiment, we aim at measuring the rate at
which the 3D Rendering service can provide service consumers
with rendered images. For this experiment, we created a
service consumer that stresses the service by sending 40
requests to the service each requesting three image layers
(color, depth, and object ID) for one 3D view. The service
consumer sends up to 10 requests in parallel. The service
processes each request sequentially and does not apply the
techniques presented in section 5 for parallel processing and
image post-processing. For each request, the service con-
sumer receives one HTTP multipart response containing the
three requested image layers. In total, the service generates
and delivers 120 images. We measure the time for send-
ing a request, rendering the images, compressing the images
(JPEG, PNG), sending the images, and decompressing the
images by the service consumer. The experiment is per-
formed in an intranet environment. The service is executed
on a desktop PC (Windows Server 2003, 1.86GHz double
core, 2 GB RAM, nVidia GeForce GTX 260). The service
consumer is executed on a different PC connected to the net-
work. As a result, we measure that a service consumer can
receive images at an average rate of 5.7 images per second
for an image resolution of 512x512 and a 2.6 for 1024x1024.
Second, we measure the memory size of generated and trans-
ferred image layers while navigating through the 3DGeoVE.
For an image resolution of 512x512, on average, color re-
quired 77.95 kbytes (JPEG), depth 199.63 kbytes (PNG),
and object ID 9.56 kbytes (PNG). We expect to achieve
higher delivery and compression rates in the future by apply-
ing the proposed parallel processing and compression tech-
niques.

Third, we measure the rendering rate of the Java-based im-
plementation of the 3D Visualization Client based on IBMR.
The client is executed in a web browser on a notebook (Win-
dows XP, 2.4GHz double core, 3 GB RAM, nVidia Quadro
FX 570M with 512 MB RAM). In this experiment, we log
the rendering rate of the client while a user navigates several
minutes through the 3DGeoVE using different navigation
techniques. While the user navigates, the client retrieves
images (512x512) from the service as appropriate. Depth
meshes are not adaptively triangulated. The average rate of
frames per second is zero when the user is not interacting
with the client and the current view does not change since
the 3D view is not updated in this situation, 284 when the
user looks around from a fixed camera position (rendering a
cube map), 102 when the user employs a fly navigation tech-
nique (rendering few depth meshes), and 71 when the user
uses a goto navigation technique (rendering up to 12 depth
meshes). We expect to achieve higher rendering rates in the
future by applying adaptively triangulated depth meshes.

8. CASE STUDY: MOBILE BERLIN 3D
The 3D city model of Berlin is currently one of the largest,
textured city models available (Fig. 4). It covers the com-
plete urban area of the city of Berlin including over 500.000
buildings in CityGML LOD2, 350 buildings in LOD3 or

LOD4, and more than 3 million single textures. A multitude
of geodata sets exists that provide additional information
(e.g., public transport routes, land value data, solar poten-
tial) through WMS or WFS services. Interactively visualiz-
ing this massive city model puts significant requirements on
a systems hardware and software.

Figure 4: The official 3D city model of Berlin (cen-
ter). Screenshot of the client application executing
on the Apple iPhone (inset).

For Berlin city marketing (www.businesslocationcenter.
de), there are two major applications for 3D visualization:
1) face-to-face meetings where companies evaluate city lo-
cations using additional data integrated in the visualization
guided by city marketing staff, 2) presentations on exhi-
bitions or trade fairs to advertise Berlin as a location for
business. In both cases, the integration of additional geo-
data into the visualization of the 3D city model is signif-
icant for decision-making and presentation. The proposed
distributed system overcomes various limitations of the cur-
rently employed monolithic system. By adding individual
interactive views on a client device for each participant of a
meeting to a single shared view for all participants, the effi-
ciency of communicating geoinformation can be improved by
computer-assisted collaboration. In addition, individually
controlled views on client devices coupled with touch-based
interaction have the potential to make the experience more
personal and emotional. For the second application case, the
availability of the visualization system in differing remote lo-
cations is required. With the proposed distributed system,
the cost and time intensive effort to move physically the
systems hardware is replaced by moving lightweight client
devices and supplying a robust Internet connection to the
services performing the major part of the resources required
for visualization.

The proposed system enables additional valuable applica-
tions such as creating visualization clients customized for
specific use cases such as giving talks at remote locations,
using the system as a foundation for creating collaboration
tools for specific use cases [17], and supplying business con-
tacts with tailored visual representations of the city model
augmented with thematic geodata, e.g., via URLs provided
in emails.

9. CONCLUSIONS
In this paper, we described challenges for the visualization
of and interaction with massive 3D city models and the lim-
itations of today’s 3D geovisualization systems. Driven by
the demand for interactive, effective, high-quality 3D geo-
visualization on thin clients (e.g., smartphones and tablets)
we presented a system architecture that copes with these
challenges in a service-oriented, standards-based way. The
approach is based on high performance, server-side 3D ren-
dering of extended cube maps, which are interactively visu-
alized by corresponding 3D thin clients. As key property,
the complexity of the cube map data transmitted between
server and client does not depend on the model’s complex-
ity. The proposed architecture provides a flexible mechanism
for styling of 3DGeoVEs, which allows to adjust effectively
their visual representation to the requirements of specific use
cases. In addition, the approach ensures the security of the
underlying geodata and investments of its owner by transfer-
ring only images to clients instead of geodata or computer
graphic data. The proposed system architecture has been
partly implemented and demonstrated by the implementa-
tion of a WVS and two implementations of the 3D visualiza-
tion client, one built for smartphones and tablet computers
and a second for web browsers. The client application uses
touch-based interaction techniques for controlling the virtual
camera and exploits the emotional factor of devices with tan-
gible displays. For a city marketing use case, we discussed
the benefits of the proposed, flexible system in comparison
to current monolithic systems.

The proposed system architecture represents a solution to
cope effectively with the increasing demand for flexible ac-
cess to and high-quality visualization of massive 3D geodata
that is driven by the ongoing and increasing digitalization of
the real world. Through the systematic separation of con-
cerns introduced by the service-oriented approach, new de-
velopments in client hardware and software (e.g., in-memory
approaches) as well as new trends in specialized rendering
servers, fast storage systems and fast networks can be ex-
ploited. The described approach promises to make visual
representations of massive 3D geodata available in an inter-
active manner and in a high quality anytime and anywhere.
It could not only support existing but could also lead to new
applications, systems and business models, e.g., in the areas
of edutainment, personal navigation, or collaborative sys-
tems for public participation in urban planning. Moreover,
the combination of the described service-oriented approach
with the resource elasticity promised by the cloud comput-
ing paradigm could form the basis for new business models
that require efficient, high-quality and low-cost deployment
of massive 3D geodata.

Future work includes establishing and implementing styling
as a functional component of the outlined service-oriented
system architecture, to consider dynamic data throughout
the distributed visualization process (e.g., sensor data and
animations), to further cope with and overcome the inter-
action barriers that come along with the image-based ap-
proach, and to extend the implementation for collaborative
systems including, e.g., sketch-based annotations within the
presented 3DGeoVEs [17, 16].

10. ACKNOWLEDGMENTS
This work has been partly funded by the German Federal
Ministry of Education and Research (BMBF) as part of the
InnoProfile research group 3D Geoinformation (www.3dgi.
de). We also thank Berlin Partner GmbH and Berlin’s senat
department for urban development for supporting our work,
the 3D Content Logistics GmbH (www.3dcontentlogistics.
com) for inspiring discussions on the topic, and Autodesk Inc.
for successful collaboration on the visualization client.

11. REFERENCES
[1] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time

Rendering. A. K. Peters, Ltd., Natick, MA, USA, third
edition, 2008.

[2] J. Basanow, P. Neis, S. Neubauer, A. Schilling, and A. Zipf.
Towards 3D Spatial Data Infrastructures based on Open
Standards. Lecture Notes in Geoinformation and
Cartography. Springer, 2008.

[3] K. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton,
and J. Wood. Distributed and Collaborative Visualization.
Computer Graphics Forum, 23(2):223–251, 2004.

[4] C.-F. Chang and S.-H. Ger. Enhancing 3D Graphics on
Mobile Devices by Image-Based Rendering. In Proceedings
of the Third IEEE Pacific Rim Conference on Multimedia
(PCM 2002). Springer, 2002.

[5] D. Filip. Introducing smart navigation in Street View.
http://google-latlong.blogspot.com/2009/06/
introducing-smart-navigation-in-street.html, 2009.

[6] J. Ge. A Point-Based Remote Visualization Pipeline For
Large-Scale Virtual Reality. PhD thesis, University of
Illinois at Chicago, 2007.

[7] T. Glander and J. Döllner. Abstract Representations for
Interactive Visualization of Virtual 3D City Models.
Computers, Environment and Urban Systems, 33(5), 2009.

[8] E. Gobbetti, D. Kasik, and S.-e. Yoon. Technical Strategies
for Massive Model Visualization. In SPM ’08: Proceedings
of the 2008 ACM symposium on Solid and physical
modeling, pages 405–415, New York, NY, USA, 2008. ACM.

[9] M. Gross and H. Pfister. Point-Based Graphics. Morgan
Kaufmann Publishers Inc., 2007.

[10] B. Hagedorn, editor. Web View Service Discussion Paper,
v0.6.0. Open Geospatial Consortium Inc., 2010.

[11] B. Hagedorn, D. Hildebrandt, and J. Döllner. Towards
Advanced and Interactive Web Perspective View Services.
In Developments in 3D Geo-Information Sciences, Lecture
Notes in Geoinformation and Cartography. Springer, 2009.

[12] D. Hildebrandt. Towards Service-Oriented, Standards- and
Image-Based Styling of 3D Geovirtual Environments. In
C. Meinel, H. Plattner, J. Döllner, M. Weske, A. Polze,
R. Hirschfeld, F. Neumann, and H. Giese, editors,
Proceedings of the 5th Retreat of the HPI Research School.
Universitätsverlag Potsdam, 2011.

[13] D. Hildebrandt and J. Döllner. Implementing 3D
Geovisualization in Spatial Data Infrastructures: The Pros
and Cons of 3D Portrayal Services. In W. Reinhardt,
A. Krüger, and M. Ehlers, editors, Geoinformatik 2009,
volume 35. ifgiprints, 2009.

[14] D. Hildebrandt and J. Döllner. Service-oriented,
standards-based 3D geovisualization: Potential and
challenges. Journal on Computers, Environment and Urban
Systems, 34(6):484–495, 2010. GeoVisualization and the
Digital City - Special issue of the International
Cartographic Association Commission on GeoVisualization.

[15] D. Hildebrandt, B. Hagedorn, and J. Döllner. Image-Based,
Interactive Visualization of Complex 3D Geovirtual
Environments on Lightweight Devices. In 7th International
Symposium on LBS and Telecartography, 2010.

[16] J. Klimke and J. Döllner. Geospatial Annotations for 3D
Environments and their WFS-based Implementation. In
Geospatial Thinking, Lecture Notes in Geoinformation and

Cartography, pages 379–397, Berlin, Heidelberg, 2010.
Springer.

[17] J. Klimke and D. Jürgen. Combining Synchronous and
Asynchronous Collaboration within 3D City Models. In
Proceedings of GIScience 2010. Springer, 2010.

[18] F. Lamberti and A. Sanna. A Streaming-Based Solution for
Remote Visualization of 3D Graphics on Mobile Devices.
IEEE Transactions on Visualization and Computer
Graphics, 13(2):247–260, 2007.

[19] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Computer
Graphics and Applications, 14:23–32, 1994.

[20] S. Neubauer and A. Zipf, editors. 3D-Symbology Encoding
Discussion Draft, Version 0.0.1. Open Geospatial
Consortium Inc., 2009.

[21] R. Pajarola, M. Sainz, and Y. Meng. DMesh: Fast
Depth-Image Meshing And Warping. International Journal
of Image and Graphics, 4(4):653–681, 2004.

[22] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-Oriented Computing: State of the Art
and Research Challenges. Computer, 40(11):38–45, 2007.

[23] T. Saito and T. Takahashi. Comprehensible rendering of
3-D shapes. SIGGRAPH Computer Graphics,
24(4):197–206, 1990.

[24] A. Schilling and T. H. Kolbe, editors. Draft for Candidate
OpenGIS Web 3D Service Interface Standard, v0.4.0. Open
Geospatial Consortium, 2010.

[25] H.-Y. Shum, S.-C. Chan, and S. B. Kang. Image-Based
Rendering. Springer, 2007.

[26] A. Stadler, C. Nagel, G. König, and T. H. Kolbe. Making
interoperability persistent: A 3D geo database based on
CityGML. In J. Lee and S. Zlatanova, editors, Proceedings
of the 3rd Intl. Workshop on 3D Geo-Information, Lecture
Notes in Geoinformation & Cartography. Springer, 2008.

[27] H. Wang, K. W. Brodlie, J. W. Handley, and J. D. Wood.
Service-oriented approach to collaborative visualization.
Concurrency and Computation: Practice & Experience,
20(11):1289–1301, 2008.

