1:/4F Hasso

Plattner
Institut
IT Systems Engineering
Universitat Potsdam

Proceedings

of the Fall 2006
Workshop of the HPI
Research School on
Service-Oriented Systems
Engineering

Benjamin Hagedorn, Michael Schibel, Matthias Uflacker, Flavius
Copaciu, Nikola Milanovic

Technische Berichte Nr. 18

des Hasso-Plattner-Instituts
fur Softwaresystemtechnik an der Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fir Softwaresystemtechnik
an der Universitt Potsdam

Nr. 18

Proceedings

of the Fall 2006
Workshop of the HPI
Research School on
Service-Oriented
Systems Engineering

Benjamin Hagedorn, Michael Schobel, Matthias Uflacker,
Flavius Copaciu, Nikola Milanovic

Potsdam 2007

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet tber
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts fir Softwaresystemtechnik an der
Universitat Potsdam erscheint aperiodisch.

Herausgeber: Professoren des Hasso-Plattner-Instituts flr Softwaresystemtechnik
an der Universitat Potsdam

Redaktion: Benjamin Hagedorn, Michael Schobel, Matthias Uflacker, Flavius Copaciu,
Nikola Milanovic

Email: {benjamin.hagedorn; michael.schoebel; matthias.uflacker; flavius.copaciu;
nicola.milanovic}@.hpi.uni-potsdam.de

Vertrieb: Universitatsverlag Potsdam
Am Neuen Palais 10
14469 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@uni-potsdamde
http://info.ub.uni-potsdam.de/verlag.htm

Druck: allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut fiir Softwaresystemtechnik an der Universitat Potsdam, 2007

Dieses Manuskript ist urheberrechtlich geschitzt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfaltigt werden.

Heft Nr 18 (2007)
ISBN 978-939469-58-2
ISSN 1613-5652

Content

1.

Design and Composition of 3D Geoinformation
Services
Benjamin Hagedorn

. Operating System Abstractions for Service-Based

Systems
Michael Schobel

. A Task-oriented Approach to User-centered Design of

Service-Based Enterprise Applications
Matthias Uflacker

. A Framework for Adaptive Transport in Service-

Oriented Systems based on Performance Prediction
Flavius Copaciu

. Asynchronicity and Loose Coupling in Service-

Oriented Architectures
Nikola Milanovic

Design and Composition of 3D
Geoinformation Services

Benjamin Hagedorn

benjamin.hagedorn@hpi.uni-potsdam.de

Forced by Google Earth the topic of geoinformation has become mainstream. As 80
per cent of all digital information carries a spatial reference, there is a great
opportunity for using geographic information as a basis for gaining insight into these
data, for more efficient processing, and for developing new applications on the basis
of such information. Especially 3D geoinformation gets more and more important for
a variety of application domains. For enabling the interoperable access and
processing of geoinformation, standards organizations as the Open Geospatial
Consortium have specified different services and data description languages. This
work gives an introduction to the field of 3D geoinformation services and points out
open questions that arise from using geoservices. The focus is on the visualization
aspects and the consequences for service design and integration with existing and
future geoservice-based systems.

1 Introduction

Geoinformation is used in a lot of contexts and is a factor for economic success. To
facilitate geoinformation, to integrate it in different applications and to see things that
were not obvious before, means to create value. 3D geoinformation supports this
creation of new insights into data and processes. For activating the capabilities of
geoinformation it must be collected, processed, and distributed efficiently for being
used effectively. Service-based architectures are a concept for achieving this
integration of geoinformation and geographic information services offer the
technology to implement them. In modern times geographic information becomes
main stream for a variety of applications in very different domains. The main issue of
this development is to activate the value that is contained in geographic information,
combine it with processes and other information, and so to generate added value.

The underlying vision of this work is the development of 3D geoinformation
services with the objective of activating the inherent potential of geoinformation by its
integration in 3D geovirtual environments.

This paper takes a look at the topic of geoservices and how they can be used to
create higher-level functionality. Chapter 2 discusses geoinformation and points on
the usage of internet mapping and geodata infrastructures as a possibility for
distributing geodata and correlated functionality. Chapter 3 is about geoservices
themselves and how they can be assembled, about geoservices standards, and

Open Research Questions in SOA 1-1

Design and Composition of 3D Geoinformation Services

open research questions in this field. Chapter 4 describes the current project work for
the OGC Web Services Initiative, Phase 4, which is about interoperability between
different geodata and between different vendors. In the conclusion an outlook on
further research is given.

2 Geoinformation and Geovisualization

2.1 Geoinformation

Geodata is data about concrete or abstract objects, terrain shapes and infrastructure
elements on the earth surface. The common property of geodata is their spatial
reference. It is estimated that about 80% of all information has a spatial reference,
which can be used as a basis for processing and visualizing such data. Considering
the context of meaning and usage, geodata becomes geoinformation that has spatial
properties (geometry and topology) and semantic properties (semantics and thematic
attributes):

e Geometry includes information about the shape and position of geoobjects.
Geometry can be given, e.g., as points, lines, or polygons.

e Topology describes the spatial relationship between different geoobjects, e.g.,
adjacency or containedness.

e Semantics describes the meaning of a geoobject in a concrete context, e.g., if
it is a road, runway, or building.

e Thematic data describes non-spatial properties of geoobjects, e.g., building
material or speed limits for roads, number of occupants or household income,
or temporal attributes as year of construction.

The semantic classification is essential for the proper application of
geoinformation. Hierarchical classification allows abstraction and enables user- and
task-oriented processing of geoinformation.

Geoinformation is collected by a variety of organizations. Public authorities are
committed by law to collect and maintain geodata. On the other hand, commercial
organizations gather geodata for their own purposes or for others. This results in a
huge and distributed amount of heterogeneous geoinformation which is not
inherently interoperable because of varying purposes, coverages, different
measurement methods, classification schemas, storage formats, spatial precision or
timeliness.

Geoinformation is an essential system component for an increasing number of
applications and systems as for facility management, logistics, security,
telecommunication, disaster management, location-based services, real estate
portals as well as entertainment and education products.

1-2 Open Research Questions in SOA

2 GEOINFORMATION AND GEOVISUALIZATION

2.2 From GIS to GDI

2.2.1 GIS and Internet-Mapping

Geographic Information Systems (GIS) are software systems for collecting, storing,
managing, analyzing, and visualizing geospatial data. For a long time, GIS have
been monolithic systems, which allowed the users to work efficiently with the data.
Geoinformation is distributed over these systems and extra effort is necessary for
reaching a consistent data state. Additionally, multitudes of applications need extra
effort for administration.

Today, large network bandwidth and distributed application platforms as they are
provided by application servers and browser-based front-ends allow a distributed GIS
which consists of a GIS server and appropriate GIS clients. According to the
functionalities and the separation of concerns of server and client, Fitzke et al. (1997)
propose five categories of web-based geoinformation systems, see Table 1.

Table 1: GIS categories and their provided GIS functionality.
Category of web-based GIS Provided functionalities

Geodata server Data management

Map server Data management, visualization

Online retrieval system Data management, visualization, retrieval

Online GIS Data management, visualization, retrieval, GIS analysis
GIS function server Visualization, retrieval, GIS analysis

Internet-Mapping and real Web-GIS (which must include GIS analysis
functionality) help to integrate the geoinformation that is further distributed in a
company. It is no longer stored locally but in a central database. This prevents data
redundancies and inconsistency. Furthermore a central GIS server and simple web
based clients reduce the effort for software administration.

2.2.2 Geodata Infrastructures

Worldwide, there are efforts to establish so-called geodata infrastructures (GDI). The
term GDI is not a well defined one. It can be described to conclude all entities that
serve in the provision, transportation, and processing of geoinformation. The primary
goal of these infrastructures is to make the collected but widely distributed
geoinformation available for re-use in administration and economy. In Germany,
there are several regional GDI projects, as in Berlin, Brandenburg or North Rhine-
Westphalia. Above those, Germany installed a national GDI project which itself is
covered by the European GDI project INSPIRE. Geoinformation services play an
important role in these geodata infrastructures as they are often used to enable the
access to geodata. As geoinformation services often base on standards they support
the interoperability of geoinformation and between different participants in the
geodata infrastructure.

In the context of GDlIs, there are still a number of open questions about legal
issues, the organization of this infrastructure, its architecture, and the geodata that

Open Research Questions in SOA 1-3

Design and Composition of 3D Geoinformation Services

shall be provided — e.g., who is allowed to participate in the infrastructure, how to
participate, or how much it would be.

2.3 3D Geovisualization

Visualization "is concerned with exploring data and information in such a way as to
gain understanding and insight into the data [and] to promote a deeper level of
understanding of the data under investigation and to foster new insight into the
underlying processes [...]." (Brodlie et al., 1992)

So, geovisualization is the visual representation of data with a special reference,
respectively. Not only spatial objects and processes but also those objects and
processes that can be transformed into spatial geometry are target of
geovisualization.

Visualization pipeline

->I Selection |->O—>| Encoding I—Do—bl Presentation

1

o
0
<R
—0

Figure 1: Geovisualization pipeline. (Based on Spence 2001.)

According to Spence (2001), the process of visualizing geoinformation can be
organized in the geovisualization pipeline which contains the selection, encoding,
and presentation stages (Figure 1):

e Selection stage: The geodata that shall be visualized are reformatted,
integrated, processed and selected accordingly to the task to fulfill. Result is a
model of the geodata.

e Encoding stage: The selected geodata is transferred into a geovirtual model.
Thereby the geodata is mapped on a computer graphics representation
(model objects and attributes).

e Presentation stage: Images of the computer graphics model are synthesized
into the final geovisualization that is perceptible by a human user.

The geovisualization pipeline provides the interaction of the user with the
visualization system which is quite demonstrative for a GIS. E.g., it enables the user
to load other geoinformation, to influence the visual encoding (e.g., colors or map
symbols), or to switch between different views or to move the virtual camera.

As traditional GIS applications dealt with 2D geoinformation, 3D geoinformation
became more and more important for a variety of applications in the last years and
has found its way into GIS.

3D geovirtual environments (GeoVE) are capable of representing urban spatial
and geo-referenced data, including terrain models, building models, vegetation
models as well as models of roads and transportation systems. A GeoVE can be
used in the obvious way for representing city objects of the real world, but it also can
be utilized as a platform for the integration of abstract geoinformation, such as noise
level information or visibility information.

1-4 Open Research Questions in SOA

3 GEOINFORMATION SERVICES

Compared to 2D geovisualization, 3D geovisualization deals with large amounts of
geometry data or texture data and needs special computer graphics techniques and
intensively uses the computer graphics hardware. An other important issue is the
enablement of interaction with the GeoVE, such as navigation which is the most
important interaction technique as it enables the user to move through the GeoVE for
gathering the contained geoinformation.

On the other hand well known methods in the field of 2D geovisualization, e.g.,
cartographically generalization, can not be applied to 3D geovisualization easily.

3 Geoinformation Services

3.1 Service-oriented Computing

After object-oriented and component-oriented programming, service-based
computing is called to be a new programming paradigm using possibly distributed
and network-connected services as more abstract functional entities on a more
architectural view on a software system. Software architectures considering this
programming paradigm are called service-oriented architectures (SOA) and are
pushed to the markets by a variety of vendors, currently. From a management
viewpoint, a SOA is a management concept which targets on a flexible IT
infrastructure which is aligned to the business goals and can be easily adapted to the
changing business environment. From a technical viewpoint a SOA is a software
architecture concept which bases on the usage of software services.

ISO 19119 (2005) defines a service as a collection of operations which are
accessible through an interface and allow a service consumer to evoke a behavior of
value at the provider offering the service. For enabling the service consumer to find
and utilize the service functionality, the service interface must be described and
published in a standardized way. Therefore, the service repository is defined as a
third participant in a SOA. Figure 2 shows these SOA participants and the described
publish-find-bind interaction pattern.

Service

Repository

Find Publish

Bind
Service - Service
Consumer = Provider

Figure 2: SOA participants and publish-find-bind pattern.

The service consumer uses the described service interface to invoke the service's
functionality — the concrete service implementation is hidden. This leads to a loose
coupling of the application entities in a SOA, increases their reusability and supports
interoperability.

The standardization of interfaces and exchange formats allows to combine
services in ways that are not predefined and to assemble the service functionality for

Open Research Questions in SOA 1-5

Design and Composition of 3D Geoinformation Services

achieving larger tasks. Service composition is described by service orchestration or
service choreography — this is the service combination from a higher system top view
or from the local service view, respectively. The consequence of service composition
is that the involved service providers may also act as consumers of the functionality
that is provided by other services.

XML web services are one possible service implementation for building a SOA.
They use technologies as Web Service Description Language (WSDL) for describing
the service (e.g., how to invoke), UDDI for publishing the service, SOAP as a
message exchange protocol over HTTP as transport protocol.

Representational State Transfer (REST) is another concept for implementing
service-based systems. It bases on the idea of resources which are defined by
unified resource locators (URL). REST supports a binding to HTTP only. The HTTP
operations GET, PUT, POST, and DELETE are used for interacting with the
resources, e.g., for retrieving representations of a resource, creating new resources,
or deleting them.

3.2 Geoservices

In the context of geoinformation, services offer the possibility to provide widely
distributed geoinformation in an interoperable manner and facilitate the reuse of data
and functionality in a variety of applications. Geoservices support the various forms
of web-based GIS but also are important components of a GDI. So, geoservices
offer the possibility to integrate geoinformation into business process, e.g., for spatial
data mining or decision support (Andrienko 1999, 2005).

s) IHIHI)

Workflow Q—D@{%%-O

Applications %@ %@

< <

6 99
)

Geoinformation 9 @9 9

Figure 3: Geoservices in the context of SOA views.

Geoservices

Figure 3 denotes the integration of geoinformation and geoservices in the context
of business integration. It is made up of the following entities:

1-6 Open Research Questions in SOA

3 GEOINFORMATION SERVICES

e Business process which is an abstract description of a set of steps for
reaching a business goal: It is the "means by which one or more activities are
accomplished in operating business practices." (ebXML 2001)

e Workflow which is the "automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant
to another for action, according to a set of procedural rules." (Workflow
Management Coalition 1999)

e Applications which allow a user to be part of the process execution in a
special workflow step.

e Geoservices which might be dedicated for the use in a workflow in an
automated manner or might be consumed by application clients for human
interaction.

e Geoinformation which are distributed over a multitude of sources and can be
accessed via services.

Geoservices can be categorized according to their functionality. Typical

geoservice types are:

e (Geodata services which provide geoinformation, e.g., road network
information.

e Portrayal services which provide visualizations, e.g., maps.

e Processing services which, e.g., provide transformations of geodata or may
synthesize new geoinformation.

Especially for geodata services, the service repository should allow the service
consumer to search for specific geoinformation (e.g., roads or building information) in
a specific spatial area which could be defined by a bounding box. Service
composition is another major topic for geoservices.

3.2.1 Interoperability

The utilization of geoservices advances the interoperability of different
geoinformation-sources and the possibility to integrate geoinformation in a new
context for gaining new insights. Interoperability is a challenge in discovering,
accessing, and using geoinformation. For solving these challenges geoservice-based
systems offer meta information, standardized service interfaces and standardized
data models.

On a conceptual level Bishr (1998) distinguishes the following three categories of
interoperability problems in GIS:

e Semantic heterogeneity characterizes the different understanding of features
of the real world. E.g., a road network is a network structure for routing but a
set of laminar objects.

e Schema heterogeneity characterizes differences in the structure of the model.
E.g., geoobjects are modeled on a class level in one system and as attributes
in another system.

e Syntactical heterogeneity characterizes differences in the exchange format on
the one hand and in the geometric representation on the other hand — e.g.,
the storage of road network as vector data vs. the storage as raster data.

Open Research Questions in SOA 1-7

Design and Composition of 3D Geoinformation Services

Groger and Kolbe (2003) point out additional interoperability problems concerning
geometry and topology of single geoobjects as they can be caused by different
spatial reference systems, or errors in measurement, digitizing or generalization.
These problems of geometrical and topological interoperability can be further
subdivided into geometrical and topological inconsistencies, problems arising from
multi-scalar representations, and problems caused by geodata infrastructures as
data inconsistencies.

3.2.2 Geoservice Chaining

In the field of geoinformation services, service composition is described by the term
service chaining. Alameh (2003) offers three architecture patterns for service
chaining that base on chaining patterns that are provided by ISO 19119 (2005), see
Figure 4. The main difference in this classification is the issue of control about the
service chain workflow and the visibility of the involved services for the user:

e C(Client-coordinated service chaining: The user has full knowledge about the
participating services and controls the workflow of the service chain.

e Workflow-managed service chaining: The user knows about the involved
services but invokes a workflow management service which controls the
workflow of the service chain.

e Static chaining using aggregate services: The user does not know about the
participating services. They are hidden by an aggregate service which controls
the workflow.

Client
Client » Workflow i
Client en Service Aggregate
Service
! . !
Service Service Service Service Service Service Service Service Service
a) b) c)

Figure 4: Service chaining patterns: a) Client-coordinated service chaining; b)
Workflow-managed service chaining (grey: client "knows" about services); c) Static
chaining using aggregate services.

These composition patterns correspond to service orchestration, as a central
manager (client, workflow service, or aggregate service) has the responsibility for the
service chain execution. Furthermore, the patterns can be adapted in the sense, that
one service forwards the response directly to another service. Such service nesting
is more efficient as possible large data must be transferred only once.

Especially for geoservices, composition is an important issue for the integration of
different geoinformation. Chainable geoservices are, e.g., coordinate transformation
services, routing services, or generalization services.

E.g., one possible geoservice chaining might result from the integration of different
geodata sets into one visualization: a) Two different geodata services provide road
network information in different coordinate reference system. b) A processing

1-8 Open Research Questions in SOA

3 GEOINFORMATION SERVICES

services has to transform both geodata sets into the same coordinate reference
system. c) A portrayal service can use this geodata for synthesizing a map
visualization.

3.3 Standards for Geoservices

3.3.1 OGC Web Services

Several organizations are active in the field of geographic standards. Those are, e.g.,
the International Organization for Standardization (ISO), the Open Geospatial
Consortium (OGC), the Federal Geographic Data Committee (FGDC), or the
European Committee for Standardization (CEN).

The OGC is a non-profit, international standards organization which develops and
promotes standards for geospatial services. The OGC has defined several
implementation specifications for services and for data exchange formats.
Furthermore a row of discussion papers is waiting for becoming an OGC
specification. The following list gives an overview on some of the well known, often
used, and interesting OGC specifications and discussion papers.

Geography Markup Language (GML) GML is an encoding specification for
geodata in XML for storing, exchanging, and processing geographic information.

CityGML Currently, CityGML has the status of a discussion paper in the OGC
standardization process. It is a GML-based format for the description of 3D geovirtual
environments. This means geometry and topology but also the semantics of city
model objects. This semantics is not provided by the abstract GML specification.
Such semantics are, e.g., building, wall, door, water body, etc.

Web Map Service (WMS) The WMS defines the creation and display of map-like
views of distributed data. The WMS supports the following operations:
e GetMap requests a map for a defined bounding rectangle with specified
information layers included, and in a specified graphical style.
e (GetFeaturelnfo is an optional operation. It provides additional information
about the geographical features that in a map at a special pixel position.

Web Feature Service (WFS) The WFS provides an interface to data stored in
GML. It allows a service consumer to retrieve and manipulate these geoinformation.
Among others the WFS provides the following operations:
e GetFeature is the operation for retrieving feature instances.
e DescribeFeatureType is the functionality to describe the structure of every
feature that can be retrieved from GetFeature.
e WFS might offer transactions, which are composed of requests for data
modification: Create, Update, Delete.

Web Coverage Service (WCS) The WCS is capable of providing geospatial data
as "coverages" which are raster data sets. Different from WMS this are not image

Open Research Questions in SOA 1-9

Design and Composition of 3D Geoinformation Services

data per default but raw geographical data that can be interpreted by the service
consumer. Important operations of the interface are:
e DescribeCoverage describes the coverages that are named by parameter.
e (GetCoverage enables the access to coverage data. Parameters are coverage
size, coverage format and interpolation.

Web Catalogue Service (WCS) Web Catalogues serve for discovering OGC web
services and retrieving service metadata.

Web Terrain Service (WTS) The WTS is a perspective view service — this is, it
provides 3-dimensional views of geovirtual models which may include terrain,
buildings, vegetation, etc.

Web 3D Service (W3DS) The W3DS is a service for 3D geodata. It provides 3D a
scene graphs which is a computer graphics model that must be rendered for
retrieving imagery that can be perceived by the human.

Filter Encoding The Filter Encoding specifies an encoding for filter expression in
XML. Filter encodings are used as functions for obtaining a subset from a set of
objects. Filter encodings can be used in variety of OGC web services for reducing
the result set, e.g. when specified together with the WFS operation GetFeature.

3.3.2 The Google-Way

Google Earth is an application for accessing and visualizing different types of
geoinformation, as orthophotos, terrain models, city models, or infrastructure
elements as roads or airports. It allows to include own paths or models into the
scene and to fly directly to a town or landmark. Considerable building models can be
easily created with Google SketchUp, an easy to use sketching tool for building
construction. These models can be imported and positioned into Google Earth by the
usage of the simple data transfer format KML which is an easy description for
building sites.

Google Maps is another geodata view client. The browser-based viewer provides
detailed ortophotos of the earth surface and offers an alternative map view.
Additionally, Google offers the Google Maps API which enables programmers to
access the Google Maps service and to integrate maps into their own homepage.
The Google Maps API offers additional functionality as positioning arbitrary map
symbols, add own information layer or even to integrate map layers from an OGC
web map service. A lot of people used the possibilities of the Google Maps APl and
created their own geovisualization, called mashups. An example is the
georeferenced map display of apartments to rent enriched with additional information
— see Figure 5.

1-10 Open Research Questions in SOA

3 GEOINFORMATION SERVICES

Tallee z T ﬁ#,%
< o
Wohnung zur Miste
& Besonders schine Wohnung im
sanierten Jugendstilhaus §§7°
ns, 5.00 Zimmer, 203,00 m? 1;3\ &
dag 1624,00 € Kaltmiete 3 f
&
A e'en,% Jagerallee 40 e ot
E S 14467 Potsdam-lagervorstadt q,,%n
B 2
o I %
& |2 Zoom Details L
v 3 %%
Grenor-Mendal-Sirana
s §
i & ! y - o & S
o \-_z, S/ o # et \ f
5 * -+ e N
B — = - —
Bar3 Aﬂe@"‘“ﬂz . g L 1
B
* é %m Gunere!) %, ‘\\\\\ \\\
B2 £ b o 5 o
£ H z Krarikenhaus b Ny
e N s g Ernst von A

Figure 5: Mashup of G‘ooéle Maps ;nd apartments for rent. (rﬁapits.de)

Google Earth and Google Maps are successful products that enable everybody to
use geovisualization and so have set up a quasi standard in the field of service
geoinformation processing and visualization. The mashups with Google Maps
generate an added-value to the users. Both are excellent examples how to integrate
and facilitate geoinformation for gaining insight.

3.4 The OGC Portrayal Model

The geovisualization pipeline that was introduced in 2.3 corresponds to the OGC
portrayal model which is shown in Figure 6. This model is annotated with some

possible participants covering different functionalities of the pipeline. (Schmidt et al.
2003).

Display

]

[
[_ | \ E,
CipenGL WTS E Image | |
Direct3D [j I! | E |
Render | E I'
X3D, (Geo)VRML wms | — |'\ it
' (Drape) L Display Elements |
| |
| Display Element l |
Generation l[|
OGC Simple L o e | |I |
Features Spec, 1 Features || = || |
? { I al |
Select | g \ |
|
[t] | % i
WFS, Wes Data Source L |

Figure 6: OGC portrayal model; modified by Schmidt (2003).

The OGC defines portrayal as information presentation to the human — portrayal
elements may be either images or display elements. Corresponding to this, the OGC
defines providing portrayal services and consuming "application services" as part of
their OWS service framework (Percivall 2003). Application services may be either
application servers, or application clients.

Open Research Questions in SOA

Design and Composition of 3D Geoinformation Services

Thick Medium Thin
Display Client Display Client Display Client
L2 L2 f Internet
Rend Rend
ender ender Render
R +| et 5
isplay : -
Element Display Display
Generator Element Element
* Generator Generator
Internet
Select || Thin Select || Medium Select || Thick
Server Server Server
% ¥ F

Figure 7: Partition concepts of the visualization pipeline in service-based systems.
(Altmaier and Kolbe 2003)

The application of geoservices for geovisualization raises the question of the
separation of rendering concerns between service provider (portrayal service) and
service consumer (application service), this means between server and clients. The
OGC Portrayal model allows three partitions which are illustrated by Altmaier and
Kolbe (2003) in Figure 7 for client/server architectures:

e Thick Client / Thin Server: The client request selected data from the server
and performs the remaining steps of the geovisualization pipeline. This
requires appropriate computer graphics capabilities of the client. A possible
geoservice participating in this scenario is a WFS.

e Medium Client / Medium Server: The service provides computer graphical
representations (e.g., a VRML scenegraph) to the client which has to
synthesize images. Again the client needs computer graphics capabilities for
rendering images. In this scenario the style of the resulting visualization is
more in concern of the server. The W3DS is a possible participant in this
scenario.

e Thin Client / Thick Server: All the visualization steps are performed by the
server. The server defines the final visualization and the client must only
provide capabilities for displaying the visualization to the end-user.

3.5 Open Questions

Figure 8 illustrates the topics that are relevant when addressing 3D geoinformation
visualization via service-based systems. Vital parts of such systems are 3D
geoservice providers and 3D geoservice consumer.

The service interface describes the service capabilities to the service consumer.
The implementation of these capabilities is basing on the columns of modeling,
rendering, and interaction:

e Modeling addresses the structure and organization of complex

geoinformation.

e Rendering addresses the mapping of this geoinformation onto computer
graphics elements relevant for geovirtual environments and the synthesis of
images of this GeoVE. These images support the end-user in understanding
the geoinformation and in getting insight into the underlying data.

1-12 Open Research Questions in SOA

3 GEOINFORMATION SERVICES

e Interaction addresses the issue of navigation inside the GeoVE but also the
manipulation of the presented objects and their underlying geoinformation and
the analysis of these data which might lead to the generation of new
geoinformation.

Application Domains

. i Geodata
(MOb”e MapplnSD Infrastructures)
Disaster
Management
Technologies

Web Standards
Technologies
GIS Standards
Media |::> 3D Geoservice 3D Geoservice <:|

Technologies Provider Consumer

Web Standards

Streaming
Technologies

ui

Modeling
Rendering
Interaction

Fundamental Concepts

Figure 8: Context of geoinformation visualization in service-based systems.

As already described, this usage of geoservices is driven by a lot of application
domains, as web mapping, disaster management, or the complex field of geodata
infrastructures. According to the scenarios of these application domains, there must
be appropriate services, which include the functional capabilities but also non-
functional properties as availability, timeliness of the provided information or security
issues. Especially for ad-hoc scenarios as they occur in the field of disaster
management, it is important to have fast access to the most important information
which means to avoid long-running information transfer but to provide easily
consumable information units.

These computer graphics foundations are accompanied by additional
technologies for making the rendering results consumable for the service consumer
via web. Media technologies define the output and transport format of 3D
geoinformation services. Hand in hand with those are streaming technologies which
target on the efficiency of transporting geoinformation which could be images but
also further processable raw geoinformation.

Additionally to these functionality oriented technologies, there must be further
ones which allow the service provider to offer the service capability. These are web
technologies as they are necessary for a service according to the simple service-
oriented architecture. These are technologies for describing the service's capabilities,
and make it accessible for service consumers. On a more concrete level, web
technologies address protocols for message transport or security.

Open Research Questions in SOA 1-13

Design and Composition of 3D Geoinformation Services

4 Interoperable 3D Geovisualization

4.1 Service-based construction of 3D geovirtual environments

4.1.1 Utilization of CityGML

"CityGML is a common information model for the representation of 3D urban objects.
It defines the classes and relations for the most relevant topographic objects in cities
and regional models with respect to their geometrical, topological, semantical and
appearance properties. Included are generalization hierarchies between thematic
classes, aggregations, relations between objects, and spatial properties." (CityGML
web). CityGML provides an application schema for the Geography Markup Language
(GML), which itself "is an XML encoding [...] for the transport and storage of
geographic information [...] including both the spatial and non-spatial properties of
geographic features." (GML 2004)

CityGML considers geographic features as, buildings, inner and outer building
parts (walls, doors, windows or roofs), vegetation, and city furniture. For supporting
regional models CityGML supports a TIN-based relief. In addition the visualization
aspects, CityGML enables applications to use the structural and semantical
properties for simulations, analysis or spatial data mining.

Because of its open format, the XML representation, the broad consideration of
urban objects, and the support of not only geometric attributes, CityGML seems to
serve as a good platform for the service-based integration of different
geoinformation: CityGML can be used as an exchange format for city models and
landscape models but also can be used for the exchange of other urban information:
Considering its geospatial position an arbitrary information entity can be transformed
into a specific CityGML object as it is described by CityGML which can contain or
encode the attribute values of the abstract information entity.

The usage of CityGML as a basis for the provision of geoinformation can lead to
new insights into existing geoinformation and to new geoinformation-based
applications. Existing city- and landscape models can be used in new ways. As an
example, CityGML models contain several aspects of a building information model
(BIM). Its visualization might allow the end-user to have different views on the model
for retrieving information about geometry, topology, paths, or different attributes. An
other example is the utilization of the city models semantics for the development of
new interaction techniques, e.g., for navigation in the GeoVE as it is described below
(see 4.2.1).

By the help of CityGML and an appropriate transformation capability, complex
geospatial information can be combined and transformed into a visual form that can
be easily perceived and analyzed by human.

As CityGML is a GML application schema and deals with geographic features it
can be retrieved from WFS. At all, geoservices dealing with CityGML could provide
one or more of the following CityGML-related functionality:

e Retrieving CityGML

e (Creating CityGML (e.g., from a database)

1-14 Open Research Questions in SOA

4 INTEROPERABLE 3D GEOVISUALIZATION

e Modifying CityGML

e Transforming CityGML (into another format)

For proving the potential of CityGML as an integration platform the following

issues should be investigated:

e Usability of CityGML for the provision via WFS, especially the focused access
to parts of the model

e Special view on performance of CityGML on-the fly creation, WFS access,
and CityGML transport and processing

e Impact of relatively large data, possibilities of compression, web service
access patterns

e Usability of CityGML in the context of building information model analyzes

e Possibility of incremental access to the CityGML model for improving the
usability to the end-user

4.1.2 Integration of other geoinformation sources

In addition to the CityGML support for regional urban environments, additional
information sources must be considered as WCS (e.g., elevation data,
epidemiological data, environmental information, etc.), WMS (e.g., aerial photos,
satellite photos), WFS which provide geographic features as GML, or other
geographic information services.

A geovirtual environment might have to be constructed of several of these
information sources. Thereby the different interoperability levels named in section
3.2.1 and additional properties of the GeoVE have to be regarded. This means extra
effort for checking the information's meta data, performing necessary transformations
and for setting up the GeoVE (e.g., scaling, coordinate transformation, adjustment of
terrain size, correction of view parameters as near plane or far plane).

According to the OGC reference model (Percivall 2003) the single information
sources are integrated by an application service, which might be an application
server or a fat client, or by other geoinformation services which add value to the base
information and provide this via service interfaces to other consumers.

4.2 3D Client Development

Geoinformation services provide distributed computing capabilities for being used in
applications which do not posses the necessary data or processing capabilities. E.g.,
a 3D geoinformation service response may include an image of a 3D scene.

But accessing processing services or portrayal services needs time for finding or
calculating the response, possibly for transforming it into an interoperable format,
and especially for transmitting it to the service consumer.

If an end-user is involved into the system, this might be critical for the usability of
the whole service-based system: When the user has to wait too long for an answer,
he or she gets frustrated and might even decline the application. Thus we assume
two things to be very important for the design and implementation of geovisualization
services. These are on the one hand performance improvements for increasing the
perceived speed of the application and on the other hand interaction improvements

Open Research Questions in SOA 1-15

Design and Composition of 3D Geoinformation Services

to handle the restrictions, to minimize them and to increase the overall usability of
the geoservice-based system.

4.2.1 Interaction with 3D Geoservices

Interaction in 3D geovirtual environments targets on the analysis, editing, and
navigation of the presented information space. The user interaction in geoservice-
based GeoVE is not yet deeply investigated. We assume that we can find
appropriate interaction techniques for such systems. Herby we will take into account
the type of the presented information and try to utilize semantic information which is
provided by CityGML models. We will also take into account the external properties
of the service-based systems, e.g., the platform on which the services are running.

Possible interaction techniques that address these issues are a guided navigation
which provides landmark based animation tours, semantic maps which allow the user
to navigate step-by-step through the environment or the sketch-based navigation as
it was introduced by Déllner et al. (2005). This sketch-based navigation is shortly
described in the following paragraph.

Navigation as an example 3D geoservices interaction

As a key interaction, efficient navigation techniques are a crucial requirement in
using geovirtual environments. Only navigation allows the user to explore and
perceive the presented information. Darken and Siebert (1996) suggest three types
of navigation tasks. These are naive search, targeted search or exploration.

As one issue of interaction, navigation has to be considered in the context of
portrayal services. Navigation integration is imaginable as an additional operation in
portrayal services or as an extra service that attends to other service invocations.

As an example Ddllner et al. (2005) have integrated the so-called sketch-based
navigation technique into a movie-based portrayal service. This navigation technique
uses pen-based strokes and gestures as input. These strokes and gestures are
reprojected into the presented 3D scene and the intersections with the geovirtual
environment are determined. Basing on the intersections and the navigation
affordances of the hit geoobjects, an appropriate navigation handler is used which
determines a camera path according to the input sketch and generates a
corresponding navigation animation which is sent to the user immediately. This
usage of the inherent navigation affordances of objects of the GeoVE has been
further advanced by Ddliner and Hagedorn (2006) the integration of visual navigation
cues that give the user an experience of the pending navigation, e.g. arrows
indicating the camera path and special symbols indicating directions where to look at
— see Figure 9. Especially for the usability of 3D city models on mobile devices, this
sketch-based navigation and the visual cues can provide an added value to the user.

1-16 Open Research Questions in SOA

5 INTEGRATIVE 3D VIEWER CLIENT

Figure 9: Example of a sketch-based navigation command (left) and the resulting
visual cues integrated in the 3D scene. (Data: Official city model of the city Berlin,
Germany.)

4.2.2 Performance improvements

3D geoservices provide integrated geoinformation as visualization for a variety of
platforms, e.g. mobile devices. But for giving the user the feeling of control over the
application, visualizations must be presented in a specific time and animations must
be running with a specific frame rate. If model data are transmitted they should have
small amount.

Under the conditions of limited bandwidth, we will investigate possibilities for
improving the performance of 3D geoservice. This might include research in the
following fields:

e Thinning of the 3D model: Elements of the city model that are obviously not
interesting for the user are removed from the model for reducing the response
payload.

e Generalization of the 3D model: Several single buildings might be summarized
to a more general representation with less geometry which leads again to a
reduced response payload. Currently generalization is a time consuming
operation, so there must be a trade-off between effort and final speed
improvements. As one approach generalizations could be pre-computed.

e For the provision of animations we will investigate different video encodings
and the corresponding encoding and decoding processes.

e Data compression might be further useful for reducing the response payload.
This can be done on the application layer with specialized compression
methods or corresponding to the transfer protocol on transfer layer, too.

e Different transport mechanisms can be investigated in consideration of their
throughput.

5 Integrative 3D Viewer Client

The OGC Web Services Initiative, Phase 4, (OWS-4) is an interoperability program
set up by the OGC. The target of this initiative is to evaluate and advantage the
interoperability of different OGC standards concerning services and data formats but
also the interoperability of different vendors and their client and server

Open Research Questions in SOA 1-17

Design and Composition of 3D Geoinformation Services

implementations. We are working for the CAD/GIS/BIM thread of the OWS-4. This
chapter reports the current efforts in OWS-4 and gives an overview on the scenario
and the viewer.

5.1 Project overview

The CAD/GIS/BIM thread, deals with the interoperability of building information
across the building lifecycle and also between information models from different
communities:

e Computer Aided Design (CAD): CAD data provide a very detailed, geometry-
oriented view on a building site which can be used for the construction of new
buildings.

e Geographic Information Systems (GIS): GIS support a more general, not so
detailed view on geospatial data. GIS data models include geometry,
topology, and thematic attributes.

e Building Information Model (BIM): A BIM is a very rich and detailed view on a
building. A BIM includes geometry and domain-specific information. E.g., a
BIM includes information about the spaces of a building which might be
rooms, corridors, floors. One example for a BIM is the Industry Foundation
Classes (IFC).

Metadata
Context
i Document
Capabilities

&
Metadata Discovery Browser

CityGML |—— Context ’ Building
CityModel glg & Data —— oo
agery, Report

Elevation 3D View ! Query
.20 Gl

Capabilities City
L Features
Ietadata

- iy

BIM

e /’/

Objects il

TR

Figure 10: Generic solution architecture for thread CAD/GIS/BIM of OGC Web
Services initiative, Phase 4. (Cote 2006.)

IFC Objects

D

IFC/BIM Edit Client

q,

The overall scenario of the CAD/GIS/BIM thread is about the necessity of building
up a field hospital in a military surrounding. From the scenario description (OWS4b)
the generic architecture depicted in Figure 10 was derived. The scenario includes
several actors and tasks: An analyst searches via discovery browser a metadata
repository for retrieving first information about the occupied site. This information is
recorded in a context document which later will be a basis for engineers to plan the
hospital, a helipad, and surrounding sensors. Building models are provided by the
so-called BIM server which will be realized as a special web feature service. This
BIM server provides the building information model for editing in an appropriate BIM

1-18 Open Research Questions in SOA

5 INTEGRATIVE 3D VIEWER CLIENT

edit client which can store the edited model in the BIM server later. For getting an
impression of the scene and enable further insight and assessment, the architecture
provides a 3D view client which is capable of retrieving different geoinformation from
different OGC web services (WMS, WFS) but also to access building information
from the BIM server. This 3D view client is the contribution of our working group to
OWS-4. With CityGML an additional building information exchange format is
integrated and tested for interoperability.

5.2 3D View Client

5.2.1 Technical Basis

The 3D view client is implemented as a plug-in to the LandXplorer CityGML Viewer
that itself is based upon the LandXplorer framework which is a real-time 3D
geovisualization system. The LandXplorer system allows the creation, management,
and visualization of large-scale 3D geovirtual environments. The system uses state-
of-the-art real-time 3D computer graphics algorithms and offers efficient interactions
with the geovirtual environment. This includes enabling/disabling of information
entities, blending techniques for raster layers, access to object attributes, or a variety
of navigation techniques. The CityGML Viewer is a software system that is capable
of reading, loading, and writing CityGML data as they are described in the latest
OGC discussion paper on CityGML (Grdger 2006).

5.2.2 Requirements

In addition to the already existing functionality of the LandXplorer 3D geovisualization
system the following functionalities are needed to be provided by the 3D CityGML
Viewer Client in the context of OWS-4:

e Import, display, and activation of context documents: Context documents
describe which servers and which information entities to request. So context
documents are a part of the run-time service binding. As the OGC has
specified only a web map context document and context descriptions for other
service types (WFS or BIM server) are pending, we have to define an own
format for describing the binding and the functionality to request from the
service providers.

e Accessing WMS and WFS: According to the OGC implementation
specifications for WMS and WFS, we integrated a client stub for each of the
service types.

e Accessing CityGML from BIM server. The BIM server bases on a WFS but
has additional operations that must be considered for the client stub
implementation. For web feature services a detection of the syntactical format
(GML, CityGML) should be integrated.

e Geodata processing: One essential task for the integration of geoinformation
from different providers is the projection into a unique spatial reference
system by coordinate transformation. Furthermore the appropriate target
spatial reference system must be determined.

Open Research Questions in SOA 1-19

Design and Composition of 3D Geoinformation Services

e 3D geoinformation visualization: For allowing a human user to get insight into
the loaded data they must be visualized. As described this includes the
mapping to a computer graphical representation which can be used by the 3D
rendering system to synthesize a visualization of the integrated 3D scene.

e Building room report. In the described scenario, the building room report is
necessary for the assessment of a building and it's capabilities for housing a
field hospital.

5.3 Current Results

According to the proposal for participation in OWS-4 a demonstration implementation
of the extended LandXplorer 3D CityGML Viewer Client has been provided to the
OGC. The effort so far has been concentrated on the web context document
processing, accessing WMS for retrieving map layers, accessing WFS for retrieving
building model data in the CityGML format, and integration and visualizing these
information.

a) . Sl B .. 4
Figure 11: a) Combination of map layers from different WMS. b) Combination and
integration of map layer information and feature data.

()

Figure 12: Visual room repért. Color coding of ;JJiIding rooms according to the
security state.

For describing which features to load and from which service they are provided, an
arbitrary text format is used. It is leaned against the already existing Web Map
Context specification. It is possible to load and execute a specific context description
and load maps and CityGML features.

1-20 Open Research Questions in SOA

6 CONCLUSION AND FUTURE WORK

For the integration of geoinformation that are provided by different services,
coordinate transformation is essential. This requires choosing a spatial reference
system that can be applied to all data sets.

For some service requests the transfer volume is a very large one and so the
synchronous service invocations are very time intensive. This will be a starting point
for investigating techniques for optimizing the communication in the geoservice-
based system.

Figure 11 shows an example view that is assembled from several single web map
layer calls (a) and illustrates the combination of map layer information with feature
data (b). In this special case the spatial reference systems had to be harmonized.
Figure 12 shows the prototype of a visual room report. It enables to color the rooms
of a building according to the value of a selectable attribute.

6 Conclusion and Future Work

The work so far has been about getting in touch with service-oriented computing,
especially in the field of geoinformation. This included to get an overview about
existing geoservices and their relationship to the common service-oriented
architecture and to web services as a special and widely distributed form of
implementing a SOA. It can be stated that service composition is important for
achieving higher-level services with a higher value to the human user or another
geoinformation processing system.

In the field of geoservices the OGC is a very active organization that targets on the
interoperability of geoservices and geodata. The OGC has specified different
services that cover different parts of the geovisualization pipeline.

The further work will bother with the processing of 3D geoinformation in
geoservice-based systems. A focus will be on visualization services. As a new
approach the interaction with visualizations, e.g., 3D GeoVE, will be investigated for
integrating as a service. One issue in the assembly of higher-level functionality is the
composition of services. This will be done in the field of 3D geoinformation services.
As an outcome there will be concrete view clients using geoservices, concrete
services processing 3D geoinformation, concrete service compositions of 3D
geoservices, and derived and proved conclusions about the design and patterns for
achieving this.

References

[1] Nadine Alameh. Chaining Geogrphic Information Web Services. In Internet
Computing, IEEE, Sept.-Oct. 2003, pp- 22-29. IEEE Computer Society, 2003.

[2] A. Altmaier and Th. Kolbe: Applications and Solutions for Interoperable 3d Geo-
Visualization. In: Fritsch, Dieter (ed.): Proceedings of the Photogrammetric
Week 2003 in Stuttgart, Wichmann Verlag, Stuttgart, 2003.

[8] G. Andrienko and N. Andrienko. Knowledge-based visualization to support
spatial data mining. In Proceedings of the 3rd Symposium on Intelligent Data
Analysis, pages 149--160, Amsterdam, The Netherlands, August 1999.

Open Research Questions in SOA 1-21

Design and Composition of 3D Geoinformation Services

[4]

[5]
[6]
[7]
[8]
[9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]
[22]

N. Andrienko and G. Andrienko. A framework for decision-centred visualisation
in civil crisis management. In Location based services & telecartography,
Proceedings of the symposium 2005, Vienna, 2005.

C. Barham, et al. (eds.). ebXML Glossary. UN/CEFACT and OASIS, Version
0.99, 2001.

Y. Bishr. Overcoming the semantic and other barriers to GIS interoperability. In
Int. Journal on Geogr. Information Science, Vol. 12, No. 4, 1998.

K. W. Brodlie, L.A. Carpenter, R.A. Earnshaw, J.R. Gallop, R.J. Hubbard, A.M.
Mumford, C.D. Osland, and P. Quarendon (eds). Scientific Visualization,
Techniques and Applications, 1992, Springer-Verlag.

CityGML Homepage. Internet www.citygml.org (25.11.2007).

Paul B. Cote. OWS-4 CGB Component & Architecture Notes, Version 0.2, July
2006, unpublished.

S. Cox et al. (eds.). OpenGIS — Geography Markup Language (GML),
Implementation Specification. Version 3.1.0, OpenGIS® Recommendation
Paper, February 2004. Internet: http://www.opengeospatial.org/standards/gml
(24.11.2007).

R.P. Darken and J.L. Siebert. Navigating Large Virtual Spaces. In International
Journal of Human-Computer Interaction, Januar-Marz 1996, 8(1), S. 49-72.
Jirgen Doéllner and Benjamin Hagedorn. Sketch-Based Navigation in Virtual 3D
Environments. 2006. unpublished.

J. Déliner, B. Hagedorn, and St. Schmidt. An Approach towards Semantics-
Based Navigation in 3D City Models on Mobile Devices. In Proceedings of the
3rd Symposium on LBS & TeleCartography, Vienna, Nov. 2005, pp. 171-176.

J. Fitzke, Claus Rinner, and Dirk Schmidt. GIS-Anwendungen im Internet. In
Geo-Informations-Systeme 6/97, pp. 25-3, 1997.

Gerhard Gréger and Thomas H. Kolbe. Interoperabilitdt in einer 3D-
Geodateninfrastruktur. Minsteraner Gl-Tage. 2003.

Gerhard Groger, Thomas H. Kolbe, and Angela Czerwinski (eds.). Candidate
OpenGIS CityGML Implementation Specification (City Geographic Markup
Language), Version 0.3.0, August 2006. Internet:
http://www.opengeospatial.org/standards/dp (25.11.2006)

ISO 19119, Geographic information Service. International Organisation for
Standardization. 2005.

OWS4b: No author. Request for quotation and call for participation in the OGC
Web Services 4 Initiative, Initial operating capability and demonstration, Annex
B: OWS-4 Architecture. 2006. Internet: http://www.opengeospatial.org/projects/
initiatives/ows-4 (25.11.2006)

G. Percivall (ed.). OGC Reference Model. Version 0.1.3, Open Geospatial
Consortium. September 2003.

B. Schmidt, M. May, and C. Uhlenkiken. Dienste-basierte Architekturen fiir die
Web-basierte 3D-Geovisualisierung. Miinsteraner Gl-Tage. 2003.

R. Spence. Information Visualization, Addison Wesley, 2001.

Workflow Management Coalition. Terminology & Glossary. The Workflow
Management Coalition Specification, Issue 3.0, February 1999. Internet:
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

1-22

Open Research Questions in SOA

Operating System Abstractions for
Service-Based Systems

Michael Schébel
michael.schoebel@hpi.uni-potsdam.de

From an operating system point of view, service-based computing can be seen as
the execution of cooperating tasks or processes. Special properties or (meta-) infor-
mation concerning the structure of such service-based systems are ignored on the
operating system level most of the time.

More appropriate operating system abstractions can lead to optimized server im-
plementations by exploiting special properties and knowledge about the structure of
service-based systems. Optimizations are possible in the areas of scheduling, mem-
ory management or virtualization concepts.

Envisioned research results will lead to an abstract model of service-based systems
from an operating system point of view. Tools and operating system extensions, which
prove the applicability of the findings will be developed using the "Windows Research
Kernel" (WRK) as well as the Linux operating system.

1 Introduction

Service-oriented computing is the computing paradigm that utilizes services as funda-
mental elements for developing applications [11]. Services are offered by a supplier (=
service provider) and can be used by clients (= service consumer) to get the requested
functionality.

Currently the IT infrastructure in many companies is restructured in a service-oriented
way. Business functionality for internal use (e.g. human resource management) or ex-
ternal use (e.g. order acceptance) is provided as service which can be consumed in
a standardized way. By combining services in different structures, flexible and easily
adaptable IT processes can be realized, even across enterprise boundaries.

From a technical point of view service-orientation is nothing new. Concepts like
modules, components, remote procedure calls and client/server computing are old and
well known. But the new hype of service-orientation leads to another advantage: to-
day IT infrastructure concepts can be described in terms business people understand.
By bringing business and IT people together, optimized computing structures can be
developed.

Other recent trends in the computer industry are platform independency and con-
solidation/virtualization. Platform independent applications and technologies can be
easily migrated to infrastructures from different vendors or to machines with different
operating systems. Consolidation/virtualization aims at better utilization of available

Open Research Questions in SOA 2-1

Operating System Abstractions for Service-Based Systems

computing power.

Operating systems as basic foundation for applications and servers should con-
sider these recent trends. Most operating system abstractions like process, thread
or virtual memory were not designed explicitly for (virtual) server systems or dynamic
service-based environments (e.g. [2] or [9]). To what extent these concepts and ab-
stractions can be improved considering the special properties of service-based sys-
tems is a promising research area.

This paper describes some ideas for new or better operating systems abstractions
to support service-based systems. The central question is: How would the perfect oper-
ating system for service-based systems look like if it were designed from scratch? The
intention is not to develop a new operating system, but to investigate new approaches
and to integrate them into existing systems to improve performance, managebility or
other properties of service-based systems.

The remainder of this section clarifies the term service-based system as we under-
stand and use it from an operating system point of view. In section 2 current server
implementation techniques regarding request processing and resource virtualization
are described. Afterwards, in 3, a new operating system abstraction batch scheduling
is introduced. Section 4 concludes the paper with an outlook on future work.

1.1 Service-based systems

In general, a service is something a client can use to get required functionality. The
client needs to know how to find and how to access a service provider offering the
needed functions. It is irrelevant for the client in which way the service provider actually
executes the request (e.g. if another service is used), furthermore it is irrelevant for
the provider what the client uses the results for. Therefore a loosly coupled structure of
service providers and clients can be created which is called service-based system.

Recently, in the context of IT systems, the term "service" is often considered synony-
mous with "web-service". But service is a more general concept, as described above.
Web-services are a specific implementation possibility for a service-based system with
specific protocols like WSDL, UDDI, HTTP, and SOAP. We consider the term service in
its general meaning. Hence a printer device driver with an appropriate interface can be
considered as a service and can be part of a service-based system.

Short: service-based systems contain services. A service in this sense is a software
entity, that can be accessed through standardized (and therefore machine processable)
interfaces. Figure 1 depicts the conceptual view on services.

Services provide ports where clients can invoke functionalities. The service pro-
cesses the clients’ request and returns the results. The service implementation may
require external services which are called during request processing. In such cases,
the service itself acts as a client and sends a request to another service.

If a service does not require external services it is called self-contained. Client
requests can be processed completely inside such a service.

A service can be either stateful or stateless. The service state refers to possible
relations of subsequent client requests (= a session). To use stateful services the client
has to establish an explicit connection for session initialization. Within this session

2-2 Open Research Questions in SOA

1 INTRODUCTION

Ports External Services

Service

o

Figure 1: Conceptual service view

implicit information which the client do not have to send with every request can exist.
Stateless services expect requests to their input ports which are complete and contain
all necessary information for processing the request.

Most service-based systems utilize an application server to manage and host ser-
vices. Application servers simplify generic service management tasks, e.g. service
configuration, deployment, connection (with other services) or monitoring. They are
often called service containers.

b .

Service 1 Service 2

Service 3

Figure 2: Service container - direct composition

e

Service 1 Service 2 Service 3

Figure 3: Service container - composition via service bus

Figure 2 and figure 3 show two basic structures of service containers which con-
tain multiple services. The first possibility is known from the component programming
paradigm: services are explicitly connected with other required services at deployment
time; of course matching services must be available. The second possibility is the
service bus concept. All deployed services are connected to a central bus which is
responsible for the routing of requests to an appropriate service. With a bus structure
more complex interaction patterns (e.g. publish/subscribe or content-based routing of
requests) are possible.

The operating system can act as a service container for uncommon services like
device drivers. It provides the required functionality to manage the drivers/services.

Open Research Questions in SOA 2-3

Operating System Abstractions for Service-Based Systems

1.2 Special properties of service-based systems

With current abstractions from the operating system point of view, a service-based
system is a set of processes with assigned resources (e.g. memory or CPU time).

Compared to common applications, services or service-based systems build up a
different application model: A (less complex) client program is executed which depends
on distributed/remote services. The effectively used services could be dynamically
chosen at runtime.

This application model features special properties which must be considered when
executing such an application. The availability of remote services for example is impor-
tant.

(Meta-)information concerning the implementation of services (e.g. programming
language, expected CPU usage or memory consumption) is available in the majority
of cases. This can be important information for an optimized service execution for the
server machine which hosts a specific service instance.

An operating system optimized for service-based systems should consider the spe-
cial properties of such systems. Following, some aspects are described which can be
exploited for optimizations.

e A service composition contains several services which are used together, e.g.
one service calls another service to fulfill its task. Dependent services can be
visualized as service composition graph.

To support service compositions on operating system level, service composition
graphs can be mapped onto operating system notions, such as process groups,
jobs, or task sets.

e Service level agreements (SLAs) are used to describe a contract between a ser-
vice consumer and a service provider. Both agree on a certain level of service
delivery in terms of availability, pricing, or timing constraints.

Considering SLAs on operating system level can help to optimize scheduling, e.g.
execute specific processes for a specific client to reach the SLA or drop requests
with a low priority.

In the following section existing operating system concepts are described taking
service-based systems into consideration.

2 Related Work

This section describes related work in the proposed research area. First, request pro-
cessing and scheduling in current server systems are described. Afterwards, a survey
of different virtualization concepts is given.

The central runtime abstractions of current operating systems are the process and
the thread concept. In general, a service in a service-based system is provided by
multiple processes or threads (application server, service implementation, other used
services, databases etc.).

2-4 Open Research Questions in SOA

2 RELATED WORK

Server developers think about server implementations in terms of request process-
ing, availability, or reliability. Much effort is invested into realizing these requirements
with means provided by the operating system.

An adjustment of operating system functionality to service-based systems can ease
the development of such systems. By analyzing the current implementations of server
systems unfavorable operating system abstractions/APIs can be identified.

2.1 Request processing in current server systems

A server can be seen as a stream processor: it receives a stream of requests, pro-
cesses them and sends back a stream of results. In current server implementations
different strategies of how the request processing is done exists.

2.1.1 Threaded request processing

Servers using the pure threaded request processing approach create a thread for each
client request. The whole request and maybe its subsequent ones from the same client
are processed in the context of this newly created thread.

Advantages of this approach are a good parallelization of request processing and a
good usage of available resources. The high overhead of the thread lifecycle (creation,
management, deletion) is disadvantageous.

To alleviate these drawbacks, concepts like thread pools are used and a specific
number of request processing threads are created in advance and are dynamically
assigned to incoming threads. In this case the server has to decide what to do with
new requests if all worker threads are busy.

2.1.2 Event-driven request processing

Pure event-driven servers process all requests within a single worker thread. Arriving
requests are stored in a queue which is used as input for the worker thread. The worker
fetches and processes the requests one at a time.

That no per request overhead is introduced and that the queuing policy can be
defined to ensure e.g. request priorities is advantageous. As a disadvantage the low
degree of parallelism must be mentioned: the CPU is idle if the request processing
requires blocking system operations.

2.1.3 Design patterns for request processing

Pure threaded or event-driven server implementations are rarely used. Instead, dif-
ferent design patterns lead to hybrid server implementations with aspects from both

types.

Open Research Questions in SOA 2-5

Operating System Abstractions for Service-Based Systems

Staged request processing A possible way to think about request processing is to
imagine that every request has to pass several stages of processing until the response
can be sent back to the client. This idea is independent from a threaded or event-driven
approach and can be used in both models.

Depending on the specific server the stages can be more or less clearly identified.
A thread in a threaded server could call multiple functions which represent different pro-
cessing stages. In an event-driven system, a new event indicating the next processing
stage (e.e. connection establishment, request, response) can be used to distinguish
different stages.

In [8] and [6] special server optimizations are described which exploit the stages
to efficiently schedule the processing threads. Additionally, the used staged server
pattern are described.

A special scheduling approach called "cohort scheduling" for staged server appli-
cations is described in section 2.2.1.

Thread pools The idea of thread pools is that a specific maximum number of threads
is used for request processing. These threads can be initialized at server startup and
are dynamically assigned to incoming requests. If all threads are busy and a new
request arrives the server could store the request in a queue or drop it. In this way the
per request overhead of thread creation has vanished. Furthermore, a better estimation
of required (operating system) resources is possible, because the number of threads
is known in advance.

Reactor pattern A simple implementation of event-driven request processing involves
a single worker thread. This thread fetches incoming requests, checks the request type
and calls an appropriate processing function.

The reactor pattern (see [15]) separates the event dispatching from the application-
specific request processing. A reactor is waiting for different events from multiple event
sources (e.g. network sockets). The (synchronous) waiting can be implemented us-
ing operating system API functions such as select() or WaitForMultipleObjects().
If one event source indicates a pending event, the reactor calls the registered event
handler for this event.

In a HTTP server implementation a reactor can wait for incoming connection re-
guests on a specific socket. If such a request arrives, a handler for the new connection
is created. This newly created handler is responsible for client requests from the spe-
cific source address.

The main advantage of using the reactor design pattern is the separation of applica-
tion independent demultiplexing and dispatching mechanisms from application specific
event handling functionality. Additional event handlers or different dispatching strate-
gies can be easily integrated. Furthermore, the reactor pattern provides a coarse
grained concurrency control on event dispatching level. A single thread of control calls
the event handler and serializes the event processing in this way.

The single threaded request processing is a big drawback if the event handler does
many blocking I/O operations. While waiting for 1/0O completion the CPU is idle and no

2-6 Open Research Questions in SOA

2 RELATED WORK

other request is processed. Another slight restriction of the reactor pattern is that it
can only deal with event sources for which the operating system provides synchronous
waiting functions such as select ().

If the reactor calls the event handler functions asynchronously or dispatches the
incoming requests to multiple threads, a combination of event-driven and threaded
request processing can be achieved and some disadvantages can be alleviated.

Proactor pattern If the server operating system provides asynchronous I/O API func-
tions, the proactor pattern (see [15]) can be used to realize a concurrent request pro-
cessing with asynchronous functions.

An application creates a handler for asynchronous function calls. Such a handler
is registered at the proactor. If an asynchronous function call gets completed, the
proactor dispatches the completion event to the registered handler. In this way many
concurrent I/O functions (and therefore client requests) can be processed concurrently
by using operating system capabilities.

A HTTP server implementation could provide several handlers for different process-
ing events, such as connection requests or file transfer. A single handler dispatches an
asynchronous operating system call and dispatches the next request. A corresponding
completion handler is called if the operating system finishes the asynchronous call.

The proactor pattern decouples threading and concurrency. By using asynchronous
function calls and I/O completion callbacks a concurrent request processing is possi-
ble without using threads explicitly. In fact, there is still only one thread of execution.
Therefore, the general advantages of event-driven request processing are still valid:
simple application synchronization and no thread management overhead.

To apply the proactor pattern successfully, native operating system support for asyn-
chronous 1/O processing is required. The pattern relies on the operating system im-
plementation of asynchronous functions, therefore some configuration possibilities for
request processing (e.g. prioritize or abort pending requests) can be hard to achieve
compared to a threaded approach.

Event-driven servers can process multiple requests concurrently by using the proac-
tor pattern. In this way, a main drawback of event-driven servers with a single worker
thread is resolved.

2.1.4 Summary

The main concepts are the threaded and the event-driven request processing concept.
A performance comparison of these two approaches for Java servers can be found in
[4]. Both approaches have several drawbacks, therefore the authors argue that hybrid
servers with features from both approaches are necessary for higher performance.

In [20] the authors propose that threaded and event-driven implementation ap-
proaches are at the opposite ends of a design spectrum and the best implementation
strategy is somewhere in between. Event-driven server implementation techniques are
useful for high concurrency and lock-free request processing. For dealing with multi-
processor parallelism and blocking 1/O, threads are needed.

Open Research Questions in SOA 2-7

Operating System Abstractions for Service-Based Systems

With staged event-driven architecture (SEDA) [19], a method for server implemen-
tation is provided which combines event-driven and threaded request processing.

A server application consists of a set of stages. Each stage has an assigned thread
pool and an event queue. Controllers are used to adapt the stage behaviour in special
situations, especially at overload conditions. A thread pool controller observes the
length of the event queue and creates new threads if necessary. A batching controller
determines the number of processed events per event handler loop by observing the
throughput rate.

In [18] the authors explain why current operating systems do not provide much sup-
port for high-performance internet servers: First, thread-based concurrency models
lead to high overhead in terms of context switch time and memory footprint. Further-
more, thread-based scheduling allows only a coarse grained resource usage control.
Second, blocking I/O operations limit the number of concurrent activities. And third,
operating systems hide their performance related optimizations (e.g. file system buffer
cache) inside the kernel and do not allow an application specific optimization policy.

In short, the authors believe that the virtualization of hardware resources provided
by operating systems is not appropriate for highly concurrent server applications. Such
applications require a fine grained, low-level access to hardware resources like the
CPU or the main memory. The operating system should provide low level access func-
tions which allows the implementation of application specific optimizations.

In [17] a detailed argumentation why the event and thread paradigms are equiva-
lent is given. The authors argue that the drawbacks of threading compared to events
are artifacts of specific threading implementations and not inherent to the threading
paradigm. They conclude that threads are the better concept: event-driven approaches
can be mapped on threads, threads are the better abstraction for developing concur-
rent systems (e.g. better debugging possible) and compiler support can lead to more
optimization of the applications.

Their conclusions are based on two assumptions about modern server systems:
First, the concurrency in modern servers results from concurrent requests that are
largely independent. Second, the code that handles each request is usually sequen-
tial. For such systems the thread abstraction is more natural. Further they propose
the usage of highly scalable user mode threading models to prevent the large thread
management overhead introduced by operating system threads. User mode threads
can be optimized by compiler tools which are able to detect faults and optimize locking
and similar synchronization problems.

2.2 Task scheduling in current server systems

The scheduling of concurrent activities is closely connected to the general concept
of request processing in server systems. The server developer has only slight influ-
ence on the operating system scheduling policy if no user mode thread library is used.
Therefore, some different scheduling approaches were proposed to especially support
server systems.

2-8 Open Research Questions in SOA

2 RELATED WORK

2.2.1 Cohort scheduling

Besides the staged computation in server systems (see section 2.1.3) a matching
scheduling policy called cohort scheduling is described in [8].

If a server processes incoming requests by channeling them through different stages,
this fact can be exploited to maximize the benefit from modern CPU concepts like
caches, TLBs and branch predictors. Caches and different prediction heuristics lose
a lot of their effectiveness if the CPU makes a context switch to a different, completly
unrelated thread. The idea of cohort scheduling is to process multiple threads which
are in the same execution state (= in the same processing stage) sequentially and to
keep caches and branch prediction valid.

The authors describe a user level thread library which implements the proposed
concepts and report an achievable server throughput improvement of 20% by reducing
the processor cycles per instruction by 30% and L2 cache misses by 50%.

2.2.2 Affinity Scheduling

An extension of the cohort scheduling approach is provided in [6]. The authors describe
four different algorithms for cohort scheduling. The algorithms differ in the way requests
are processed inside one single stage and in the way the point in time for the next stage
is determined.

e Dynamic-gated: Every computation stage includes a request queue. If a stage
is scheduled for execution, all requests in the input queue are put together to a
batch of requests. Now this batch passes all computation stages sequentially.

e Threshold-gated: Again, every computation stage has a queue for incoming re-
quests. The switch to the next stage happens when a specific number of re-
guests are processed in the current stage or the queue is empty. Compared to
the dynamic-gated policy an upper bound for the request number per batch is
defined.

e Non-gated: This policy uses dynamic- or threshold-gated policy from the second
computation stage. At the first stage the behaviour is different: All requests are
processed until the request queue of the first stage is empty.

e Cutoff-gated: If a single request requires much time in one stage, all other re-
quests are delayed. This policy defines a cutoff value for the useable CPU time
of a single request in a single stage. If a request spends this amount of time in a
computation stage its computation is preempted and the remaining request is put
back into the request queue.

2.2.3 Coscheduling/Gangscheduling

Coscheduling or gangscheduling can be used for multithreaded applications on multi-
processor systems/clusters especially. The aim of this scheduling approach is to mini-
mize the inter-process communication costs and synchronization costs.

Open Research Questions in SOA 2-9

Operating System Abstractions for Service-Based Systems

A scheduler using gangscheduling assigns the different processes of an application
to different processors simultaneously. For a specific time (quantum) the processes
are parallely executed. After the quantum expires the next application is chosen and
assigned to the available processors, the context switch is coordinated across the pro-
cessors.

When using coscheduling, the different processors are scheduled separately. By
considering inter-process communication the schedulers try to execute communicating
processes at the same time, thus reducing the blocking time of a single process.

Different algorithms for these basic ideas try to improve the overall behavior of this
approach by assigning processes to the same processor every time or by scheduling
different applications at the same time if enough processors are available.

2.2.4 Scheduler activations

To support user mode and application specific scheduling policies [1] proposes a con-
cept called "scheduler activations”. If a scheduling decision is necessary the operating
system kernel invokes a user mode callback. This user mode function decides which
thread is scheduled next, so it can realize an application-specific scheduling and pre-
vent the known drawbacks of user mode threading models.

For an optimized scheduling support the kernel needs information about application
details (e.g. number of concurrent activities), and the applications need information
about kernel events (e.g. processor reallocations and 1/O requests). The authors de-
scribe a user mode threading library which interacts with the kernel.

The modified operating system scheduler provides virtual processors for each ap-
plication. These processors are under application control and can be assigned to the
application threads.

Scheduler activations are a flexible concept to realize application specific schedul-
ing policies. The approach loses its practicability in a wide range of applications when
considering the frequent kernel/user mode interactions: both parts have to exchange
all information which can (possibly) lead to scheduling decisions.

2.2.5 Complete scheduling model

In the context of real time systems and predictable computing in [5], a unified schedul-
ing model for precise computation control is described. Every computation entity (in-
cluding interrupt service routine, asynchronous procedure calls, etc.) is part of a
scheduling group. The operating system scheduler calls scheduling decision functions
(SDF) which are provided in each scheduling group to determine the next computation.

The proposed scheduling structure leads to a very flexible scheduling model: ap-
plication specific scheduling is possible, furthermore a precise control of all scheduling
aspects (e.g. interrupt handling) can be achieved.

2-10 Open Research Questions in SOA

2 RELATED WORK

2.2.6 Summary

Scheduling on the operating system level and request processing in server applica-
tions are closely connected: Harmonizing both aspects is necessary for achieving high
throughput and a good performance. Another related aspect are the synchronization
methods used to coordinate concurrent activities.

A scheduling and request processing approach explicitly designed for service-based
systems does not exist. Section 3 describes a starting point for such an approach.

2.3 Virtualization

A good utilization of available computing power is an important issue in current IT
infrastructures. Virtualization technology can help to manage IT resources and to easily
react on changing requirements.

Virtualization can be defined as "... a technology that combines or divides com-
puting resources to present one or many operating environments using methodologies
like hardware and software partitioning or aggregation, partial or complete machine
simulation, emulation, time-sharing, and many others." (from [10])

These different aspects of virtual machine implementations rely on the underlying
operating system. Currently "whole system" virtual machines get better support from
the hardware (e.g. Vanderpool-technology from Intel or Pacifica from AMD). Other
types of virtual machines could get better support from the operating system.

Especially multiple layers of virtualization lead to complex computing structures
which offer a base for optimization. The basic idea is to remove virtualization layers
(if possible) and expose the underlying concepts directly.

2.3.1 Virtualization technologies

This section provides an overview and different classification approaches for existing
virtualization technologies.

In [10] the authors identified five different virtualization abstraction levels, which dif-
fer significantly in terms of performance, flexibility, ease of use, resource consumption,
scalability, and therefore in their usage scenario.

e Instruction set level: Virtualization on instruction set level is achieved by emulating
the complete instruction set architecture of a specific platform. The instructions
are interpreted by software and translated to the instruction set of the host plat-
form. To use virtualization at this level, the instruction set translation must be
possible. (Examples: Bochs ', QEMU 2)

e Hardware abstraction layer level: A virtual machine monitor (VMM) is introduced
between hardware and operating system level. The installed operating systems

'http://bochs.sourceforge.net/
2http:/fabrice.bellard.free.frigemu/

Open Research Questions in SOA 211

Operating System Abstractions for Service-Based Systems

Application Software Application Software
Operating Operating
System System
Hardware Hardware
(a) (b)

Application Binary Instruction Set
Interface Architecture

Figure 4: Virtualized system interface

use a virtualized view of the hardware which can be influenced by the VMM con-
figuration. (Examples: VMWare 3, VirtualPC 4, Xen [3])

e Operating system level: The interface of an operating system kernel is defined by
a set of system service calls. Virtualization on operating system level is achieved
by providing different system service calls for different applications. Every ap-
plication can have its own view on the operating system. (Examples: Solaris
Zones [13], FreeBSD Jails [7])

e Library level: Mostly, applications do not call the operating system kernel direcily,
instead they use libraries with wrapper functions. Hence, a virtual operating sys-
tem environment for a specific application can be built if the required libraries are
provided. The new implemented libraries can use different system service calls
(even on totally different operating systems). (Examples: WINE °, LxRun ©)

e Application level: Another approach to virtualization is to create a virtual ma-
chine/environment as an application inside a given operating system environ-
ment. Such virtual machines can be arbitrarily complex and are not intended to
be transparently inserted into an existing software stack. They can require the
usage of a special programming language. (Examples: Java Virtual Machine 7,
Microsoft .NET CLI 8)

A different classification of virtual machines architectures using different terms is
provided in [16].

First, virtual machines can be differentiated by whether they are process virtual
machines or system virtual machines. Process virtual machines support an individual
process and are created/terminated together with the guest process. System virtual
machines provide a complete system environment and can support multiple processes.

Second, the virtualized system interface is considered. The interface provided by a
virtual machine can either be on the Instruction Set Architecture (ISA) or on the Appli-
cation Binary Interface (ABI) level (see figure 4). ISA describes the platform dependent
hardware instruction set, including user level and privileged system instructions. An

3hitp://www.vmware.com/
4http://www.microsoft.com/windows/virtualpc/
Shittp://www.winehqg.com/
Shttp://www.ugcs.caltech.edu/ steven/Ixrun/
"http://java.sun.com/docs/books/vmspec/
8http://msdn.microsoft.com/netframework/ecma/

2-12 Open Research Questions in SOA

2 RELATED WORK

ABI does not contain the privileged instructions, but a set of operating system calls to
wrap them.

Given those two attributes one can classify virtual machines according to their type
(process or system VM) and whether they provide the same or a different ISA of their
hosting system.

Application Software Application Software Virtual Machine
Operating Operating Operating
System System System
Hardware Hardware Hardware
(a) (b) (c)
Multiprogramming Translator/Optimizer High Level VMs

Figure 5: Process Virtual Machines

Process virtual machines can be subdivided into multiprogramming systems, em-
ulation and dynamic binary translators, dynamic optimizer and high level virtual ma-
chines. The virtualized interfaces are illustrated in figure 5.

Multiprogramming environments allow multiple processes within one single operat-
ing system. The processes use the same operating system interface and the same
type of instructions. Emulation or dynamic binary translation is necessary if a binary
file compiled for a different platform is executed. The operating system interface is the
same but the instructions have to be translated. The third type of process virtual ma-
chine use a given operating system environment and provides its own ISA. The Java
virtual machine with its interpreted byte code is a good example for this type of VM.

Apps.
Apps. Apps. 0s ‘ Apps. Application Software
Operating Operating
5 5 System ‘ System
Hardware Hardware Hardware
(a) (b) (c)
“classic* VM whole system VM co-designed VM

Figure 6: System Virtual Machines

System virtual machines can be subdivided into "classic" virtual machines, whole
system VMs and co-designed VMs. The virtualized interfaces are illustrated in figure
6.

A "classic" virtual machine allows the parallel execution of multiple operating sys-
tems. The VM provides unique views of the hardware for every installation. Whole
system VMs use the operating system services of a host system to build the hardware
abstraction for the guest operating system. Co-designed VMs translate between differ-
ent ISA systems; in this way an operating system can be executed on an ISA it was not
designed for.

Open Research Questions in SOA 2-13

Operating System Abstractions for Service-Based Systems

2.3.2 Virtualization in service-based systems

Currently there are many different types of applications of virtualization technologies

([10]).

e Server consolidation: Many server machines are under-utilized. Server consoli-
dation aims at a better utilization of expensive systems. Furthermore the admin-
istration afford could be decreased.

Virtualization supports server consolidation by providing the possibility to isolate
different server applications. Depending on the server type, every installation
have its own view of (a part of) the server machine.

e Secure computing platforms: Virtual machines can provide secure and isolated
environments for applications and operating systems. A software failure or an
attack only harms a virtual system which can be easily recovered.

e Kernel debugging and driver development: The target system of an operating
system or a newly developed driver can be emulated by a virtual machine. In this
way, software for an unavailable platform (e.g. a new CPU architecture or a new
external device) can already be developed and tested. The ability of fast restarts
makes development a lot easier.

Many other applications which are possible are not listed here.

In service-based systems virtualization can be found on many different levels: The
trend towards server consolidation leads to more than one single operating system
instance on a server machine. Furthermore, many service-based systems are using
webservices in combination with a platform independent programming language (i.e.
Java or .NET). The services are hosted inside an application server which can also be
written in Java or .NET.

If we consider virtualization as a technology for dividing computing resources to
present multiple operating environments (see [10]), most current server systems use
virtualization. The complexity of such systems increases and the manageability or
performance tuning is much more difficult than in non-virtualized environments.

2.3.3 Flattening virtualization layers

The general aim of virtualization (e.g. virtual memory management) is to provide an
easy to use view of the available resources. Developers can use the simplified abstrac-
tions and implement complex applications without knowledge of certain aspects of the
underlying hardware.

In [18] it is argued that virtualization in general is ill-suited for server systems. The
authors consider the big advantage of virtualization as the biggest drawback: virtu-
alization fundamentally hides the fact that resources are limited and shared. Their
conclusion is that operating systems should eliminate the abstraction of transparent re-
source virtualization and should allow application specific and fine grained control over
available resources.

2-14 Open Research Questions in SOA

3 NEW ABSTRACTION: BATCH SCHEDULING

Besides these basic considerations, the complexity of virtualized environments can
be decreased by replacing heavy-weight virtualization with more light-weight approaches.
Multiple isolated operating systems on a single machine, created by using a VMM like
Xen [3] can be replaced by multiple views on a single operating system with concepts
like Zones [13] or Jails [7].

3 New abstraction: batch scheduling

This section presents some thoughts on operating system improvements for a bet-
ter support of service-based systems. The new operating system abstraction batch
scheduling is introduced.

Current operating systems are designed for general purposes. Some server op-
erating systems (like Windows 2003 Enterprise Edition) introduce slight optimizations
for server applications. Examples are the modified scheduling quantum or the better
support for multiprocessor platforms.

Typical service-based systems offer meta-information about their structure and exe-
cution. This information could be used to create an operating system especially suited
for service-based systems.

The CPU is one of the most important resources determining server performance.
Exploiting the special properties of service-based systems to optimize CPU utilization
seems to be a very promising approach.

3.1 Problem description

A server receives a stream of client requests, does some computation and sends a
stream of results back to the clients. Irrespective of the concrete server application,
a high server throughput (i.e. process a maximum of client requests per time unit) is
desirable.

Today, different components of service-based systems are optimized separately.
The number of request processing threads is chosen or caches/other heuristics are
used to optimize the server behaviour. Normally, a coordination across component
boundaries does not exist.

Furthermore, inter component dependencies of different optimization steps are hard
to predict and often ignored.

In general, a concept to combine different information about the service-based ap-
plication (e.g. composition graphs or resource requirements) could lead to an optimized
execution. An operating system designed for service-based systems should provide
means for efficient task execution and coordination.

The following batch scheduling concept is a starting point for a new scheduling
policy which offers several points for the integration of meta-information about the exe-
cuted tasks/threads.

Open Research Questions in SOA 2-15

Operating System Abstractions for Service-Based Systems

3.2 Solution approach

For a better execution control, the units of execution (in general threads or processes)
which belong to a specific application or service should be collected. The operating
system could provide means to manipulate and configure such collections as a whole.
For example job objects or task sets could be used to define the behaviour of program
execution.

Probably a more flexible way of execution control could be achieved if more fine
grained constructs (e.g. threads instead of processes) are put together. Batch schedul-
ing as proposed here shows a way to simultaneously manage and execute single
threads.

In this section the proposed solution is described: First the general concept is intro-
duced, afterwards the implementation idea is shown. Finally a possible realization of
the implementation in the context of the Windows platform is described.

3.2.1 General concept

The idea is to assemble threads which are in a comparable state of execution together
and schedule them in a special way. A comparable state of execution is given, when
some threads access the same piece of data and/or execute the same sections of
code.

A new operating system concept batch is introduced. A batch encapsulates similar
activities across process and thread boundaries. It has a name and can be seen as a
"global" operating system concept like "thread" or "mutex".

Regular operating system threads can be assigned to a specific batch. If, for exam-
ple, a set of threads in a thread pool deals with client requests, the stages of request
processing (parse request, load data from file, send result etc.) can be defined by
the server developer and a batch can be created for each stage. All request handling
threads which are in the same computation stage are put together into the specific
batch.

The batch concept is similar to the thread concept. A batch can be initialized and
can be executed by selecting one of the contained threads. The different thread states
can be mapped to specific batch states. In this way batches can be treated as schedul-
ing objects with a special semantic.

Threads which are assigned to a batch are scheduled indirectly: If the scheduler se-
lects a batch for execution, the batch policy determines which operating system thread
gets executed.

Basically, a batch policy has to describe three things: (1) Which conditions have
to be fulfilled for the batch to be moved into the "ready for execution" state? (2) If the
batch is chosen for execution by the scheduler, when does it leave the "run" state? (3)
How is the next thread selected?

A point that has to be considered when selecting a specific policy for a batch is
fairness and progress concerning other (not batched) threads in the system. If the
batch never leaves the running state no other activities can ever be executed.

2-16 Open Research Questions in SOA

3 NEW ABSTRACTION: BATCH SCHEDULING

Following, some possible batch policies are described. Some of them are adapted
from [6] and many other policies should be implementable.

e Abatch collects threads and becomes ready for execution if the number of threads
has reached a specific threshold N. After selection for execution the batch dis-
patches the first N threads in FIFO order. The threads run until completion or until
transition to the wait state. Afterwards the batch yields the CPU and is re-inserted
into the ready queue by the scheduler.

e To prevent a thread from blocking the CPU for an inopportune time the first policy
can be modified: threads still run until completion or transition to the wait state,
but they are preempted and reinserted into the batch after consuming a certain
amount of CPU time.

e A batch can be always ready for execution, if at least one thread was inserted.
If the scheduler chooses this batch, every thread in the queue is sequentially
dispatched to the CPU and executed until completion or for a specific amount
of time (batch quantum). The batch quantum can be different from the regular
operating system quantum.

A server application can use batches to assemble request handling threads and
to schedule them in a way more appropriate for CPUs with optimizing heuristics like
branch prediction and data caches. Additionally the batch concept can be used to
develop further operating system optimizations which can benefit from aggregated
threads with similar behaviour.

3.2.2 Implementation concept

A thread batch is introduced as an operating system concept similar to threads. Like
threads, batches have a priority and are scheduled for execution. The kernel manages
batches and monitors their creation and management.

A new (kernel) datastructure is used to manage information about batch objects. It
holds information about the batch execution policy and the batch priority. Furthermore
a queue of threads is managed. Additionaly the thread datastructure is extended to
store information about a batch object the specific thread is assigned to.

For using the batch concept, the operating system interface is extended with func-
tions for batch creation and management.

e CreateBatch allocates and initializes (kernel) memory for a batch datastructure.
The new batch gets a unique name and an initial priority and execution policy.
The system call returns a handle to the batch for further operations.

e Get/SetBatchPriority modifies the batch priority. The priority is analog to thread
priorities.

e Get/SetBatchPolicy modifies the batch execution policy. The application devel-
oper can choose from a set of predefined policies.

Open Research Questions in SOA 2-17

Operating System Abstractions for Service-Based Systems

e CloseBatch removes the contained threads from the batch and frees the allocated
memory for the batch datastructure.

After creating some batches and setting appropriate priorities and policies, server
application threads can use the following system service calls to employ the special
batch scheduling.

e EnterBatch puts the currently running thread into a specific batch queue. After-
wards, the thread releases the CPU and the scheduler chooses the next element
for execution. The thread is now under batch control and runs if the batch is se-
lected by the scheduler. If the running thread is already member of a batch (which
is in this case currently running), it is put into the new batch and removed from
the current batch.

e LeaveBatchMode explicitly dequeues the thread from the currently running batch.
Afterwards the thread is again a "normal" operating system thread which is sched-
uled individually.

Both methods allow a flexible usage of the batch concept and a straight-forward
implementation of staged request processing.
Inside the kernel three functions for batch manipulation have to be implemented.

e KeInsertThreadBatch gets a thread handle as parameter and puts the thread
into the thread queue. This function is called by the EnterBatch implementation.
Depending on the policy the batch can change its state and can become ready
for execution.

e KeRemoveThreadBatch removes a specific thread from a batch. The thread batch
field in the thread control block is set to null. Depending on the policy the batch
can change its state after dequeueing a thread.

e KeBatchGetNextThread selects the next thread to run from the batch thread queue.
The batch execution policy determines which thread to choose.

b Standby

< - >< Re;'d;’),a

i

— Transition

Figure 7: Windows thread states

During execution, threads change between different states. Figure 7 [14] depicts
these states for thread execution on Windows systems.

2-18 Open Research Questions in SOA

3 NEW ABSTRACTION: BATCH SCHEDULING

The batch abstraction does not introduce new thread states. Instead, the batch
concept introduces a second dimension to the thread states: Every thread can be in
one of the displayed states but disclose a second information whether it is in a batch
or not. The transition between the two levels is possible by using the described API
functions EnterBatch and LeaveBatchMode.

Compared to the thread states batches itself can be in any of the states depicted in
7 except for the "transition" state. A thread is in the transition state if its kernel stack
is paged out of memory. A batch does not have an explicit kernel stack, therefore the
state is without meaning.

(
‘ \

Figure 8: Simplified thread states model

For a detailed explanation of the proposed batch scheduling concept the simplified
thread state model depicted in figure 8 is used. Without loss of generality threads
can be in one of three states: (1) If the thread is currently executed it is in the "running"
state. (2) If the thread is ready for execution but was not yet selected by the scheduler it
is in the "ready" state. (3) If the thread is neither in execution nor ready for execution it is
in the "waiting" state. This state integrates states like "standby", "transition", "waiting",
"initialized" or "terminated", known from other thread state models.

Most current operating systems use a priority based, preemptive round robin schedul-
ing algorithm. There are different priority levels, each one has its own ready queue. The
thread with the highest priority in the ready state is selected for execution. The currently
executed thread is preempted if a thread with a higher priority becomes ready. The
thread in the running state executes for a specific time (quantum). Afterwards, it gets
preempted and is placed at the end of the ready queue of its priority level. If a thread
in the running state invokes a blocking system call (e.g. blocking I/0O or semaphore op-
erations) the thread goes into the wait state and the scheduler selects the next ready
thread.

To integrate the batch scheduling concept into an existing round robin scheduling
algorithm, the scheduling decision logic has to be adapted. Scheduling decisions are
made as reaction to the following events:

¢ Athread finishes waiting and gets into the "ready" state. Depending on the priority
of the new ready thread, the currently executing thread has to be preempted and
replaced.

e The quantum of the currently running thread expires. The thread is placed into
the ready queue and the next thread is dispatched for execution.

e The currently running thread changes into the "waiting" state. If a blocking system
call is invoked or any other operation prevents the current thread from further
execution a new thread has to be chosen.

Open Research Questions in SOA 2-19

Operating System Abstractions for Service-Based Systems

First we examine the integration of batches into the general round robin concept.

Batches have a priority like every regular thread. They are inserted into the ready
queues according to their priority. The round robin scheduler selects the thread from
the ready queue with the highest priority. If a batch is selected it is marked as "in
execution" and the KeBatchGetNextThread function is used to get the real thread to
execute.

If the batch has finished its execution it is reinserted at the end of the ready queue
of its priority. This conforms to the regular round robin algorithm. Depending on the
batch processing policy of the executed batch, it can get into a state where it is not
ready for further execution. In this case the batch enters the waiting state. Later it can
become ready again and gets reinserted into a ready queue.

This procedure leads to an indirect scheduling of the threads which are part of a
batch. Batches are building a meta-object, from the CPU point of view they are never
executed. The regular scheduling algorithm has to be adapted for the case that a
batch is selected for execution. Preemption and selection of the next thread has to be
handled differently.

Now we can examine the special scheduling of threads which are part of a batch.
As mentioned above three cases have to be considered.

¢ A thread finishes waiting and gets into the "ready" state.

If the thread is not part of a batch it is handled by the regular round robin algo-
rithm: the thread is inserted into the run queue of its priority level or preempts the
current thread if its priority is higher. If currently a batch is selected for execution
it can also be preempted.

If the thread is part of a batch (regardless if it is currently in execution) it is rein-
serted into this batch by using KeInsertThreadBatch. Batch policy dependent,
the specific batch becomes ready or performs some other action.

e The quantum of the currently running thread expires.

The regular round robin algorithm is applied if the thread is not part of a batch:
the scheduler puts the thread at the end of the ready queue and selects the next
item to execute.

If the thread is part of a batch the batch policy decides what has to be done.

e The currently running thread changes into the "waiting" state.

If the running thread is not part of a batch and calls a blocking system service,
the scheduler puts it into the appropriate wait queue and selects the next thread
or batch for execution. A special case is the EnterBatch call: the calling thread is
inserted into the specific batch before selecting the next item for execution.

This special case has to be considered also if the running thread is part of a
batch. Then the thread is removed from its old batch (KeRemoveThreadBatch) and
inserted into the new batch. By calling LeaveBatch the thread also leaves the
current batch. If a batched thread performs some other action which brings it to
the waiting state, the scheduler puts the thread into a waiting queue and calls

2-20 Open Research Questions in SOA

3 NEW ABSTRACTION: BATCH SCHEDULING

Windows Research Kernel Main Page | Files | Directories Search for
+@ File List
=3 Directories thredsup.c
“) base KeFindHextRightSetAfTinity VOID FASTCALL KiReadyThread(IN PKTHREAD Thread)
B ntos KiDeferredReadyThread
+ b KiFindReadyThread This function inserts the specified thread in the process ready list If the thread's process is currently not in memary,
@ cache KiProcessDeferredReadyList inserts the specified thread in the kernel stack in swap list If the thread's kernel stack is not resident, or inserts the
“@ config KiQuousRestyThreed thread in the deferred ready list
“@ dbgk Kikeady T eau}
@ 0 . T L N.B, This function is called with the dispatcher database lock held and retums with the lock held
H @ fortl L N.B. The deferred ready list is a per processor list and itemns are only inserted and removed from the respective
#@ fstub processor. Thus no synchronization of the list is required
® inc
| b b P Parameters:
e tnk A i R Thread - Supplies a pointer to a dispatcher abject of type thread
@ o KisuspendThread
S ke KiSwapThread Returns:
“ @ Ipe None
¥@® mm Definitian at line 897 of file thredsup.c
#@ ob
* @ perl References ASSERT, FALSE, InsertTailList(), InterlockedPushEntrySingleList(), KilnsertDeferredReadyList(),
@ ps KiProcessinSwapListHead, KiSetinternalEvent(), KiStackinSwapListHead, KiSwapEvent, KiSwappingThread,
P MAXULONG_PTR, ProcessinMemory, ProcessinTransition, ProcessOutOfMemory, Ready,
#@ raw _KPROCESS::ReadyListHead, KPROCESS::StackCount, KPROCESS:State, KPROCESS:SwapListEntry,
o @l Transition, and TRUE
+
& se) Referenced by KeReadyThread(). KeSetEventBoostPriority(), KiAttachProcess(), KilnsertQueuef),
i % verifier KilnSwapProcesses(), KiOutSwapProcesses(), and KiUnwaitThread()
=@ wmi 00827
=) public 00928
= oosz9 PKPROCESS Process:
. dils 00930
H@ halkit 00931 14
E internal 00932 // If the thread's process is not in memory, then insert the thread in
5@ sdk 00933 // the process ready gueue and inswap the process
00934 e
[&] Globals 00335
00936 Process = Thread->ApcState.Process;

Figure 9: WRK doxygen documentation - screenshot

KeBatchGetNextThread for the current batch. Depending on the batch policy and
the contained threads the batch finishes execution and the scheduler can select
the next item.

As shown the batch scheduling concept can be integrated into an existing round-
robin operating system scheduler. By comparing an umodified and a modified kernel
the concept can be evaluated.

3.3 Implementation with the Windows Research Kernel
3.3.1 Overview

In the summer of 2006, Microsoft released the Windows Research Kernel (WRK) which
contains the kernel source code of the latest Windows operating system. The provided
build-environment allows compiling modified kernel versions and then using these to
boot a Windows Server 2003 Enterprise Edition machine.

Intended WRK usage is in lectures and other academic and research purposes [12].
Besides the source code, a free release of Virtual PC 2004, debugging tools, and the
original design documents for Windows NT are contained in the WRK release.

The kernel source code is well documented, but for a better understanding of the
kernel structure and source dependencies additional tools are helpful. Doxygen ° is
an open-source tool for creating different source code documentation representations
(e.g. HTML pages) for different programming languages.

%http://sourceforge.net/projects/doxygen/

Open Research Questions in SOA 2-21

Operating System Abstractions for Service-Based Systems

L

o sz _— e
e -
/-/ / - . KeGetCurrentlrgl
- | KiAcquirePrebLack]

- /
V'

/ //.ﬂ "y
/ e s
g i / 4 KiSetContextSwapBusy //
/_/ /_; / i : /
” /

- /
— P
W KiUnlockDispatcherDatabase }—bl KiExitDispatcher E‘__H___ /_/"
\\‘ ‘\}\ Ny » KiDeliverApc
i, AN i =

™ \ T

e
S —

. \\\‘\ i,
X L By

", b
™~ N N | IilnsertDeferre dR ead yList KeGetCurrentPrcb
™~ L
e

\ — e

\ e
\\.\ N\ /\ — =
g)\ KxQueueReadyThread 'r—-h- KiDeferredReadyT hread

3 7" Zi -
o !/ > _:_:‘:.;_H_-F
i / l KiProcessDefaredReadyList J S

" / S
N /J Interlacke dPushEntrySingleList | N
KiReadyThread

[Frasities | -

\\ \H‘
% e
\ KiSetinternalEvent
Mo _—5| KilnwaitThread |

i

e
e

Figure 10: KeReadyThread callgraph

We created a source code filter which transforms the WRK documentation of a sin-
gle C or ASM source file into the specific Doxygen format. In this way we can use
Doxygen to create a detailed documentation for the Windows Research Kernel, includ-
ing call graphs for functions. Figure 9 shows a screenshot of a Doxygen generated
page, figure 10 shows an example of a created callgraph.

The WRK Doxygen documentation is hosted at the HPI '°. Access can be granted
to interested parties on request.

3.3.2 Implementation

The first step of adding new functionality to an existing operating system kernel is
to insert a new system service call. One possibility is the usage of a kernel device
driver which manipulates the system service call table. Another approach is the direct
extension of the kernel. With the WRK this approach is possible for the Windows
operating system.

The scheduler implementation in the Windows Research Kernel is distributed all
over the kernel. The following list shows three important points where modifications
are necessary.

e A new batch datastructure has to be introduced. This datastructure contains
a linked list with assigned threads and configuration parameters describing the
scheduling state and policy.

Ohttps://dcl.hpi.uni-potsdam.de/wrk/

2-22 Open Research Questions in SOA

4 CONCLUSION AND FUTURE WORK

e The thread datastructure (file ke .h) must be extended with batch processing spe-
cific information. Basically a reference to a batch datastructure must be added.
This reference points to the batch object if the specific thread is part of a batch.

e The different Windows scheduling functions must be modified in the way de-
scribed above. Some examples: KiSwapThread is responsible for selecting the
next thread for execution. KiReadyThread inserts a thread into the "ready" list.
KiQuantumEnd is called if a thread has spent its time slice.

In addition to the modification of the round-robin scheduler, some of the batch
scheduling policies described above have to be implemented. To investigate the ap-
plicability of these different policies, to develop more policies and to define guidelines
when to use which version remains future work.

4 Conclusion and Future Work

Service-based systems make new demands to operating systems and application de-
velopers. A reliable execution combined with good performance is expected by clients
and service providers.

A well adjusted operating system with a good concept for request processing, ap-
plication isolation, memory management and activity scheduling can be the foundation
for efficient and powerful service-based systems.

4.1 Expected contributions

Envisioned research results in the area of operating system abstractions for service-
based systems will lead to an abstract model of services and service-based systems
from an operating system point of view. Tools and operatings system extensions, which
prove the applicability of the findings will be developed. Proposed research will use the
"Windows Research Kernel" (WRK) as well as the Linux operating system as plat-
forms for investigation of co-scheduling/batch-scheduling, resource pre-allocation and
reservation, as well as the introduction of new, service-specific system calls and new
application programming interfaces.

4.2 Next steps

The following list provides a roughly estimated time schedule of further work.

¢ Implement the batch scheduling concept with the Windows Research Kernel. Re-
implement parts of the Apache webserver to use batches during request process-

ing.

e Evaluate the new operating system kernel. First, overhead introduced by batch
scheduling. Second, performance impact of batch scheduling.

Open Research Questions in SOA 2-23

Operating System Abstractions for Service-Based Systems

e Investigate operating system support for application server. Monitor and measure
server activities on operating system level. Compare with meta-information about
service implementation.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.
Scheduler activations: effective kernel support for the user-level management of
parallelism. ACM Trans. Comput. Syst., 10(1):53-79, 1992.

[2] Gaurav Bangs, Peter Druschel, and Jeffrey C. Mogul. Better operating system
features for faster network servers. SIGMETRICS Perform. Eval. Rev., 26(3):23—
30, 1998.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, lan Pratt, and Andrew Warfield. Xen and the art of virtualization. In
SOSP '03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164—177, New York, NY, USA, 2003. ACM Press.

[4] Simon Beloglavec, Marjan Hericko, Matjaz B. Juric, and lvan Rozman. Analysis of
the limitations of multiple client handling in a java server environment. SIGPLAN
Not., 40(4):20-28, 2005.

[5] Michael Frisbie. A unified scheduling model for precise computation control. Mas-
ter’s thesis, University of Kansas, 2002.

[6] S. Harizopoulos and A. Ailamaki. Affinity scheduling in staged server architec-
tures. Technical report, Carnegie Mellon University, March 2002.

[7] Poul-Henning Kamp and Robert Watson. Jails: Confining the omnipotent root. In
Second International System Administration and Networking Conference (SANE
2000), May 2000.

[8] James R. Larus and Michael Parkes. Using cohort scheduling to enhance server
performance. In LCTES/OM, pages 182—-187, 2002.

[9] Erich Nahum, Tsipora Barzilai, and Dilip D. Kandlur. Performance issues in www
servers. IEEE/ACM Trans. Netw., 10(1):2—11, 2002.

[10] Susanta Nanda and Tzi cker Chiueh. A survey on virtualization technologies.
Technical report, Department of Computer Science, SUNY at Stony Brook, Febru-
ary 2005.

[11] M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Commun.
ACM, 46(10):24—-28, 2003.

2-24 Open Research Questions in SOA

REFERENCES

[12] Andreas Polze and Dave Probert. Teaching operating systems: the windows case.
In SIGCSE '06: Proceedings of the 37th SIGCSE technical symposium on Com-
puter science education, pages 298-302, New York, NY, USA, 2006. ACM Press.

[13] Daniel Price and Andrew Tucker. Solaris zones: Operating system support for
consolidating commercial workloads. In LISA '04: Eighteenth Systems Adminis-
tration Conference, pages 241-254. USENIX Association, November 2004.

[14] Mark E. Russinovich and David Solomon. Microsoft Windows Internals. Microsoft
Press, 4th edition, 2005.

[15] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, Volume 2, Patterns for Concurrent and Networked
Objects. John Wiley & Sons, 2000.

[16] J. E. Smith and Ravi Nair. An overview of virtual machine architectures, 2004.

[17] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad idea (for
high-concurrency servers), May 2003.

[18] Matt Welsh and David Culler. Virtualization considered harmful: Os design di-
rections for well-conditioned services. In HOTOS '01: Proceedings of the Eighth
Workshop on Hot Topics in Operating Systems, page 139, Washington, DC, USA,
2001. IEEE Computer Society.

[19] Matt Welsh, David Culler, and Eric Brewer. Seda: an architecture for well-
conditioned, scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230-243,
2001.

[20] Matt Welsh, Steven D. Gribble, Eric A. Brewer, and David Culler. A design frame-
work for highly concurrent systems. Technical report, UC Berkeley CS, Berkeley,
CA, USA, 2000.

Open Research Questions in SOA 2-25

A Task-oriented Approach to
User-centered Design of Service-based
Enterprise Applications

Matthias Uflacker
matthias.uflacker@hpi.uni-potsdam.de

This work positions the authors research activities within the field of service-oriented
systems engineering and gives an overview on identified problems, related work and
goals. The area closely investigated comprises the development of specialized, dis-
tributed, and flexible enterprise applications in combination with the effective implemen-
tation of usability enhancing design methods therein. Special consideration is taken
into the distinct complexity of enterprise software systems and the resulting demands
on development processes and design. The precise problem scenario addressed by
the ongoing research work is settled in the area of engineering processes for interac-
tive, service-based business process applications. A model-based approach to collect,
formalize, and manage user-validated knowledge about roles, tasks, and interactions is
proposed and related to user-centered design methodologies. Its potential to optimize
the development process and support in the user and business value driven creation of
innovative, composite enterprise software is discussed. The long-term goal of this work
is to provide guidelines and tool-supported methods to establish a design-led and cost-
effective engineering approach for service-based enterprise applications, emphasizing
usability, user experience, and overall product satisfaction.

Keywords: Enterprise Applications, SOA, Web Services, User-Centered Design, Interac-
tion Design, Model-Driven Development

Open Research Questions in SOA 3-1

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

1 Introduction

Carefully balancing desirability, feasibility, and viability of a product is the key for broad
acceptance and market success. Nevertheless, user experience as a soft factor has
been (and still is) neglected more than often in traditional software engineering pro-
cesses, resulting in undesirable and inconvenient products [24]. User-centered design
methodologies slowly find their way into software development processes, but projects
are struggling with gathering, handling and applying user knowledge and the final trans-
fer of results acquired during the design and prototyping cycles into established devel-
opment phases [15]. It is obvious that a solid and planned ambition for innovative
and usable enterprise software products still requires considerable adjustments in the
software development process and support by appropriate tools.

The demand for investigating and introducing novel, design-led and outside-in driven
processes (in contrast to traditional, inside-out development approaches), becomes
more apparent when considering the advancements being made in software technol-
ogy and the comparatively small changes that user interfaces have undergone in the
meantime. In contrast to the many-fold increase in computational power and possibili-
ties over the last centuries, user interface techniques remained essentially the same [3],
but were applied to more and more complex scenarios. A design-driven and user-
centered development process, focusing on end-user tasks and activities, can unfold
new possibilities and innovative ways to better address system complexity on the front-
end level and to optimize user interaction and overall user experience with the product.

Service orientation and service-oriented architectures (SOA), as a modern paradigm
for developing and structuring agile software systems, provide an approach to combine
loosely-coupled, distributed, and independent software services to a composite solu-
tion, thus making remote functionality accessible to other software components and
applications. Following the ’software as a service’ principle, service orientation can
help to better handle and manage system complexity by improving the flexibility and
maintainability of software architectures and providing data and functionality "on de-
mand”. Nevertheless, very little support is provided for the design and creation of
interactive applications that present service functionality and data to the end-users. If
not to risk loosing flexibility and agility properties gained from the SOA philosophy, the
development procedures for appropriate user interfaces of service-based solutions also
need to support those attributes: Interaction design and Ul modeling techniques have
to incorporate interactions between users and services in order to enable a quick and
seamless adaptation to changes in workflow and system requirements without much
efforts in time and coding. Proper procedures and tool support for end-user knowledge
management and application help in keeping costs, time-to-market and response times
for changing requirements low.

We consider the service-oriented approach as a new opportunity to strengthen user
awareness and task-orientation in the design process of interactive business applica-
tions. Information and functionality made available exactly where and when it is needed
in the workflow, simple-to-use software that is fully adapted to the business and the
end-users needs. Those are goals that can be realized by applying user-centered de-
sign methodologies in a service-oriented context. The creation of user interfaces for

3-2 Open Research Questions in SOA

2 PROBLEM DEFINITION

service-based systems must not be driven by technological specifications of software
interfaces or service calls. More specifically, it has to be guided by an outside-in design
process that focuses on activities [20], workflow knowledge and end-user validation.
Empathy for the users and a profound understanding of their needs will lead to high-
quality concepts for user interfaces that foster usability, satisfactions and productivity.
The SOA paradigm is playing an enabling role in this approach as it may render previ-
ously unrealizable design concepts technically feasible.

Therefore, it is the purpose of this work to investigate the integration and adoption of
usability engineering techniques in the context of interactive, service-based enterprise
applications. This will include special consideration of modeling techniques for user
tasks and user-service interactions. The question for which the proposed work wants to
give an answer is "How can the specification of workflows and user-service interactions
help in the design and maintenance of service-based applications, improve the quality
of user interfaces, and how can such specifications be modeled and integrated into a
user-centered development cycle for enterprise applications?”.

2 Problem Definition

The diversity and complexity of today’s various business rules and processes consti-
tute great demands on modern standard enterprise applications, developed to support
in these processes. The strong heterogeneous and globally distributed landscape of
targeted customers and users, tasks and scenarios, calls for highly capable, yet flex-
ible and adaptive software solutions, that need to incorporate an umpteen number of
often conflicting requirements: To compete on the market, the software has to be able
to quickly react to changing business scenarios and tasks. Furthermore, it needs to
offer a wide scope of functionality together with adequate integration capabilities for
different platforms and existing system landscapes. Simultaneously, the user interface
of the enterprise application itself has to retain flexible and adaptable to its individ-
ual user groups, their specific tasks and environments, in order to gain a high level of
acceptance and applicability in targeted scenarios.

With the tremendous effect and influence on the productivity and the way people
conduct their daily work, the end-user experience of enterprise applications is now a
major differentiator in the software market. Still, application development was and is in
this regard a relatively closed and sealed-off process in which usability methods and
end-user involvement are rarely incorporated effectively [24]. But, a concentration on
the end-users needs and wants is essential for future generations of business applica-
tions if they are to be designed to successfully address the growth in complexity and
resulting user interaction problems. Otherwise, software developers are running the
risk of creating tools which are difficult to learn and understand, and which are un-
supportive and hindering the user in the execution of the business task. Through the
substantial increase in software pervasiveness [5], usability has finally become a criti-
cal factor for the success of enterprise software, as it contributes to reducing errors and
costs, as well as to increasing user productivity and satisfaction. Yet, profound knowl-
edge on how to best adapt and apply methods to reach for an optimum in usability and

Open Research Questions in SOA 3-3

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

user experience in enterprise applications throughout the entire development process
is still missing.

2.1 Enterprise Application Development: Dealing with Complexity

As a consequence, modern sophisticated business applications like enterprise re-
source planning systems (ERP) are typically characterized by strong complexity in
user interaction and user experience. This is provoked by the inherent complexity in
data, functionality, architecture and configuration parameters, which again is a result
of the steady increase in functional and non-functional system requirements, demand-
ing business processes and challenging scenarios of use. The problem domain of
enterprise applications is extensive and does not only lead to complex and bloated
software products. It also renders the development processes itself much more difficult
by enforcing increasingly complex programming and run-time environments, deploy-
ment infrastructures, and architectures [27]. Simultaneously, the growing amount of
available data and implemented functionality results in more and more information that
can be made available to the user. As such, human-computer interfaces of business
applications are growing in complexity as well, impacting the usability of the product.

This is especially true in a mere technology driven development process, in which
design decisions are typically based solely on feasibility factors and contracts and do
not consider results of need-finding processes conducted with end-users. In such a
scenario, user interfaces are likely to be designed to merely present an unfiltered view
on the functional complexity of the software back-end. Such a procedure may result in
software solutions that are hard to learn and understand, unusable, and unsupportive
in the execution of certain business tasks.

It is a great challenge in enterprise application development (EAD) to simultane-
ously support a complex set of functions and business processes on the one hand,
and to make the system easy to use in broad and differing application scenarios on
the other. This has to be a major goal for enterprise application vendors if they want
to differentiate from their competitors by designing their products usable, comprehen-
sible, and desirable. Consequently, dealing with complexity in enterprise application
development appropriately is a must.

Any profound discussion on design issues in EAD and business software requires
a thorough comprehension of this distinct complexity of enterprise systems and their
development processes. Neglecting the characteristic constraints and factors inherent
in enterprise software projects will inevitably lead to solutions that do not appropriately
address the specific requirements in product and development. Therefore, a detailed
discussion and analysis of complexity problems in enterprise application development
and products is conducted in chapter 4.

2.2 Striving for Simplicity

The intense complexity inherent in enterprise applications raises the discussion how
user interfaces can be designed to hide the underlying business complexity at the best
possible rate. The massive amount of data and functionality necessary and available

3-4 Open Research Questions in SOA

2 PROBLEM DEFINITION

in modern enterprise information systems makes it difficult for interaction designers to
create a user interface that adheres to key usability attributes such as those defined by
Nielsen [17], e.g. learnability, efficiency, memorability, and user satisfaction.

Simplicity in the design of the whole user experience and interaction with the system
is considered as an important key factor for usable and desirable enterprise applica-
tions [18]. Simplicity is the key to provide a software tool that offers a wide range of
functionality and enables sophisticated business processes, but at the same time is
easy to learn, supportive and helpful in the fulfillment of tasks. Simple applications
provide data and functionality only when and where it is required, reducing informa-
tional overload and front-end complexity. Thus, simplicity in user experience enables
a seamless working process, ease of use, and a high level of product acceptance and
satisfaction for the end-user.

Striving for simplicity is a continuous process of knowledge gathering and decision
making, evaluation and selection [26]. What information is required where? What is
the user exactly doing to fulfill her role and tasks? What information or functionality
can be omitted? Being able to find the right answers to these questions during the
development process requires deep understanding of the user as well of technological
and business constraints. This knowledge can not be provided by a homogeneous
team of software developers. Contrariwise, a multi-disciplinary design team, consisting
of usability experts, user interface designer, business experts, and software technicians
is necessary to strive for innovative ideas that render the application more useful and
satisfying for all stakeholders.

But the challenges in coordinating and adjusting domain knowledge, communication
between different experts, as well as the involvement of end-users in the requirements
engineering phase and in iterative design evaluations, bears a number of problems
and open questions especially in large software projects. Scalability, knowledge trans-
fer and management, time and budget efforts are big issues when it comes to integrate
multi-disciplinary and user-centered design methods in large and complex development
processes. A careful coordination, selection and effective implementation of appropri-
ate methods is essential for a successful approach towards developing simple, usable,
and satisfying enterprise applications.

2.3 Enterprise Services and User Interaction

Web Services and related technical standards (WS-*) have found recent attention and
application in the business software community. As a realization of the promising and
lively debated service-oriented architecture paradigm, Web Service standards provide
the chance to increase flexibility, adaptability, and maintainability of software systems
by providing a communication infrastructure between decentralized, self-contained, in-
terchangeable, and loosely-coupled software artifacts, described by open XML based
interface specifications.

Enterprise Services are relatively coarse-grained Web Services that offer re-usable
and dedicated functionality especially relevant for electronic processing of business
data and workflow tasks in enterprises. As building blocks for specialized business so-
lutions, Enterprise Services can be composed and interconnected to pass and receive

Open Research Questions in SOA 3-5

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

data to and from several enterprise information systems (EIS) in order to achieve a
targeted business objective. Today, software providers like SAP and IBM reorganize
or extend their product portfolio accordingly, heading for service orientation by offering
service-enabled business components and platforms. Applications that leverage and
combine one or more software services in order to provide enhanced functionality or
user experience are generally referred to as composite applications [23].

The specification and coordination of automatic service calls and information flows
can be supported by business process models and business process management
systems (BPMS). Such a process-enabled SOA [14] enables the specification and
rapid adaptation of enterprise applications by means of formally describing business
process models and promises agile adaptation to changing business requirements.
Automatic service composition, service orchestration and choreography are subject of
active research and upcoming state-of-the-art in the automation of business processes
and service calls.

The execution of business processes, however, also involves human activity. Peo-
ple can take several roles in business process management and execution, like pro-
cess stakeholder, owner, initiator or administrator. There is also a number of reasons
for users to interact with services, such as the entry of required data, process initia-
tion, suspension, escalation of conflicts, exception management, task nomination, or
approval making. Neglecting human participation, user interaction, and the importance
of high quality user interfaces for business process applications disobeys large parts of
the problem domain.

A service is well designed if it puts focus on a delimited problem or purpose, but
at the same time is re-usable and generally applicable as much as possible. This
creates multiple scenarios in which a certain service can be employed. Depending
on the application and user context, different service requirements and varying sets of
relevant input and output parameters come to the fore. For example, an information
service for a human resource system can be accessed by different employees via the
enterprise portal. Depending on the role and position a user takes in the organization,
he or she either has access to the complete set of employee data or only to a restricted
subset of information (e.g. excluding work history and salary). In other cases, some
input or output values of a service are simply irrelevant in a certain business context.
In order to hide the functional complexity of the service and to deliver simplicity in user
experience, available parameters and information should be reduced to a meaningful
minimum in each context of use.

The problem lies in the identification of relevant data in the specific scenario. Simi-
lar issues are related to data entries for subsequent service calls and workflows, which
users conduct in their environment. Some data might become available several steps
before the actual service call takes place. In the meantime the data might be accu-
mulated, used for other purposes, checked for consistency, or might be updated. De-
pending on the scenario, input and output parameters can be distributed over multiple
steps in the user workflow. Thus, a simple request-response user interface, as it could
easily be automatically generated based on service interface descriptions, is a naive
solution for user-service interaction and most probably does not reflect the actual user
workflow.

3-6 Open Research Questions in SOA

3 RELATED WORK

Nevertheless, there is no such formalism to describe interactions between users
and services in a given application context.

3 Related Work

This chapter gives a brief introduction on various fields of research that are closely
related to the proposed work described in this paper.

3.1 User-Centered Design

The idea of User-Centered Design (UCD) is motivated by the well-founded assumption
that early involvement of end-users and constant evaluation and feedback sessions in
the development process will significantly increase the quality of the product by meeting
end-user requirements more appropriately and improving the overall usability of a sys-
tem. The basic concepts of UCD in human-computer interaction go back to the work of
Norman and Draper in 1986 [19]. The recently growing interest in user-centered design
methodologies and questions on how to integrate the basic concepts into traditional
and established development processes and teams arouses from demanding usability
problems introduced by increasing software complexity, functional requirements and
user experience demands over the past years.

Usability, as a key measure for the outcome of any user-centered design process,
is defined by Nielsen as a composition of learnability, efficiency of use, memorability,
errors, and subjective satisfaction [17]. A more formal and widely adopted standard
definition of usability is ISO 9241-11 (Guidance on usability) [9], stating that usability
is "the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use”.

A number of works exist that address and support the integration and improve-
ment of usability enhancing methods in the development cycle of software products.
Foundation for most of these, and standard to provide guidance in the design of usabil-
ity, is published in ISO 13407 'Human-Centred Design Processes for Interactive Sys-
tems’ [10]. Among the more prominent ones we find the often-cited approaches and
methods published by Nielsen [17], Beyer and Holtzblatt [4], Jokela [12], Mayhew [16],
or Vredenburg et al. [25].

The application of UCD techniques usually aims for the shift from a technology-
driven ’inside-out’ development approach to a user-driven ’outside-in’ design thinking
within the project, which is not limited to the mere design of user interfaces, but should
consider the whole user experience of the product, including training, maintenance, and
support. Early and constant user focus, a multi-disciplinary iterative design and steady
evaluation of prototyped design solutions are the basic and characteristic attributes
in reaching this goal. User involvement is a substantial part of UCD techniques and
is commonly realized through interview sessions, on-site observations, participatory
design, focus groups, or walkthroughs.

Prototyping is the central mechanism in UCD to gradually evaluate designs and
development progress. The prototypes evolve from simple pen-and-paper prototypes

Open Research Questions in SOA 3-7

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

User-Centered Design Usage-Centered Design
Focus on users: Focus on usage:
user experience, user satisfaction improved tools supporting task accomplishment
Driven by user input Driven by models
Substantial user involvement: Selective user involvement:
user studies, participatory design, exploratory modeling, model validation,
user feedback, user testing structured usability inspections
Descriptions of users, user characteristics Models of user relationships with system
Design by iterative prototyping Design by modeling
Varied, often informal or unspecified processes Systematic, fully specified process
Evolution through trial-and-error Derivation through engineering

Table 1: Differences between User-Centered Design and Usage-Centered Design
(from [6])

in early phases to functional prototypes deployed on real systems. This low-cost ap-
proach in the beginning of user exploration allows for a rapid verification of user re-
quirements and usability, following the maxim of fail early, fail often, fail cheaply.

3.2 Usage-Centered Design

Usage-Centered Design [8] is related to User-Centered Design in the sense that both
techniques aim to improve the usability and utility of interactive software products.
However, some significant differences exist in regard to the level of user involvement,
knowledge description, and engineering process. Usage-Centered Design puts em-
phasis on user tasks and activities and tries to deploy a specified development process
that guides in the user-validated implementation of those activities. Thereby, it heavily
depends on closely related models that are responsible to capture user relationships
with the system: a role model capturing salient characteristics of relationships between
users and a system, a task model representing the fine structure of work users need
to accomplish with a system, and an interface model representing the contents and
organization of the user interface needed to support the identified task [6]. This model-
driven process implies user involvement through early field investigations and usability
inspections, in which derived knowledge is directly captured in the models and refined
continously.

Usage-Centered Design aims to possess good integration and scalability capabil-
ities regarding traditional software development processes. However, it does it at the
expense of user involvement. Also, putting models in the center of process instead of
design artifacts, bears open question related to user participation and validation, as
end-users are usually not familiar with formal specifications and modeling techniques.

Table 1 captures the main differences between User-Centered Design and Usage-
Centered Design.

3.3 Interaction Modeling

The specification of relations between users and systems takes fundamental part in the
model-based development of user interfaces. Entities that form these relations usually
consist of roles, use cases, tasks, and scenarios. A prominent representation of use

3-8 Open Research Questions in SOA

4 COMPLEXITY IN ENTERPRISE APPLICATIONS

cases is defined by Jacobsen et al. [11] as "sequences of actions, including variant
sequences and error sequences, that a system, subsystem, or class can perform by
interacting with outside actors”. A modified and abstract form of these represent task
cases or essential use cases by Constantine [7] and model "the discrete intentions of
users playing roles in relation to a system, taking the form of an interrelated collection of
highly simplified narratives that are abstract, implementation independent, and devoid
of technological assumptions”.

Task models represent the precise workflow a user or role executes to fulfill an
identified task in a certain scenario. Most prominent in this area are ConcurTaskTrees
(CTT) by Paterno [21]. CTT models diferentiate between user tasks (only performed
by human actors), application tasks (completely executed by the software), interaction
tasks (performed by the user interacting with the system), and abstract tasks, which
are composed of several subtasks of previous kinds. For a detailed overview on task-
oriented approaches and models, refer to [21].

UsiXML ' (USer Interface eXtensible Markup Language) is a set of XML languages
(schemata) to define user interfaces of interactive applications. UsiXML places em-
phasis on device independence, platform independence, and modality independence
by partitioning interface characteristic into concept, abstract and concrete layers and
by defining transformations and relationships between those layers.

4 Complexity in Enterprise Applications

Like in many other engineering disciplines, the development of an artifact (a software
tool in this case) is bound to multiple rules, constraints and obligations imposed by
project external or internal factors. Such a patchwork of requirements and constraints
makes it such a challenging task to deliver a product as requested and within appointed
time and budget limits. Especially in the design and implementation process for sophis-
ticated enterprise applications like ERP systems we can identify aggravating, yet typical
factors for complexity, which are characteristic for this engineering domain.

4.1 Classifying Complexity

It is not the purpose of this paper to present another quantitative or qualitative ap-
proach to assess software complexity. A number of different approaches for measuring
and discussing software complexity has been analyzed for this purpose (e.g. [1], [13]).
Rather, it is to show that high feature coverage and functionality support leads to an
eminent increase of complexity in the back-end of interactive applications, which in turn
breeds problems in user interaction design and usability.

To give a definition of software complexity we refer to [2], in which complexity is
defined as a measure of the resources expended by a system while interacting with a
piece of software to perform a given task. In [5], the authors add that ”if the interacting
system is a computer, then complexity is defined by the execution time and storage

Thttp://www.usixml.org

Open Research Questions in SOA 3-9

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

required to perform the computation. If the interacting system is a programmer, then
complexity is defined by the difficulty of performing tasks such as coding, debugging,
testing, or modifying the software”. We extend this definition by stating that if the inter-
acting system is an end-user, then complexity is defined by the difficulty of performing
a desired business task. End-users are confronted with application complexity on user
interface level. This ’front-end complexity’ relates contrary to a measure of user inter-
face quality e.g. in terms of usability, ease of use, and learnability.

On back-end level, we can distinguish between intra-complexity, which denotes
complexity within a single software module or component, and inter-complexity, which
is caused by module or component inter-dependencies. We claim (and show) that a
high level of back-end complexity tends to cause an immoderate level of user interface
complexity on front-end side if not addressed carefully with appropriate methods in the
development process.

The growth of structural complexity in software system does not surprise, since the
increase in implemented functionality inescapably leads to an increase of code com-
plexity and functional interdependencies. Software functionality has to be made acces-
sible to the user or other software procedures. It requires a set of input/configuration
parameters and produces a set of output values. From there we can deduce an in-
herent progression of user interface complexity: the more functionality is covered by
an application, the more functions, input and output parameters have to be accessi-
ble for the users, including input data, results, error messages, warnings, etc. This
rise in functional demands and software complexity not only complicates the develop-
ment process in a whole but also renders the fulfillment of non-functional requirements
like maintainability, extensibility, security and dependability more difficult. This again
adds to the overall complexity of the product and affects the usability of applications.
Nevertheless, in order to survive in a highly competitive market, software vendors are
impelled to equip their applications with more and more functionality as demanded by
customers or provided by competitors, leaving them no choice other than pushing the
complexity of their products.

4.1.1 Functional Complexity

The functional complexity of a software product is determined by the size and extent of
the problem domain that shall be addressed by the software. This includes the number
and complexity of supported functions and business processes as well as the diversity
of the targeted audience. It quickly becomes obvious that large enterprise software
projects like ERP development have to deal with an enormous problem domain. Busi-
ness processes steadily gain in complexity due to a massive increase of relevant and
available business data, the number of involved participants, ongoing integration of
multi-party processes, the inconstancy of business models, and the growing demand
for decision support (real-time enterprise), ubiquitous systems, and anytime/anywhere
computing. In this highly unsteady and distributed environment it is extremely chal-
lenging to provide a functional software framework that can be utilized and customized
to fit the needs of a wide range of globally distributed potential customers of different
size, organizational structure, coming from diverse industry branches. This not only

3-10 Open Research Questions in SOA

4 COMPLEXITY IN ENTERPRISE APPLICATIONS

results in an extensive set of different user types, but also leads to a complex mesh of
country and industry specific regulations and laws (e.g. tax, accounting and reporting
directives, Sarbanes-Oxley Act) that have to be observed and supported by the tool.

This heterogeneity of the customer landscape is inevitably augmenting the inter-
nal functional complexity of a software component as it exposes a number of spe-
cial cases, singular requirements, and separate treatments for each targeted customer
group. Additionally, the consolidation and automation of business processes effects
an increase in inter-component complexity. Processes more and more depend on and
affect external data and span multiple business components. For example, an ERP
sales component for order management might bear relations to stock and production
components for automated availability checks and to a finance component for booking
and accounting purposes.

4.1.2 Non-functional Complexity

The IT landscape of a business organization is rarely built up from scratch. More often,
several parts of legacy systems are replaced by new implementations or single layers
of multi-tier architectures are redesigned or extended. The development team who is
(re-)engineering parts of a software system has to ensure compatibility with existing
and collaborating hard- and software resources. This landscape integration imposes
several constraints on the development process and often complicates the technical
realization. An existing code and data base, heterogeneous legacy systems or prede-
termined Ul technologies often demand for software adapters and workarounds.

Due to its economical value and critical importance for business organizations, en-
terprise software has to comply with stipulated quality requirements. Ranked differ-
ently from project to project, fundamental exit criteria usually comprise nun-functional
requirements like robustness, security, performance, maintainability, extensibility, or, of-
ten of minor importance, usability. Fulfilling those requirements can add to the degree
of complexity as it postulates careful architecture design and technology consideration
(e.g. incorporation of monitoring techniques, security tests and so on). Nevertheless,
it is common knowledge that in order to compete in the steady race to market, projects
are regularly forced to reduce time and costs required for designing the software in
regard to those requirements. Such a proceeding may not only compromise the overall
quality of the software as it increases the chance of creating flawed code, but again is
likely to add complexity to the final product e.g. by reducing the separation of concerns
on the back-end and disregarding interaction design on front-end side.

This effect is often aggravated by large heterogeneous and possibly distributed de-
velopment teams, different mindsets, organizational hierarchies, decision policies, as
well as strict time-to-market and budget obligations.

As a result of strict and comprehensive non-functional requirements in combination
with an exceptionally complex problem domain, standard enterprise solutions like ERP
and workflow systems consist of a noteworthy complexity level which requires special
and careful consideration during the design and engineering process.

Open Research Questions in SOA 3-11

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

4.2 Case Study: R/3 Sales & Distribution

In order to be able to analyze and evaluate ways and methods to improve end-user ex-
perience in large-scale enterprise applications, it is important to grasp and understand
the inherent nature of complexity in such systems. Thus, the objective of this study is
to exemplify enterprise application complexity by an in-depth analysis of sales order
management and order variations in SAP® R/3® Sales & Distribution (SD) module.
We investigate the origin and implementation of different customer requirements and
deduce therefrom the need for the copious number of supported business functionality
and parameters found in the software. By this means, this work helps in better com-
prehending and assessing reasons for certain design decisions and to evaluate and
identify potential for design optimizations. Taking an example from within the area of
standard ERP software is founded in the high level of expected complexity and well-
known usability issues in those products.

4.2.1 Overview

R/3 as a fully-fledged and well-established standard ERP system was SAP’s integrated
business solution for large-scale enterprises until the release of its successor mySAP
ERP. Still very commonly in use, R/3 features a holistic and integrated approach for a
wide range of different business tasks. R/3s extensive range of functionality is delivered
by a set of collaborating, but basically independent modules, of which each one is
responsible for a delimited business area. Besides the Sales & Distribution module,
which has been chosen for closer investigation in this chapter, we find among the most
widely used modules e.g. Financial Accounting (FIl), Materials Management (MM),
Controlling (CO), Production Planning (PP) and Human Resources (HR).

By leveraging functionality and by sharing information in between modules, this ap-
proach provides a high level of business integrity. Here, business integrity is itself com-
posed of data integrity and process integrity [22]. Data integrity constitutes the shared
use of enterprise master data by multiple functions from different modules. Process
integrity originates from function calls and data transfer between modules, allowing for
a seamless and automated process flow across the enterprise. Taking an order-to-
cash scenario as an example, an integrated process might affect functionality and data
related to order management, material master, transport & delivery, and financial ac-
counting. Despite the modularization of the software architecture, data and process
integrity again supports increased system complexity by creating inter-component de-
pendencies.

R/3 reaches a high level of variability and flexibility by allowing customers to se-
lect from available modules only those which are required in their specific business
scenario and to customize the software to their needs. The system grows with the en-
terprise as further modules and resources can be installed and configured as needed.
With the provision of highly configurable and interoperable business functionality, R/3
tries to fully cover the problem domain of enterprise applications. Such a great de-
gree of customizability and adaptability of course, has its downsides. The total cost of
ownership and deployment time is considerably increased by high installation efforts,

3-12 Open Research Questions in SOA

4 COMPLEXITY IN ENTERPRISE APPLICATIONS

maintenance and configuration overhead.

4.2.2 Customer Landscape

Due to its flexible and generic nature, R/3 is not restricted to be applied by customers
in a limited area of certain industries and branches, but provides solutions for a wide
range of business cases. Nevertheless, a classification of industries addressed by R/3
makes sense, as single modules and functions can be adopted based on best practices
and special requirements in those areas. R/3 industries are divided into 28 top-level
sectors (Fig. 1) which again can be subdivided into more fine-grained branches.

Aerospace & Defense Automotive
Banking - - Chemicals
Components Supplier - - Consumer Products
Defense & Security - - Engineering, Constructions & Operations
Financial Services -) - Healthcare
High Tech — - Higher Education & Research
Industrial Machinery & Components —— - —— Insurance
Y LifepScience - : Logistics Service Providers
Media - - Mill Products
Mining - \ - Oil & Gas
Postal Services - - Professional Services
Public Sector - - Railways
Retail - - Telecommunications
Utilities Wholesale Distribution

Figure 1: Industries addressed by R/3

Anyhow, this classification does not imply that customers belonging to one and the
same industry branch possess the same business requirements and processes. Differ-
ences in company size, organizational structure, produced goods or services require
special consideration and precise configuration. Furthermore, given the fact that the
targeted market for R/3 is to a large extent globally distributed and under influence of di-
verse conditions, laws and regulations, the heterogeneity of the customer landscape is
pushed to the extreme. Capturing this whole diversity of functional and non-functional
customer requirements with only one product is the challenge R/3 is bound to. Contin-
uing the principle of modularization, R/3 addresses this challenge by supporting busi-
ness’ best practices in core modules and implementing specific and isolated branch
functionality in Industry Specific (IS) modules operating on top.

4.2.3 Process Automation

It is, with no doubt, the automatic execution and combination of available business
process functionality and tasks which leverages the full power of ERP systems. By
enabling a high level of process integrity, an accurately customized R/3 system is sig-
nificantly helping the user in its task execution and speeding up processes by doing
background calculations based on configuration and master data. Typical sales pro-
cesses which are commonly automated and executed when required (triggered by user,
triggered by data becoming available) are availability checks for ordered items, price
determination based on customer data, determination of transport and delivery details

Open Research Questions in SOA 3-13

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

(fees, routes, etc), or accounting related processes (see fig. 2 for further examples).
It is obvious that with a rise in process integrity and automation the level of interde-
pendencies between system modules increases alongside. This becomes especially
apparent when taking availability checks as an example. Here, data located in diverse
sources has to be considered such as material master, storage and warehouse infor-
mation, production plans or procurement orders.

Order Management & Automation

Availability Check Price Determination Transport & Delivery Product Presentation & Accounting & Controlling
Configuration
Material Master Conditions Route Calculation Booking

Storage Management Customer Master Delivery Points Material Hirarchies Account determination
Production Pipeline Customer History Plants Configuration Constraints Revenue Recognition

SCM Creditworthiness Availability Profitability analysis
Product Recommendation Cash Forecast

Assisted Sales Credit Check

| | | | |

’ System Configuration ‘

Figure 2: Process automation in SD

This extensive potential for process support, automation, and system adaptability
ultimately contributes to the overall economical utility of the software and to the pro-
ductivity of its users. Nevertheless, it has to be pointed out that the gain in system
complexity is serious. Resources (time, money, IT infrastructure) and expert knowl-
edge is necessary to carry out the required system configuration, customization and
maintenance. Anyhow, these costs are often justifiably considering the resulting ad-
vantages.

4.2.4 Distribution channels and Order variants

Customer orders are handled differently to smaller or greater extent in each sales or-
ganization. This not only depends on who is ordering what, but is also affected by the
degree of process automation and controlled by the system configuration of the R/3
installation. For each order scenario in a sales organization the system provides an
order variant (order type) which is specifically configured to initialize and control the
ordering process according to the requirements of the organizational unit. Most typical
and common scenarios include orders for items that are delivered directly from stock
(sales-from-stock), which are produced specifically for that order (make-to-order), or
are configured specifically to the customer’s own desire (configure-to-order). See fig-
ure 3 for a small selection of order scenarios found in SD installations.

Another important factor determining the ordering process is the customer who is
placing the order. Whether the order (respectively the delivery address) is domestic,
international or the order is placed internally by another company division, can have
effect on price, tax and delivery calculations. Diverse information from customer master

3-14 Open Research Questions in SOA

4 COMPLEXITY IN ENTERPRISE APPLICATIONS

Sales-from-stock 3rd party order processing

Consignment Orders
Promotion Order
Indirect Sales Order

; Rush Order
Order chnarlos Spare Parts Order
(Selection) Repair Order

Delivery Order
Factory Sales
Trade Fair Order

Make-to-order

Configure-to-order

Engineer-to-order

Figure 3: Typical SD order scenarios

data is used to determine pricing conditions, discounts, credit worthiness, etc., based
on process configuration (automation) and order scenario specification.

Resulting from the diversity of the customer landscape, the R/3 SD module also
has to cope with an equally complex diversity in materials that can be ordered and
managed. This leads to an extremely bloated set of parameters that are attached to an
order and to order items. An order can be divided into header data, order data and a
list of items ordered. While data in header and order fields is relatively limited to hold-
ing information such as ordering party, payment and delivery details, the parameters
available to each ordered item are much more diverse than the minimal set of material
ID and order quantity.

We identified more than 70 parameters related to order items in the Sales & Dis-
tribution module. Each of these parameters had right to exist as it was required in at
least one specific order scenario or used by a possibly very limited number of cus-
tomers. Most of the parameters are only useful for certain industries and product types
(e.g. Dangerous Goods Profile, Batch ID, Product Hierarchy, Bill of Material). Others
are relevant only if the order management process is integrated and configured to au-
tomatically connect to business functions such as booking and account determination
(e.g. Account Assignment Group) or supply chain management (e.g. Available-to-
Promise Quantity).

4.3 Dealing with Complexity

A standard business solution like R/3, targeting a huge variety of customers and busi-
ness tasks, has to provide an extensive set of functionality in order to proof applicability
in various numbers of different scenarios. Providing the full functionality to all users
and scenarios would result in a bulked and unusable user interface which is too hard to
learn and to understand. Consequently, the massive complexity in the back-end has to
be addressed in way which allows the software to be adjusted and fine-tuned to meet
the specific requirements and demands of its customers and end-users. Customiza-
tion and system configuration are appropriate approaches to make a product flexible,
universally applicable and at the same time aligned to specific customer requirements.

Still, striving for simplicity in user interfaces has to be an important part in the pro-

Open Research Questions in SOA 3-15

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

Item Volume Net Price
Net Weight Net Value
Weight Unit Order Quantity
Gross Weight Price Group
Underdelivery Tolerance Price List
Overdelivery Tolerance Currency
Max. Number of Partial Deliveries Billing Relevance
Partial Delivery Spec Percentage of Payment Guarantee
Delivery Block Status Form of Payment Guarantee
Schedule Line Date of Delivery Billing Block Status
Delivery Priority Condition Amount or Percentage
Shipping Point/Receiving Point Pricing Reference Material
Delivery Route Material Pricing Group ID
Fixed Value Date Condition Groups
Additional Value Dates Billing Block
Component Quantity and Code Terms of Payment
Account Assignment Group Exchange Rate
Services Rendered Date Invoicing Dates
Department Pricing Date
Overhead Key Billing Date

Costing Sheet Item ID

Results Analysis Key Item Parameters Material ID
Requested Material (Selection) Finished Product

Incoterms Semi-finished product
Volume Unit Service
Purchase Order Item Configurable Material

Purchase Order Item No. Perishables

Purchase Order No.
Purchase Order Type Material Group
Purchase Order Date

Raw Material
Operating Supplies
Non-Stock Material
Trading Goods

Customer Group ID Empties
Profit Center Maintenance Assembly
Order Number Coupons
Sales District Samples
Work Breakdown Structure Element etc.
Division Description
Sales Unit Customer Material Number
Product Hierarchy Item Category
BOM Explosion Number Dangerous Goods Profile
Customer Engineering Change Status Higher-Level Item ID
Customer Purchase Order Number External Date Type
Available Additionals Plant ID
Available-to-Promise Quantity Batch Number
Reason for Rejection Condition Scale Quantity

Figure 4: SD order item parameters (selection)

cess of designing user interaction. Otherwise, the large complexity of the software
would inevitably lead to unsupportive user interfaces and diminish usability and end-
user experience. Customizability alone is not sufficient to fully target the needs of
individual end-users, as the possibilities might proof to be too restrictive or can not be
influenced by end-users.

4.3.1 User-centered Interaction Design and Redesign

Addressing this complexity is always a process of finding compromises and trade-offs
between contradicting requirements. To create the perfect application with minimal in-
vestment in time and budget is not possible, as there are always differences between
what is desired and what can be realized under given constraints. To find the right bal-
ance and optimal solution for customer and end-users requires a good understanding
of how the software is going to be used later on. Therefore, design decisions must not
be solely based on functional requirements but need to embrace end-user knowledge
and a thorough task analysis.

Several methods and patterns are known in user interaction design to help ad-
dressing software complexity and information overload, such as progressive disclosure
(information hiding) or guided activities. User involvement is not only important when
deciding on what methods to apply but also essential when asking how they should be
applied best. For example, progressive disclosure as a method to reduce information

3-16 Open Research Questions in SOA

5 DESIGNING SERVICE-BASED ENTERPRISE APPLICATIONS

displayed on the screen and to show this information when requested helps inexpe-
rienced users to work with the application but reduces efficiency of expert users by
increasing the amount of interaction (e.g. mouse clicks) required to acquire certain
information.

4.3.2 Reduction by Focusing

An alternative approach to reducing complexity of enterprise applications is to focus
on a restricted customer landscape. To deviate from the principle of supporting a max-
imum number of business scenarios and different customer requirements is a design
decision with significant impact. To focus means to reduce the scope of the software
and to explicitly target a well-defined but smaller market. This may imply to concentrate
on standard solutions specifically designed to meet the requirements of one single in-
dustry branch or companies in specific countries and specific size. Obviously, the total
number of business processes and special requirements that have to be considered
and addressed by the software will reduce accordingly to the level of focus, ultimately
reducing complexity and leading to product simplification.

Further simplification can be achieved by eliminating fields and parameters which
are used very infrequently. But, decisions on what requirements have to be supported
and what functionality can be eluded have to be made carefully, only after having re-
searched and identified the demands that are specific and essential for the focused
market. End-user research is an important and required practice to appropriately ad-
dress the targeted market and to provide a solution which is generally applicable and
useful in its defined domain.

5 Designing Service-based Enterprise Applications

As shown in the previous chapter, system complexity is a predominant reason for
usability problems and low end-user acceptance, causing complex and hard to un-
derstand user interfaces and informational overload. It is obvious that a develop-
ment process solely driven by technology and business requirements can not address
these problems sufficiently. The approach under investigation is essentially focusing
on user requirements and task exploration in the early design phase that is conducted
and arranged with all participating stakeholders, including end-users, usability experts,
technical experts, and business analysts. It combines best-of-breed aspects of User-
Centered Design, Usage-Centered Design as well as interaction design techniques,
and integrates those in a service-oriented software development context. Knowledge
acquired in user studies and exploration phases is gradually transfered and formalized
into a set of models that support in managing findings, developing prototypes for eval-
uation with end-users, team communication, and the final transfer of a design master
into development cycles.

This model-based development methodology comprises existing techniques to for-
malize user roles, use cases, workflows, and scenarios, adapting and enhancing them

Open Research Questions in SOA 3-17

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

accordingly to specific needs where required. It also introduces a User-Service Inter-
action Model as a new layer of abstraction to connect and map task knowledge and
findings acquired in UCD-driven analysis phases to data objects and services used in
the application. The model defines a temporal relationship between information and
functional entities that are made available to the user, specifying which service func-
tionality, parameters, and results are utilized at which position in the workflow. The
next step towards Ul concretion is a technology independent description of possibly
multi-modal user interfaces which considers context and scenario of the tasks. The
user-service interaction model gives valuable input for this high-level Ul specification,
as screens, windows and interactive elements are defined and partitioned accordingly.

Thought-out tool support and integration in the design process is essential to ren-
der the emerging modeling efforts marginal. The work of designers and the creativity
aspect of user-centered design must not be controlled and influenced by this more for-
mal approach, thus the modeling has to be as transparent and non-intrusive as much
as possible. A collaborative work environment for collecting and managing knowledge
and integration into an IDE can help to provide model visualization and warnings, e.g.
when model discrepancies are detected. It can also support in the rapid development
of prototypes for different roles and scenarios, as the knowledge retrieved from the
models can be leveraged to automatically generate basic Ul skeletons. Early and in-
formal input techniques like pen-based digital sketching are promising approaches to
support in the user-centered design process, simultaneously capturing knowledge for
later refinement.

The underlying model stack can help in the development phase to truly identify
and communicate end-users needs across the design team and to evaluate the cor-
rect translation into a service-based solution. Communication support is essential in a
multi-disciplinary team, as design decisions have to made in consultation with business
experts and code developers. The constant correlation and focus on user tasks and
workflows results in a software product that is consistent with the conceptual model of
the end-user, emphasizing learnability and utility.

While this approach primarily provides decision support and guidance during design
time, it also has significant benefits in the later life-cycle of the application. Information
on service utilization and call statistics can be accumulated and extracted from the
models, either by task, roles, or scenario. Semantically enriched models could also
support in semi-automatic service discovery and selection.

Thus, this approach appears promising to address the outlined problems in devel-
oping service-based enterprise applications and to support multi-disciplinary teams to
design a solution that fulfills manifold requirements arousing from the business, tech-
nical, and user domain. Rapid development of prototypes, consideration of interaction
patterns, a common base for communicating and managing design knowledge lead to
a more effective development process, while the formal representation of user-service
interactions allows faster customization and adaptation of high-quality user interfaces.
Combined, we are able to create interactive service-based software solutions that are
usable and helpful in the execution of working tasks and can react flexible to changing
business needs: the next step to deliver software that fulfills the SOA aspirations.

3-18 Open Research Questions in SOA

REFERENCES

6 Next Steps

Having identified and justified the need to adjust modeling and design techniques in the
development process of service-based enterprise applications, future research work
will comprise the following next steps.

A set of appropriate models needs to be defined alongside with interrelationships
between them, which together meet the envisioned requirements for a design-driven,
end-user- and task-oriented development approach. This includes the evaluation of
applicability for existing models within this context and the definition and integration
of a model layer for specifying user-service interactions. Further research will also
address interaction patterns for user tasks and workflows that include communication
activities with web services.

Next, these concepts will be related and embedded into a multi-disciplinary develop-
ment environment to give a holistic perspective on the design of service-based software
solutions. A prototypical implementation providing integrated tool-support in the mod-
elling process for user-service interactions is planned to show the usefulness of such
an approach and to evaluate it together with designers and developers in real-world
scenarios.

References

[1] Mohsen AlSharif, Walter P. Bond, and Turky Al-Otaiby. Assessing the complexity of
software architecture. In ACM-SE 42: Proceedings of the 42nd annual Southeast
regional conference, pages 98—103, New York, NY, USA, 2004. ACM Press.

[2] V.R. Basili. Qualitative software complexity models: A summary. Los Alamitos,
Calif., 1980. IEEE Computer Society Press.

[3] Michel Beaudouin-Lafon. Designing interaction, not interfaces. In AVI '04: Pro-
ceedings of the working conference on Advanced visual interfaces, pages 1522,
New York, NY, USA, 2004. ACM Press.

[4] Hugh Beyer and Karen Holtzblatt. Contextual design: defining customer-centered
systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[5] Presseinformation BITKOM. Technologische Modernisierung. http://www.
bitkom.org/de/presse/8477_41261.aspx, September 2006.

[6] Larry Constantine and Helmut Windl. Usage-Centered Design: Scalability and
Integration with Software Engineering. In C. Stephanidis and J. Jacko, editors,
Human-Computer Interaction: Theory and Practice. Proceedings of the 10th In-
ternational Conference on Human-Computer Interaction, Mahwah, New Jersey,
2003. Lawrence Erlbaum Associates.

[7] Larry L. Constantine. Essential modeling: use cases for user interfaces. interac-
tions, 2(2):34—46, 1995.

Open Research Questions in SOA 3-19

A Task-oriented Approach to User-centered Design of Service-based Enterprise
Applications

[8] Larry L. Constantine and Lucy A.D. Lockwood. Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design. Addison-Wesley
Professional, 1999.

[9] ISO/IEC. 9241-11 Ergonomic requirements for office work with visual display ter-
minals (vdt) — part 11: Guidance on usability, 1998.

[10] ISO/IEC. 13407 Human-Centred Design Processes for Interactive Systems, 1999.

[11] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software De-
velopment Process. Addison-Wesley Professional, 1999.

[12] Timo Jokela. Making user-centred design common sense: striving for an unam-
biguous and communicative UCD process model. In NordiCHI ‘02: Proceedings
of the second Nordic conference on Human-computer interaction, pages 19-26,
New York, NY, USA, 2002. ACM Press.

[13] Joseph P. Kearney, Robert L. Sedimeyer, William B. Thompson, Michael A. Gray,
and Michael A. Adler. Software complexity measurement. Commun. ACM,
29(11):1044-1050, 1986.

[14] Dirk Krafzig, Karl Blanke, and Dirk Slama. Enterprise SOA. Service Oriented
Architecture Best Practices. Prentice Hall, 2004.

[15] Ji-Ye Mao, Karel Vredenburg, Paul W. Smith, and Tom Carey. The state of user-
centered design practice. Commun. ACM, 48(3):105-109, 2005.

[16] Deborah J. Mayhew. The usability engineering lifecycle: a practitioner’s handbook
for user interface design. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1999.

[17] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1995.

[18] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders
Publishing, Thousand Oaks, CA, USA, 1999.

[19] Donald Norman and Stephen Draper, editors. User Centered System Design:
New Perspectives on Human-Computer Interaction. Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1986.

[20] Donald A. Norman. Human-centered design considered harmful. ACM interac-
tions, 12(4):14-19, 2005.

[21] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications.
Springer, 2000.

[22] Susanne Patig. SAP® R/3® am Beispiel erklért. Peter Lang GmbH, Européischer
Verlag der Wissenschaften, Frankfurt a.M., 2003.

3-20 Open Research Questions in SOA

REFERENCES

[23] Marcel Seelig. Performance considerations on composite applications. 13th An-
nual IEEE International Symposium and Workshop on Engineering of Computer
Based Systems (ECBS’06), pages 445—-452, 2006.

[24] Giorgio Venturi and Jimmy Troost. Survey on the UCD integration in the industry.
In NordiCHI '04: Proceedings of the third Nordic conference on Human-computer
interaction, pages 449-452, New York, NY, USA, 2004. ACM Press.

[25] Karel Vredenburg, Scott Isensee, and Carol Righi. User-Centered Design: An
Integrated Approach. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[26] Carl Zetie. The Power Of Simplicity In Application Development. Forrester Re-
search, Inc., December 2005.

[27] Carl Zetie and Liz Barnett. Why enterprise application development is so hard -
and how it must get easier. Forrester Research, Inc., August 2004.

Open Research Questions in SOA 3-21

A Framework for Adaptive Transport in
Service-Oriented Systems based on
Performance Prediction

Flavius Copaciu
flavius.copaciu@hpi.uni-potsdam.de

Services are the newcomer in corporate networks and on the Internet, competing
for resources alongside classical applications. While plenty of research has been done
on SOA, most of the work has been concentrated at application level, the communi-
cation stack receiving less attention. This work tries to fill in the missing parts of the
picture, providing an overview of the protocols used in todays SOAs and exploring
some new possibilities. For doing performance modeling, evaluation and prediction of
the protocol stacks and its components FMC-QE, is the proposed methodology. As a
way to improve services, ATrA - an adaptive transport architecture is proposed. ATrA
enables service consumers to dynamically switch between different transport stacks
and select certain protocol options, according to a set of server and client side data.
ATrA has a reasoning engine that makes use of the available data gathered from the
client and server in order to dynamically select a transport stack that is considered to
be optimal for the given usage case. The evaluation of Web Services invocation over
UMTS is presented as a case study, where we consider that such quantitative evalua-
tion is appropriate and an adaptive transport stack could improve the performance of
web services.

1 Introduction

Service-oriented systems, implemented usually as web services and build using SOAP
or REST, have received a lot of attention lately from both the industry and academic
community. Key industry players such as IBM, SAP, Microsoft, Sun and others have po-
sitioned themselves strongly as front runners in the field of service-oriented computing.
But with every company’s marketing teams avidly looking for the new buzzwords, that
will enable one to set himself aside from the IT crowd and hopefully gain a competitive
advantage out of it, one has to wonder to himself what is hidden behind such concept.
While SOA is clearly not the universal solution to all IT problems, when companies like
SAP develop and build applications based on thousand of web services, when Google,
Amazon or eBay enable access to their own business functionality over web services,
it becomes obvious that web services are here to stay.

There are many definitions of the term services and web services, the one definition
that has the highest relevance in our study of the transport infrastructure for web ser-

Open Research Questions in SOA 4-1

A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

vices is: services are software entities that are remotely accessible using XML based
messages [29]. Most of the web services also have a WSDL description, but adding
this requirement in the definition would disqualify the REST style web services. It is
also important to notice that by this definition, services are independent of the trans-
port infrastructure.

Communication systems, together with XML are one of the key components that
enable service-oriented computing. Services, the fundamental building blocks of SOA,
have to be made available over the network so that remote clients will be able to access
them in order to consume them. A ’perfect network’ is assumed in many cases when
modeling, analyzing or deploying web services and this usually leads to difficulties
and unwanted or unexpected behaviors of the whole system. Most of the fallacies of
distributed computing still apply to today’s networks and special care must be taken
in order to avoid them. Usually this means choosing the protocol stack that offers the
necessary functionality to counter them.

In many cases the same functionality can be achieved at different levels in the pro-
tocol stack, each option having its own advantages and disadvantages (speed, pro-
cessing or memory requirements, load on the service provider, etc). The typical stack
for web services makes use of the SOAP binding over HTTP and by this is taking away
choices from the developer while providing most of the times a suboptimal solution.
In many cases, the simplicity of HTTP simply outweighs the complexity of introducing
an additional transport layer but this is not always the case. As a solution to the per-
formance penalties, alternative bindings have been developed. At the same time, the
supporting frameworks for web services have also evolved and now most of them offer
the possibility to make web services available under multiple transport bindings.

However, this has not solved the above mentioned problem. It has simply added
the task of determining the best binding to the application developer and generated
new questions: is the binding still optimal for different client or server scenarios, what
happens when using alternative service providers, etc. We believe that the programmer
should not have to be concerned with the selection of one specific protocol stack for
the service-oriented application. The supporting framework should perform this task,
based on multiple data sources and including a usage profile that might be provided by
the developer. The chosen protocol stack should be functional (both the web service
consumer and provider should support it), adaptive (should change as response to new
information like new protocol stacks available, changing environment conditions) and
optimal (should be the best one taking into account existing information).

Achieving such desiderata is possible in our opinion and this work focuses on the
first steps on this long road.

Section 2 gives an overview of the communication stack used in Service-Oriented
Architectures and presents the most important communication protocols used by SOAs.
For each of the protocols, the relevant state of the art is presented and a discussion in-
vestigates the protocols advantages and disadvantages in a SOA. Section 3 presents
our proposed approach for doing performance analysis and estimation on the com-
munication stack followed by section 4 where an architecture for adaptive transport in
SOA is presented. The architecture design along with the required modifications on the
service broker, provider and consumer are discussed. Section 5 presents the current

4-2 Open Research Questions in SOA

2 OVERVIEW OF THE SOA COMMUNICATION STACK

status of a case study, where we consider that such quantitative evaluation is appro-
priate and an adaptive transport stack could improve the performance of web services
over UMTS links. Lastly, section 6 gives an overview of the work and the conclusions
that have been reached.

2 Overview of the SOA Communication Stack

2.1 SOAP

SOAP [2] is a lightweight protocol that provides an XML based framework for message
exchange in a distributed environment [15] that has emerged as the standard protocol
used for web service communication. SOAP does not specify a transport protocol but
can make use of different available protocols for whom bindings have been defined.
HTTP is the most used transport protocol for SOAP, in part because it makes it easier
to interconnect systems.

The SOAP protocol is the center of a whole collection of W3C recommendations
concerning web services. Many of the recommendations are focused on improving
and providing additional features for SOAP. Some features, for example WS-Security,
duplicate functionality that can be provided by the transport bindings used for SOAP.
This opens the way to moving functionality to the SOAP level and might provide addi-
tional incentive for using lighter transport bindings.

SOAP based systems suffer two types of problems: on one side, the size of the
SOAP message is quite big relative to the data payload and processing the XML doc-
ument is a resource intensive task. The SOAP protocol and toolkits have been under
a lot of scrutiny and a number of research papers have investigated different aspects
of them. [15] is one of the most complete researches, investigating many aspect of a
SOAP system: generating HTTP headers (if HTTP is the preferred binding), gener-
ating and parsing the XML document, SOAP compression as well as threading and
scheduling issues in the web service container.

[28] presents a system where the SOAP payload is compressed and a solution that
allows servers to dynamically adapt to the clients requesting compressed responses
based on the current CPU utilization. The client is implemented on a handheld device
and experiments are performed over several networks: wireless LAN, Bluetooth and
an emulated GPRS network. The response time of the server as well as the number of
connections per second that it serves are investigated.

Another approach to the size problem presented by SOAP messages is to use an
alternate XML serialization, usually referred to as binary XML. There is strong oppo-
sition in the community to any changes that would make XML anything else but text,
but the advantages of such a change are fueling the efforts supporting it. Binary XML
encoding can also improve the parsing and querying time of XML documents. An ex-
tensive overview of binary XML encodings along with performance evaluations for a
set of XML processing tools like TurboXPath, Xalan and Xerces (both Java and C++
versions) are presented in [4]. The results show that binary XML encodings can be
parsed over 2 times faster then XML and that the choice of parser has strong influence

Open Research Questions in SOA 4-3

A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

on the performance of the whole system.

In conclusion we can say that SOAP offers many possibilities for implementing mes-
sage exchange and that research looking at solutions for the most evident problems is
well under way.

2.2 REST

While not a protocol, Representational State Transfer (REST) is a software architectural
style for distributed hypermedia systems like the World Wide Web. In his own words,
Roy Fielding, the person who designed REST, says: “Representational State Transfer
is intended to evoke an image of how a well-designed Web application behaves: a
network of web pages (a virtual state-machine), where the user progresses through an
application by selecting links (state transitions), resulting in the next page (representing
the next state of the application) being transferred to the user and rendered for their
use” [14].

REST makes use of resources or machine equivalents of noun, uniquely identified
by URLs. Resources are concepts that can have zero, one or multiple representations.
If no representation exists for a given resource it is considered that the resource does
not exist. The clients need to be able to understand the representation of the resource,
typically HTML, XML or another MIME defined type. The components of the network
can interact with the representations by using verbs. These representations can be
exchanged between components of the network using HTTP. The verbs defined by
HTTP are: GET, PUT, POST and DELETE.

Together with SOAP web services, REST style web services form the majority of
web service implementations available today. If we ignore the architectural principles
that make them different, when considering the transport infrastructure, we can make
several observations:

e most messages exchanged are in XML defined by a schema, but this is by no
means a mandatory condition

e interfaces are limited to HTTP. The usage of HTTP verbs makes it impossible to
consider alternative transport bindings.

REST style web services are a simple and effective way of implementing web ser-
vices. The only requirements are HTTP and XML processing technologies that are
widely available. The drawback is the mandatory use of HTTP which may be enough
for many cases but might prove insufficient in more complex situations.

2.3 HTTP

HTTP is the most popular binding for the SOAP protocol. HTTP performance has been
measured and modeled in a considerable number of research papers. When used as a
transport for web services, the following aspects regarding HTTP are relevant: header
building, compression, persistent connections and secure HTTP.

4-4 Open Research Questions in SOA

2 OVERVIEW OF THE SOA COMMUNICATION STACK

When compared with the TCP binding, the building of HTTP header and time re-
quired to send it seems to be the only difference. While the data overhead influence
can be decreased by using a larger message size, the penalty imposed by the need
to build the headers stays. HTTP 1.0 requires that the size of the payload (the SOAP
message) be specified in the header. This means that the header can only be created
after creating the SOAP message. After the header has been created, the two can be
concatenated or sent via two different socket calls. HTTP 1.1 addresses this problem
by providing support for chunked encoding of messages and requiring chunk to be pro-
ceeded by its own size. Both the HTTP1.0 as well as HTTP1.1 approaches present
performance concerns.

On the fly HTTP compression can be used in order to reduce the size of the SOAP
message to sizes comparable to the size of the original binary data. However HTTP
gzip compression is computationally expensive and it may exceed the time required to
actually send the uncompress data over the network [15]. For small devices as well as
busy servers these processing requirements as well as the memory requirements have
to be taken into account. The research done by [20] shows that gzip manages to com-
press the data by approximatively 40% for the cases considered. As outlined in [19], for
small SOAP messages the generic compression mechanisms do not perform very well.
However, if reducing as much as possible the amount of data sent over the network is
desired (for example due to high data trensmission costs), HTTP compression might
prove as a viable alternative that does not pose the incompatibility threat of alternative
methods, like binary XML.

The use of HTTP 1.1 persistent connections is another possible way of improving
web service performance by eliminating the overhead of TCP connection establish-
ment. This might only prove useful if a service or services hosted by the same web
container are invoked multiple times. When using persistent connections the server
has to keep the connections open for a longer period of time and this might lead to
security problems.

When the data exchange between the web service consumer and provider needs to
be encrypted, HTTPS is a good option. The web service frameworks offering the HTTP
binding usually implement HTTPS as well. While being very easy to enable encryption,
the performance hit on the system has to be taken into account and the decision to use
encryptions needs to be well assessed.

24 SMTP

Another SOAP binding often implemented by SOAP frameworks is the SMTP binding
[24]. The SMTP binding permits the transport of SOAP messages as body of the SMTP
message or as attachments. This binding is used mostly for asynchronous operations
and is designed to make use of the existing emailing infrastructure. An interesting
option when using the SMTP binding is the possibility to use existing standards and
applications (S/MIME or the PGP based applications) in order to provide encryption or
security.

Open Research Questions in SOA 4-5

A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

25 TCP

The SOAP over HTTP binding imposes additional burdens regarding the transport of
the SOAP messages, generating and parsing HTTP messages requires processing
resources and the HTTP header increases the amount of data to be sent over the
network. The SOAP binding only utilizes a small part of the HTTP capabilities while
taking the full burden of the protocol. As specified in [2], the most important character-
istic of HTTP that the binding makes use of is the correlation of request and response
messages.

While not being an official SOAP binding, SOAP over TCP is already provided as
an alternative binding by some providers, ex. Apache Axis' and Microsoft WSE?2.
SOAP over TCP implementations require less memory and processing power, by-
passes HTTP or other protocols (usually implemented as user space applications) and
reduces the overall overhead of the communication. The disadvantages are also evi-
dent; the TCP functionality is reduced compared to the offering of more sophisticated
protocols. All the additional properties that the communication needs (for example au-
thentication, security, compression) have to be implemented directly at the SOAP level.
While this might still be a problem there is plenty of work going on that address these
aspects.

[23] presents results comparing SOAP over TCP binding with SOAP over HTTP and
SOAP over UDP. Their results show that transmission overhead decreases for simpler
protocols and that it is most relevant for small sized request and response messages.
The increase of size due to the HTTP headers is not significant, but the effects become
more visible in WLAN environments. The recommendation is to use TCP when reliable
data transfers are necessary but no additional features (like secure transfers, where
HTTPS might be a better match) are required.

2.6 UDP

In oder to deal with the poor performance of the HTTP and TCP bindings under specific

conditions, companies like Microsoft, BEA Systems and others have proposed a SOAP

over UDP binding [17]. This binding has some advantages over bindings that use

TCP: it does not require the establishment of a connection, the resource requirements

are lower then on the case of TCP based bindings and by supporting multicast new

opportunities for developing push based or publish/subscribe web services appear.
This binding also has some disadvantages:

e the SOAP message can not be bigger then 65536 bytes. This is the maximum
payload that a UDP datagram can carry and the SOAP message must be small
enough to fit as the payload of a UDP datagram.

e it lacks reliable data transfer, due to the nature of UDP. If required by the applica-
tion a mechanism providing reliability has to be implemented in the application.

'http://ws.apache.org/axis2/
2http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx

4-6 Open Research Questions in SOA

3 QUANTITATIVE EVALUATION OF SOA COMMUNICATION INFRASTRUCTURE

This implementation effort may make SOAP bindings that provide better reliability
a better solution.

e no congestion control is used. This might negatively impact other applications
that share the network, especially if an aggressive retransmission system is used
or the application generates large data transfers.

The performance results of SOAP over UDP show clear advantages when com-
pared with SOAP over HTTP or TCP [23] but its drawbacks need to be taken into
account when evaluating such an option. This binding is suited for applications that
need fast but not reliable exchange of preferably small data payloads.

2.7 Other protocols

The presented protocols are not the only one that could be used by SOAP, some other
option are:

e BEEP [26] is a communication framework that offers generic, connection oriented,
asynchronous communications . It can be mapped onto other protocols, for ex-
ample TCP. BEEP also offers a SOAP binding [25].

e SCTP [27]is areliable protocol that has multiple advantages over TCP. Of interest
for a SOAP binding would be the message based nature of SCTP, the multi-
streaming as well as the multi-homing capabilities of the protocol.

e DCCP [22] is a new protocol that offers similar functionality and tries to improve
UDP. An advantage when compared to the SOAP over UDP binding would be the
possibility to use congestion control.

While all these protocols offer interesting options, the major impediment, preventing
their usage is the scarce availability of implementations and the compatibility problems
that would arise.

3 Quantitative Evaluation of SOA Communication In-
frastructure

FMC-QE (Fundamental Modeling Concepts - Quantitative Evaluation) is a new method
based on FMC [21] and used to understand the quantitative behavior of a system.
FMC-QE is part of ongoing work done within the Communication Systems department
presented in lecture notes and at the moment prepared for publication [32].

Traditional methods of quantitative evaluation, like queueing networks, stochastic
Petri nets or queuing Petri nets are all based on Markov chain representation of the
systems. The biggest challenge in all these techniques is to reduce the state spaces.
FMC-QE does not follow the state space based approach for quantitatively analyzing

Open Research Questions in SOA 4-7

A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

TPNs

a QNs Timed Petri
ueueing Nets

Networks

QPN
Queueing Petri
Nets

Closed Stochastic
Open ose PNs
QNs QNs

FMC-QE
k Product Q? networks / Nonproduct form networks

Figure 1: FMC-QE positioning [32]

the system, but it uses hierarchical modeling and fundamental laws. FMC-QE position-
ing in relation with other modeling techniques is illustrated in figure 1.

FMC-QE make use of two fundamental laws: Little’s Law and Forced Traffic Flow
Law. Little’s Law states that N - the average number of customers in a queueing system
is equal to A - the average arrival rate of customers to that system, times R - the average
time spent in that system [16]. Little’s Law is a "Black Box” law and it can be applied to
both aggregated and decomposed components.

The second fundamental law used by FMC-QE is the Forced Traffic Flow Law. This
law relates the external and internal arrival rates by means of the traffic flow coefficient
and is used as the basis for the concept of hierarchical modeling [18].

Ai,inte'rnal = Uy internal X Aemternal (2)

FMC-QE is based on the FMC’s 3-dimensional representation of system properties
via static, dynamic and value diagrams. One of the strength of FMC-QE is the hierarchi-
cal modeling, as a method to reduce the problem of state space explosion, presented
in figure 2 along with the clear distinction between the control and operational units in
servers, presented in figure 3.

cap = : :E

T

i
/7
multi token place multi token place
(operational token) (control token)

Figure 2: Hierarchical modeling - dynamic structure [32]

4-8 Open Research Questions in SOA

4 ATRA - ADAPTIVE TRANSPORT ARCHITECTURE

Service Request executed Service
SRgin operation Reguest SRy

incoming Service serve request SRq;
Reguest SRy

B

cap 1

single token place

server contral state n; O
JReady" (Y/N) server control state (operational token)
() single token place
(contral token)

outgoing Service
Response SRy

é operational

~~~~~~~ transition
Jimed”

JBiusy" (/M)

Figure 3: Separating control and operational units [31]

Although FMC-QE is still being under constant development, we consider that it
is a well suited method for modeling the communication stack used by web services.
Of special interest are the abstraction capabilities of FMC-QE and the aggregation of
lower layer modules via the FMC-QE Tableau.

4 ATrA - Adaptive Transport Architecture

One of the ways of improving service-oriented systems in general and web services in
particular is to try and make better use of the available communication infrastructure.
A possible way of doing this is by using an adaptive transport architecture that would
be able to adapt on the fly to specific network conditions as well as to the current
state of the service consumer and service provider. In this section we propose such an
architecture, describe the changes required in order to implement it and discuss several
scenarios where we expect that this architecture will offer a competitive advantage
when used, compared to existing systems.

4.1 Related work

Today’s web services should be considered to be transport agnostic but although the
web service architecture was developed with this transport independence in mind, most
of the web services do run over HTTP [29]. The current W3C Recommendation re-
garding SOAP based web services [2] states that SOAP messages may be exchanged
using a variety of ‘'underlying’ protocols, including other application layer protocols. The
SOAP HTTP binding is defined in more details in [2] while a second binding, the SOAP
mail binding (that make use of SMTP) is just briefly presented as an alternative option,
with details presented in [24].

One way of implementing the SOAP and WSDL recommendation, that specify dif-
ferent transport bindings and encodings, is through an architecture like PEPt [5]. PEPt
(presentation, encoding, protocol and transport) has been initially designed as a high
level architecture for implementing RPC systems but can be also used for systems

Open Research Questions in SOA 4-9



A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

based on web services. Presentation encompasses the data types and APls available
to the programmer. Encoding is the representation of those types on the wire. Protocol
frames the encoded data to denote the boundaries and intent of the message. Trans-
port moves the encoding and protocol from one location to another. The PEPt architec-
ture enables a single programming model to adaptively change encodings, protocols
and transports.

When using such an approach, one aspect of the RPC system may evolve without
disturbing the others. In other words, when an alternate encoding, protocol or transport
is desired there is no need to create another presentation block. Or, alternatively, a new
presentation block can reuse existing protocols, encoding and transports.

The PEPt architecture has been used in the Sun Microsystems implementation of
CORBA for Java™2 [1]. That same implementation has been used to prototype a
system that supports RMI-IIOP stubs and ties dynamically switching between [IOP and
SOAP/HTTP. The core RPC architecture can serve as the basis for understanding,
designing, implementing, maintaining and reusing such RPC systems [6].

A detailed presentation of PEPt architecture on the client and server side together
with a performance evaluation are done in [7] and [8]. For performance evaluation a
Java implementation of the PEPt architecture has been used for sending 20 instances
of a simple Java class while using four different EPTs: Doc-Literal/SOAP/HTTP, RMI-
[IOP, ASN.1 Binary XML Encoding/SOAP/HTTP and Java’s native RMI. The measure-
ments evaluated the time required for transmission as well as the size of the encoded
data for each EPT. The Doc-Literal EPT has the biggest size and it takes longer then
any other EPT to be transmitted. The two binary formats are smaller and take less time
for transmission, with the native RMI being the smallest and having the fastest trans-
mission times. The binary XML encoding performs well, comparable with the other
binary encodings. An extension of the architecture in order to provide high availability
for IOP and SOAP without requiring additional hardware, software nor alterations of
the clients is presented in [9].

PEPt enables the possibility to easily change between different combinations of
EPTs (encodings, presentation and transports). In this context the ’ease’ refers to the
amount of effort required to understand each EPT’s paradigm and programming model.
PEPt can be used in relation with SOA systems even thou the two are at different
abstraction levels.

SOA lies at a higher abstraction level and is more concerned about the proper
implementation of business logic in the system, orchestration and choreography of the
services. As mentioned before, SOA does not really specify the infrastructure that has
to be used for communication, the only strict requirement is for the data exchanges to
somehow be able to take place.

PEPtis located at a lower abstraction level and could be used by an SOA based sys-
tem as a very flexible and agile remoting infrastructure. In such an architecture PEPt
would be responsible for assuring the proper data exchange between the entities com-
posing the SOA. Providing this separation between the low level document exchange
and the high level business logic implementation gives SOA the possibility to integrate
with existing infrastructures (ex. CORBA) and services available via such infrastruc-
tures. Such a system could also be able to evolve and incorporate new encodings,

4-10 Open Research Questions in SOA



4 ATRA - ADAPTIVE TRANSPORT ARCHITECTURE

protocols and transport as these become available and accepted by the community. All
this would be possible without any disruption at the higher levels as long as the proper
abstraction of the data exchange is preserved.

The usage of PEPt enables a system to adaptively change between encodings,
protocols and transports. While this possibility exists, the programmer has to implement
all the logic required to detect if different EPT combinations are supported on both
ends of the communication system, to identify the moment when a change should be
performed and decide what other EPT should be used.

While the possibility to easily switch between different transports is a step in the
direction of achieving an adaptive transport infrastructure, such an infrastructure can
not be considered without a component capable of deciding what transport should be
used and when to switch between different transports.

In [13] and [12] the problem of selecting the best web service from several web ser-
vices offering the same functionality is approached. Selecting a web service provider
for the client is typically a task performed by the client’s designer, but their approach fo-
cuses on augmenting the clients in order to give them the possibility of dynamically de-
termining the optimal service provider for them. The clients are able to parse, analyze
and use their own context information as well as information collected by themselves
or other clients regarding the service providers.

o v . Service A
-~
[ -~
-
-
-
-
-
T
~ .
- - Service B
»
H_\\
S,
-
-
. s
Client ~
\""\
i
Service C

Figure 4: An illustration of the service selection problem

Their solution to the problem of selecting a service between a number of user-
specified, syntactically identical web services that provide the same service to the client
is to make use of the past experience that other clients have with these services. The
approach uses QoS forums where augmented clients share their own QoS measure-
ment regarding different web services. The properties taken into account are generic
enough to be applicable to any web service (availability, reliability and execution time)
but the system can be extended in a transparent way.

Two approaches have been used for service selection: a rule-based and a simple
Bayes reasoner. The rule based approach was used only on the set of data provided by
the QoS forum, while the second one also used client context information (processor
load, memory usage, number of running processes). Both approaches have been
successful, with the first one suffering an initial cost at client startup, while the second

Open Research Questions in SOA 4-11



A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

one being more flexible.

QoS

Forums

. ]

1
-
-
/
7_2

r S

Augmented

Client Service B

. Service A

Service C

Figure 5: Selecting the best web service through reasoning and the use of QoS Forums

Unlike the problem of web service selection, approached in [13] and [12], an adap-
tive transport architecture does not have to select between different web services. Such
a system will always use one specified web service but will have to decide between us-
ing different transport bindings in order to access it. The system could be extended to
select between different web service providers, between different transports that could
be used in order to access the services as well as taking into account other information,
leading to a system that would be completely self adaptive to the changing environment
in which such a system exists.

Another difference between the above mentioned system and the adaptive transport
architecture that we propose is the fact that ATrA also uses server side augmentation.
This has been rejected in [13] because of several reasons, the most important being
the fact that servers could try and present an artificially improved set of data to the
clients and so trick clients into selecting an inferior service. Due to this, the service
providers are treated as black boxes and no information is collected from them.

4.2 Architecture Design

In his most complex form, ATrA or ATrA supporting extensions should be deployed in
all three major points of the architecture: service broker, provider and consumer. If the
service description along with all the server side data required by ATrA is provided in
some other way to the service consumer, ATrA is only required at the consumer and
provider as illustrated in 6. As an extreme case, it might be possible to only deploy ATrA
at the service consumer, but in this case the capabilities of the system will be limited.
Another corner case is the one in which only the server implements ATrA. If that is the
case, the server will receive requests using only typical stack, since the client is only
capable of invoking the service that way. The service provider will treat these requests
just like any other requests whose transport binding has been the result of client side
reasoning.

The client side based reasoning (illustrated in figure 7) is based on the following
data:

4-12 Open Research Questions in SOA



4 ATRA - ADAPTIVE TRANSPORT ARCHITECTURE

Service Service
consumer provider
ATA ATA
WS WS
Framework Framework
Communication infrastructure

Figure 6: ATrA positioning in the software stack

e Server side data. This information is provided by the server, usually via the
service broker. It consists mostly of data describing the server’s capabilities,
such as supported protocols, supported protocol stacks, preferred protocol stack,
preferred protocol settings, server location, etc. Context information could also
be made available by the server. Unlike the server’s capabilities, which consist
mostly of slow changing data, the context information changes very quickly. Due
to this data volatility it is not conceivable to disseminate this data via the service
broker. One possibility would be to piggyback the data together with a service
response. A mechanism can be used to cache the data, selectively publish this
data, etc. Another open issue is the security risk presented by providing this kind
of data to unknown and possibly malicious clients.

e Client side data.

— Client capabilities: By this we understand the same as in the case of the
server: supported protocols, supported protocol stacks, client location, etc.

— Context information. Context information is represented by data gathered
at the time of the service invocation. This includes, but is not limited to:
CPU usage, free memory, percentage of free memory, available bandwidth,
number of running processes, etc.

— Usage profile. This information is provided at the design time or later through
user customization. We consider several types of data: requirements, pref-
erences and goals. Requirements strongly affect the possible options of
the reasoning engine since they must be enforced. For example if HTTPS
usage is a requirement, due to for example security reasons, the transport
stack selected must contain the protocol. As another example, REST style
web services must use HTTP for transport (as mentioned in 2.2), but we can
treat them as a case of services who have a strong restriction regarding the
transport infrastructure

The service broker is to be extended so that it can support the richer service de-
scriptions required by ATrA. This can be realized by extending the WSDL (for SOAP
web services) in order to support multiple bindings for a web service as well as ad-
ditional server side data. Similar WSDL extension exist, for example the semantic
annotations for WSDL [3].

Open Research Questions in SOA 4-13



A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

Client Server
data data
v transport A
Client \.\/i Service

transport C

Figure 7: Transport selection based on server and client side data

WS
description

Reasoning
engine

Protocol stack

Client
capabilities

Usage
profile

Context
data

Monitoring

Figure 8: ATrA client architecture

The client and server building blocks are described in figure 8 and 9. When com-
pared to the existing web service implementations some new elements appear:

e Reasoning engine. This is used in order to determine the optimal protocol stack
that should be used in order to invoke the service. The reasoning engine uses two
main sources of information: the enhanced WSDL description of the service and
client side data. The implementation can vary in complexity according to specific
needs, from simple rule matching to complex Al algorithms.

e Data set used for reasoning. It is conceivable that not all implementation will use
all the available data, some may use only subsets of data in order to improve
scalability or system response time. In the case of the server, the protocol stack
used by the client for invocation may place additional limitations on the reasoning
engine.

e Monitoring engine. This entity is responsible for providing the context informa-
tion to the reasoning engine. If the framework in use already provides some

4-14 Open Research Questions in SOA



5 WS INVOCATION OVER UMTS

ws Client
request request

‘ Business logic

Server
response
ws

‘ response

Input i
Reasoning
0 Protocol stack
@ engine

Usage

profile

Monitoring

Figure 9: ATrA server architecture

monitoring capabilities, the data can be reused and so the need for another im-
plementation is eliminated.

The proposed architecture enables clients to make context aware decision regard-
ing their selection of the transport stack used for web service invocations. It also en-
ables clients to define and implement highly abstracted profiles to govern their interac-
tion with the service provider (ex. fastest possible invocation, minimum load on server,
etc.) The service providers will have the possibly to make services available using
multiple transport bindings and to inform clients about "preferred” protocol stacks. Cor-
porate service providers, that provide services to both the external world as well as to
internal clients should also profit from such changes as soon as part of the clients be-
come ATrA enabled. One could envision for ex. a scenario where internal clients could
be instructed to use a light-weight protocol during pick load hours to enable the server
to better deal with the increased number of requests. Another place where such a
platform might prove useful is in improving communication between service providers,
especially in the dynamic landscape of service ecosystems.

5 WS invocation over UMTS

The goal of this case study is to investigate the performance of Web Service (WS) invo-
cation over 3G Wide Area Wireless Network (WWAN), such as UMTS, and suggest im-
provements at the transport and application layer. We would like to know how does 3G
WWAN link properties (e.g., long and variable RTT of 400 - 3000 ms, asymmetric links,
blackouts) influence WS invocation in different scenarios (synchronous, asynchronous,
with or without attachments, different sizes of the request and response, etc.) Is there
a functional or performance penalty, and if yes, how to reduce or overcome it at the
transport and/or application layer.

It has been previously shown [11] [10] that HTTP downloads seriously underuti-
lize 2.5G wireless links (like GPRS) and several solutions have been proposed at the
session, transport and application layers. On the other hand, performance of Web

Open Research Questions in SOA 4-15



A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

Services invocation over wireless links has been rarely investigated, in WLAN environ-
ment [20] or in emulated GPRS network [28]. Both [20] and [28] focus on possible gains
obtained through SOAP message compression but do not even consider the possible
functional penalty. To the project participants best knowledge, there has been no pub-
lished data on the WS invocation performance in UMTS networks. TCP performance
measurements almost exclusively deal with either WWW downloads or FTP transfers,
while WS performance measurement almost exclusively stop at the SOAP level. Most
approaches also deal with downstream communication only (characteristic for WWW
download). In WS however, both directions are equally important. This work will there-
fore observe behavior of the WS invocation starting from (and including) the transport
layer.

The goal is to investigate performance of WS invocations over UMTS wireless links.
Comparison will be made with WLAN and LAN (wired) links. Different WS payloads will
be used (with/without attachments), as well as different communication patterns (syn-
chronous/asynchronous invocation). Underlying protocols will be varied (HTTP, SMTP,
JMS over TCP; different versions of TCP will be used (e.g. TCP Westwood), as well
as other transport protocols, e.g., SCTP instead of TCP). Different optimizations will be
investigated at different layers (e.g., transport layer: persistent connections, modifying
TCP packet loss mechanism, improving flow fairness; application layer: proxies, SOAP
compression and caching). Only the invocation (binding) part of the WS life cycle will
be investigated, assuming that discovery phase already took place. WS invocation per-
formance will be investigated for cases when the WS flow has the whole UMTS link for
its usage and for cases when the wireless link is shared with parallel flows of the same
type (other WS invocations) and different types (e.g., parallel FTP or HTTP flow). In
the preliminary measurements we will concentrate on long and variable RTT, and then
depending on the results, include other link properties such as link asymmetry and/or
blackouts.

At this time a server dedicated for this experimental investigation has been deployed
on the Humboldt University network. The server is running a web service container
based on Java Axis 1.4 from Apache on a SuSE Linux operating system. A first set of
web services has been developed and deployed on the server. These services offer ba-
sic functionality (ex. adding two operands) and support synchronous invocation as well
as asynchronous one using SOAP/HTTP/TCP stack. The asynchronous functionality
is supported using an extended version of SAIWS (Simple Asynchronous Invocation
Framework for Web Services). SAIWS is an add-on to Apache Axis that allows web
service client developers to invoke web services asynchronously on top of the HTTP
and SOAP protocols (without using messaging protocols) [30].

On the client side a set of corresponding clients that consume the services avail-
able from the server has been developed. Service invocation can be done via a script
design to automate experiments and perform them in a repetitive fashion , usable for
gathering data. The script can invoke one or more web services at a time and do that
for a specified number of times. For each invocation the data transferred between the
service consumer and the service provider is captured and saved for later processing.
The capture is done using tcpdump?®. For processing the captured data a Java util-

3http://www.tcpdump.org/

4-16 Open Research Questions in SOA



REFERENCES

ity based on Jpcap* has been developed. Jpcap is a Java class package that allows
Java applications to capture and/or send packets to the network. Jpcap is based on
libpcap/winpcap and Raw Socket APl and it is supposed to work on any OS on which
libpcap/winpcap® has been implemented. The Java utility is used to process the cap-
ture files, extract the relevant time stamps from the captured packets and save them
together with the connection state.

The next step in the project is to acquire and deploy the necessary UMTS equipment
in order to be able to start the "live” experiments. Extending the set of deployed web
services along with improvements in the data processing flow are also planned. A
move to Axis 2 is also of interest especially due to the wider range of protocol support
available in the new Axis version.

6 Conclusions

In this paper we have presented the state of the art in the area of web services commu-
nication, discussed the most important protocols used for web service communication
as well as some less known and used alternatives. A method suitable for doing perfor-
mance modeling, evaluation and estimation of the protocol stacks has been presented.
Based on these we have proposed an architecture that would enable web service con-
sumers to make informed decisions and select between multiple bindings the one that
best suites their needs. The actual status in a project regarding evaluation on the web
service invocation has also been presented.

Based on this work we conclude that the communication stack used by web services
duplicates much functionality and it has a great potential for improving. We consider
very promising the possibility of adapting the communication stack so that it would
better suit the specific needs of different classes of clients.

As future work an extensive FMC-QE modeling and evaluation of the Apache Axis
framework for web services is intendend. Based on the knowledge gathered during
this phase a prototype implementation of ATrA using Axis as the provider for basic web
service functionality is planned.

Acknowledgments

Part of the work presented here has been done in collaboration with Bratislav Milic from
the Institute for Informatics, Humboldt University Berlin and Nikola Milanovic from the
Hasso-Plattner-Institut, University of Potsdam.

References

[1] CORBA Technology and the Java™2 Platform, Standard Edition.

“http://netresearch.ics.uci.edu/kfuijii/jpcap/doc/index.html
Shittp://www.winpcap.org/

Open Research Questions in SOA 4-17



A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

[2] SOAP Version 1.2, Jun 2003.
[3] Semantic annotations for WSDL, Sep 2006.

[4] R. J. Bayardo, D. Gruhl, V. Josifovski, and J. Myllymaki. An Evaluation of Binary
XML Encoding Optimizations for Fast Stream Based XML Processing. pages 345—
354, 2004.

[5] Harold Carr. One-Page PEPt. In Middleware 2003 Workshop Proceedings, 2003.

[6] Harold Carr. PEPt - A Minimal RPC Architecture. In On The Move to Meaning-
ful Internet Systems 2003: OTM 2003Workshops, volume 2889/2003 of Lecture
Notes in Computer Science, pages 109—-122. Springer-Verlag, November 2003.

[7] Harold Carr. Client-side Encoding, Protocol and Transport Extensibility for Remot-
ing Systems. In Fifth International Conference on Communications in Computing
(CIC), June 2004.

[8] Harold Carr. Server-side Encoding, Protocol and Transport Extensibility for Re-
moting Systems. In ICSOC '04: Proceedings of the 2nd international conference
on Service oriented computing, pages 329-334, New York, NY, USA, 2004. ACM
Press.

[9] Ken Cavanaugh and Harold Carr. 1IOP and SOAP failover in static clusters. In
Brian J. d’Auriol and Hamid R. Arabnia, editors, Communications in Computing,
pages 61-66. CSREA Press, 2005.

[10] R. Chakravorty, S. Katti, J. Crowcroft, and |. Pratt. Flow aggregation for enhanced
TCP over wide-area wireless. In IEEE INFOCOM 2003, pages 1754—-1764, 2003.

[11] Rajiv Chakravorty, Suman Banerjee, Pablo Rodriguez, Julian Chesterfield, and lan
Pratt. Performance optimizations for wireless wide-area networks: comparative
study and experimental evaluation. In MobiCom '04: Proceedings of the 10th
annual international conference on Mobile computing and networking, pages 159—
173, New York, NY, USA, 2004. ACM Press.

[12] J.C. Day. A framework for autonomic web service selection. Master’s thesis,
University of Saskatchewan, 2005.

[13] Julian Day and Ralph Deters. Selecting the best web service. In Proceedings
of the 2004 conference of the Centre for Advanced Studies on Collaborative Re-
search, pages 293-307. IBM Press, 2004.

[14] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, UNIVERSITY OF CALIFORNIA, 2000.

[15] Madhusudhan Govindaraju, Aleksander Slominski, Kenneth Chiu, Pu Liu, Robert
van Engelen, and Michael J. Lewis. Toward Characterizing the Performance of
SOAP Toolkits. In GRID '04: Proceedings of the Fifth IEEE/ACM International

4-18 Open Research Questions in SOA



REFERENCES

Workshop on Grid Computing (GRID’04), pages 365—-372, Washington, DC, USA,
2004. IEEE Computer Society.

[16] Donald Gross and Carl M. Harris. Fundamentals of Queuing Theory. John Wiley
& Sons, 1998.

[17] M. Gudgin, H. Combs, J. Justice, G. Kakivaya, D. Lindsey, D. Orchard, A. Regnier,
J. Schlimmer, S. Simpson, H. Tamura, et al. SOAP over UDP. Technical report,
BEA, Lexmark, Microsoft and Ricoh, 2004.

[18] Martin Haas and Werner Zorn. Methodische Leistunganalyse von Rechenensys-
temen. R. Oldenbourg Verlag, 1995.

[19] Jaakko Kangasharju. Mobile XML messaging. Course essay, University of
Helsinki, Department of Computer Science, Helsinki, Finland, November 2004.

[20] Jaakko Kangasharju, Sasu Tarkoma, and Kimmo Raatikainen. Comparing SOAP
Performance for Various Encodings, Protocols, and Connections. In Personal
Wireless Communications, pages 397-406, 2003.

[21] Andreas Knpfel, Bernhard Grne, and Peter Tabeling. Fundamental Modeling Con-
cepts Effective Communication of IT Systems. John Wiley & Sons, Ltd, 2005.

[22] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol. RFC
4340 (Informational), March 2006.

[23] Kwong Yuen Lai, Thi Khoi Anh Phan, and Zahir Tari. Efficient SOAP Binding for
Mobile Web Services. In LCN °05: Proceedings of the The IEEE Conference on
Local Computer Networks 30th Anniversary, pages 218-225, Washington, DC,
USA, 2005. IEEE Computer Society.

[24] Highland Mary Mountain, Jacek Kopecky, Stuart Williams, Glen Daniels, and Noah
Mendelsohn. SOAP Version 1.2 Email Binding, Jun 2002.

[25] E. O’Tuathail and M. Rose. Using the Simple Object Access Protocol (SOAP) in
Blocks Extensible Exchange Protocol (BEEP). RFC 3288 (Informational), June
2002.

[26] M. Rose. The Blocks Extensible Exchange Protocol Core. RFC 3080 (Informa-
tional), March 2001.

[27] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, |. Rytina,
M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission Protocol. RFC
2960 (Informational), October 2000.

[28] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller. Performance consider-
ations for mobile web services. Computer Communications, 27(11):1097—1105,
July 2004.

Open Research Questions in SOA 4-19



A Framework for Adaptive Transport in Service-Oriented Systems based on
Performance Prediction

[29] Werner Vogels. Web services are not distributed objects. Internet Computing,
IEEE, 7(6):59-66, 2003.

[30] Uwe Zdun, Markus Voelter, and Michael Kircher. Design and implementation of
an asynchronous invocation framework for web services. Web Services - ICWS-
Europe 2003, 2853/2003:64—78, 2003.

[31] Werner Zorn. Distinguishing between Control States and Operational States - a
well Proven Paradigm to Cope with the Complexity of Discrete Dynamic Systems.

[32] Werner Zorn. Quantitative Modeling as a Special Abstraction of Systems Model-
ing.

4-20 Open Research Questions in SOA



Asynchronicity and Loose Coupling in
Service Oriented Architectures

Nikola Milanovic
nikola.milanovic@hpi.uni-potsdam.de

The paper discusses definition and role of asynchronicity and loose coupling in dis-
tributed systems and in service-oriented architectures in particular. Asynchronicity is
defined in this context as blocking nature of a client, while loose coupling comprises
properties of time- and space-decoupling between client and server. The main focus
and goal is to investigate how and to what extent asynchronous behavior and loose-
coupling are supported in Web Services Architecture. After examining existing WS
frameworks, a sketch of a novel language for describing complex asynchronous and
loose-coupled service interactions is presented. The proposed language, called Be-
linda, is based on the generative communication paradigm.

1 Introduction

The goal of the paper is to revisit definitions and role of asynchronicity and loose cou-
pling, especially in the context of service-oriented systems and architectures. Existing
WS frameworks will be investigated and support, benefits and downsides of architect-
ing asynchronous and loosely coupled applications will be identified. Finally, an idea of
novel modeling mechanism for service interaction, called Belinda, will be introduced.

The rest of the document is structured as follows: Section 2 identifies important
properties related to the definitions of asynchronicity and loose coupling, such as block-
ing behavior, time and space decoupling, as well as requirements of the asynchronous
middleware (e.g., transactional behavior). Section 3 points to the achieving minimum
shared understanding among system components as one of the main properties of Ser-
vice Oriented Architecture and discusses the role of asynchronicity and loose coupling
in establishing that goal. Section 4 investigates the means to ensure asynchronous
behavior in Web Services Architecture by identifying message exchange patterns and
revisiting two styles of service usage (RPC- and message-orientation) and discusses
their role in the process of implementing asynchronous and loosely coupled applica-
tions. Section 5 introduces the notion of asynchronous middleware and discusses its
properties, while Section 6 proposes Belinda language.

Open Research Questions in SOA 5-1



Asynchronicity and Loose Coupling in Service Oriented Architectures

2 Asynchronicity and Loose Coupling in Distributed
Systems

What does the term asynchronous mean exactly? In the course of time, it has come to
indicate without time, without central clock, nonblocking and of course not synchronous
as well. It should come as no surprise then, that we need to look into the definition of the
term synchronous, too. In computer science, synchronous system usually describes
either of the two categories: systems (hardware or software) that require access to the
common clock or (software) systems where caller of a procedure has to block until a
procedure returns operation result [26]. The first category is usually applied to analysis
of multiprocessors, network protocols and distributed algorithms. We are interested
in the second category, which deals exclusively with program flow and consequently
asynchronicity is defined as the behavior where caller does not have to block and wait
for a called procedure to finish, but can continue with its own processing and collect
the operation result later, using some retrieving mechanism (e.g., callback or polling).

Does this mean that a synchronous distributed system is the one which uses syn-
chronous calls exclusively? Actually not, since the boundaries between synchronous
and asynchronous operations are rather artificial. Both operation styles are pure pro-
gramming abstractions and can emulate each other. Understanding the means to per-
form synchronous and asynchronous operations, however, is the key prerequisite in
knowing how to architect synchronous and asynchronous systems. Given the current
state-of-the-art in the operating systems, networking and distributing technologies, one
can argue that all computer systems are inherently and essentially asynchronous. The
level of asynchronicity can be determined not only by the choice of the operation style,
but also by investigating use cases or transactional behavior of the whole system or its
parts.

Let's take a look at two examples. A good example of a synchronous system be-
havior is a bank transfer scenario. The task is to transfer an amount of funds between
two accounts. It can be solved by calling three operations: authorization, withdrawal
and deposit. Caller cannot continue its operation before all three operations complete.
Furthermore, if any operation aborts, the entire transfer operation has to be likewise
aborted and rolled back. An example of an asynchronous system is a travel reserva-
tion scenario. A client invokes operations to make the hotel and flight reservation for
a given date, as well as the payment operation. If synchronous approach is adopted,
two problems are encountered: long delay and reliability. Checking flight and hotel
availability can take a long time and even involve human processing. Therefore, for
business cases where transactions can take a long time to complete, it is unacceptable
for a client to block and wait. Instead, the client should be free to continue its own
processing and be notified when the operations complete, successfully or otherwise.
Furthermore, allowing client to continue enables queuing of the requests and perform-
ing retry or failover in case some of the operations fail, improving overall fault-tolerance
of the system.

We will go into details of procedure- and message-based communication, as well
as transaction management in subsequent sections dedicated to Web Services Archi-

5-2 Open Research Questions in SOA



3 SERVICE ORIENTED ARCHITECTURE

tecture. Let us now try to explore the issue of loose coupling. The term loose coupling
(or decoupling) found its way into colloquial use that we practice today from the field
of interprocess communication [25]. It essentially signifies adding isolation between
communicating parties (be it processes or clients and servers) in order to achieve the
beneficial architectural property. The two properties that are important for our present
consideration are decoupling in space and decoupling in time. Decoupling in space
denotes anonymous communication between mutually unknown parties, which can be
resolved either by introducing a naming, discovery or adaptation system (more on these
issues will be given when discussing Web Services). Decoupling in time ensures sup-
port for time-disjoint communication, where processes (or clients and servers) with dif-
ferent life cycles, span and lifetime can interact with each other. An example of space
decoupled interaction is using an API that enables a client to send a request to the set
of Web Services and accept the result of the fastest. On the other hand, time decou-
pled communication would be a producer/consumer system (described later in more
details as design pattern) where in some instances both producer and consumer run
simultaneously, but in others they run with certain time offset. Another example would
be the one where the requested operation (service) simply does not exist at the time of
the request.

There are systems that due to their complexity, scale and distribution cannot be
served by the standard, synchronous middleware that enforces Atomicity, Consistency,
Isolation, and Durability (ACID) properties using transactions (look back to the fund
transfer and travel reservation examples). In such cases, asynchronous middleware
is introduced that tries to enforce ACID properties without resorting to the transaction-
style synchronization between communicating entities [20]. The challenge is to inves-
tigate alternative mechanisms to replace the powerful transactional synchronization,
and to come with the new set of primitives equivalent to the concepts of commits and
rollbacks. Most of the asynchronous middleware uses messages as basic building
blocks, introducing concepts such as message queues, publish/subscribe mechanisms
or events as viable alternatives for building consistent and reliable applications. While
orientation towards messages will lead us in the direction of SOA, we will return to the
concept of asynchronous middleware in Section 5 when we discuss service bus. For
now on, we will turn our attention to the service-oriented architecture paradigm and the
role asynchronicity and loose coupling play in it.

3 Service Oriented Architecture

The term service-oriented architecture (SOA) emerged in [9] to describe the approach
of building loosely coupled distributed systems with minimal shared understanding
among system components. The main building blocks in SOA are services. Services
are self-describing, open components that support rapid, low-cost development and
deployment of distributed applications. The main goal of SOA is transparent, flexible
and dynamic interaction of services and their clients over multiple interconnected do-
mains. The benefits of SOA include increased efficiency through task outsourcing and
component reuse, easier integration, increased flexibility and agility at business and

Open Research Questions in SOA 5-3



Asynchronicity and Loose Coupling in Service Oriented Architectures

IT level, development of composite applications, enabling of multi-vendor application
sourcing, and on-demand interconnection with business partners. SOA can be de-
ployed at different levels of granularity: from exposing fine-grained technical functions
to coarse-grained business or scientific operations and processes.

The de-facto standard for SOA implementation today is the Web Service Architec-
ture (WSA). It defines SOA as a distributed system in which agents, also known as
services, coordinate by message passing [17]:

A Service-Oriented Architecture (SOA) is a form of distributed systems ar-
chitecture that is typically characterized by the following properties:

e Logical view: The service is an abstracted, logical view of actual pro-
grams, databases, business processes, etc., defined in terms of what
it does, typically carrying out a business-level operation.

e Message orientation: The service is formally defined in terms of the
messages exchanged between provider agents and requester agents,
and not the properties of the agents themselves. The internal struc-
ture of an agent, including features such as its implementation lan-
guage, process structure and even database structure, are deliberately
abstracted away in the SOA: using the SOA discipline one does not
and should not need to know how an agent implementing a service
is constructed. A key benefit of this concerns so-called legacy sys-
tems. By avoiding any knowledge of the internal structure of an agent,
one can incorporate any software component or application that can
be "wrapped” in message handling code that allows it to adhere to the
formal service definition.

e Description orientation: A service is described by machine processable
metadata. The description supports the public nature of the SOA: only
those details that are exposed to the public and important for the use
of the service should be included in the description. The semantics
of a service should be documented, either directly or indirectly, by its
description.

e Granularity: Services tend to use a small number of operations with
relatively large and complex messages.

e Network orientation: Services tend to be oriented toward use over a
network, though this is not an absolute requirement.

e Platform neutral: Messages are sent in a platform-neutral, standard-
ized format delivered through the interfaces. XML is the most obvious
format that meets this constraint.

Our goal in the remainder of the document will be to examine how to achieve prop-
erties identified in the previous section, applied in the WSA environment.

5-4 Open Research Questions in SOA



4 ASYNCHRONOUS OPERATIONS IN SOA

4 Asynchronous Operations in SOA

Let us start with the terminology again: there is no such thing as a synchronous or an
asynchronous Web Service. As far as any service is concerned, it will receive an XML
message containing the request, process the request (either by mapping it to a remote
procedure call or by executing some additional logic upon the message content), and
form the reply. The asynchronicity is contained in the way service client interacts with
the service. In that sense, we distinguish synchronous and asynchronous invocations
of a Web Service. In the simplest case, the same service can be invoked in both ways.
Certainly, to handle complex asynchronous patterns, additional logic has to be added
to the service but it has no influence on the basic service operation.

An asynchronous client makes a request as part of one transaction and then im-
mediately continues with its own thread of execution. The current client transaction
terminates and commits. The service executes in the meantime and generates a re-
sponse message. This message should be handled by the client within a different
thread and in a separate transaction. What is necessary for this to work is a notification
and listener mechanism. There must be a correlator (an ID) that is exchanged between
the client and the service in order to associate response with request properly.

Previous consideration reflects the APl asynchronicity. However, another important
factor is the transport that is used to transfer messages between the client and service.
Different transport protocols can be used for Web Service communication. Therefore,
it's not only the invocation pattern that determines the overall synchronicity. Trans-
port protocols and mechanisms such as HTTPR, JMS or IBM MQSeries Messaging
are often described as asynchronous because they offer means for request-response
correlation and support push/pull model of message exchange. On the other hand,
transport protocols such as HTTP, HTTPS or SMTP are synchronous in a sense that
when they are used for asynchronous invocation, application has to provide message
correlation or queuing.

Why is the issue of API- and transport- level asynchronicity important? Web Ser-
vices should be used to offer a wide range of functionalities with different properties,
complexity and response times. There is no single best-practice invocation pattern that
can be used in all cases. Imagine an example where a protocol with a single transport
channel (e.g., HTTP) is used to repeatedly invoke a Web Service that takes a long time
to execute in request/response manner. It is to be expected that such a connection
will simply time out. On the other hand, imagine a single client that needs to perform
simultaneous invocations. Using blocking at the API level would significantly degrade
client performance. We will now try to introduce more order by defining blocking and
non-blocking API, single and dual transports, as well as all possible combinations of
the two.

A blocking API is the simplest invocation pattern where the current thread of client
execution blocks and waits until service completes and returns the result. Non-blocking
API is the one which uses polling or callback to enable client to continue without sus-
pending its own thread. However, when used with underlying transports that use the
single connection to transmit request and response, timeout may occur. Therefore we
introduce dual transport where two separate transport connections are used for request

Open Research Questions in SOA 5-5



Asynchronicity and Loose Coupling in Service Oriented Architectures

and response. The possible combinations of API- and transport-level asynchronicity
are shown in Figure 1.

API-level Transport-level | Capabilities

Blocking Single Simple request/response

Non-blocking | Single Asynchronous callback and polling

Blocking Dual Request/response over one-way transport
Non-blocking | Dual Maximum asynchronous behavior at both levels

Figure 1: Levels of asynchronicity

Different types of interaction between the client and Web Service are called mes-
sage exchange patterns. WSDL 1.1 defines four basic message exchange patterns
[12]:

e One-way
e request/response
e solicit/response

e notification

In one-way invocation, the endpoint receives a message. Request/response de-
scribes the exchange where the endpoint receives a message and subsequently sends
a correlated response. In the solicit/response pattern, the endpoint sends a message
and receives a correlated message from the client. Finally, notification expresses the
endpoint which sends a message. Based on them, the following asynchronous mes-
sage exchange patterns can be formulated [3]:

e one-way with notification

e request/reply

e request/reply with polling

e request/reply with posting

Let's examine each of them in turn (Figure 2). One way with notification uses two
messages for request and response which are defined as two separate WSDL opera-
tions. The request is one way operation, and response is notification operation. The
client should provide correlation ID as well as reply-to address. Each message (one-
way and notification) is sent as a separate transmission at the transport level. In asyn-
chronous request/reply, one request/reply operation is defined, but with two messages
sent on two separate transport connections. Again, it is the task of the client to provide
ID and reply-to address. Both patterns do not include application level acknowledge-
ment, so it would be a good idea to use them with a reliable transport protocol. In the

5-6 Open Research Questions in SOA



4 ASYNCHRONOUS OPERATIONS IN SOA

client service client service

i 1: request with ID (one-way OP A) a 1: request with ID (request/reply OP A)

2: response with ID (notification OP B) i L 2: response with ID (request/reply OP A) i

one way with notification request/reply

client service client service

1 1: request (request/reply OP A) 1 v 1: request (request/reply OP A) 1

2: reply with ID (ack) 2: reply with ID (ack)

=

1 3: request for A response with ID (request/reply OP B 3: response with ID (solicit/reply OP B) 0

4: reply for A (ack) 4: reply with ID (ack)

polling posting

Figure 2: Asynchronous MEPs

polling pattern, four messages are defined inside two WSDL operations. Initial request
is request/reply, where the reply part is used for acknowledgment. The service re-
sponse is retrieved within the second request/reply, where the reply part is interpreted
as the operation result. Each pair is implemented on a separate transport connec-
tion, but within each connection, operations are synchronous. In this pattern, both
sides can generate correlation ID. Finally, posting pattern uses four messages within
two WSDL operations, where initial request is modeled as request/reply, and subse-
guent response is modeled using solicit/reply. The first message in the solicit reply
carries the response, while the second one is acknowledgment from the client. Again,
request/reply and solicit/response are sent within separate transport connections.

Before proceeding to the implementation issues, we will first clear one problem that
frequently causes confusion, namely, SOAP encodings and their relation to the RPC-
and document-based applications, as well as the impact they have on the synchronicity.
SOAP encoding defines serialization of data inside a SOAP message. Unfortunately,
the names chosen to denote different styles of encoding are RPClliteral, RPC/encoded,
document/literal and document/literal wrapped. These terms could imply that RPC
style should be used for RPC programming models, which are synchronous, and that
the document style should be used for document or messaging programming mod-
els, which are asynchronous. This is simply not true. The SOAP encoding style has

Open Research Questions in SOA 5-7



Asynchronicity and Loose Coupling in Service Oriented Architectures

nothing to do with the programming model, despite the names. The SOAP encoding
merely dictates how to translate WSDL binding to SOAP message and nothing more.
It is possible to use any style with any programming model. The true difference be-
tween the RPC and document programming model in SOA lies elsewhere. RPC model
means that remote procedure invocation is wrapped in SOAP message. It can be both
synchronous or asynchronous. On the service side, SOAP message is decoded and
translated into back-end object method invocation. Document programming model is
based on the exchange of XML documents without being constrained to execution of
predefined methods on the server side. SOAP message does not map directly to a
remote method, but rather requires additional processing in order to interpret it, ac-
cording to a predefined schema. Again, this interaction can be either synchronous or
asynchronous, that is, the client sending a message can block and wait until it receives
response message or can opt to continue with its own thread of execution.

What are our options for implementation of asynchronous client-service commu-
nication in WSA? The fact is that the IDEs and other Web service tooling currently
available to automate the generation of the client-side proxies typically only support
the synchronous request/response model. This effectively means that developers are
discouraged from using asynchronous and document-based communication. Conse-
guence of this are evolution problems. We will now investigate some of the options that
are available for implementing asynchronous service invocations, such as Java API for
XML Web Services (JAX-WS), WS-Addressing specification, Web Service Invocation
Framework, WSDL 2.0 and Axis 2 framework.

The common way of developing Java-based Web Services and clients is to use
JAX-WS, which is a continuation of Java API for XML-based RPC (JAX-RPC), within
a certain implementation, such as Apache Axis or Java Web Services Developer Pack
(JWSDP). JAX-WS offers poor support for asynchronous invocations. Only one asyn-
chronous invocation method is supported, invokeOneWay, which supposedly emulates
asynchronous one-way invocation with notification. However, even that emulation is
not perfect, as the server acknowledges request receipt only after it executes the entire
method body, by sending HTTP 200 !, which is the consequence of using HTTP as the
underlying protocol. Effectively, the client still blocks and waits. An option is to spawn
a concurrent worker thread on the server side, which would enable client to receive
acknowledgement immediately and continue processing.

Extensions to this model have been proposed which develop additional asynchronous
message exchange patterns. For example [32] introduces the following patterns based
on the JAX-RPC: fire and forget, sync with server, poll object and result callback. Fire
and forget is a message exchange pattern where client sends the request and immedi-
ately detaches from the service, without waiting for the acknowledgement of receipt or
the return value. Sync with server performs similarly, but waits for the receipt acknowl-
edgement from the service. Poll object enables client to periodically poll the service
for the results, while result callback enables service to contact the client once the re-
sponse is ready. The four patterns have been implemented and can be used within
Apache Axis framework.

IHTTP status code 200, the request has succeeded; the information returned is dependent on the
method used.

5-8 Open Research Questions in SOA



4 ASYNCHRONOUS OPERATIONS IN SOA

Departing from JAX-WS, the WS-Addressing specification [8] offers a standard for
incorporating addressing information into Web Services messages with the purpose of
providing uniform addressing method for SOAP messages that travel over synchronous
and asynchronous transports. The interesting part in our context is that it offers ad-
dressing options to support building various message patterns. The problem that WS-
Addressing tries to address is that WSA and SOAP provide no standard way to specify
where a message is going or how to return a response. It has been the task of the
transport layer (e.g., URI of the HTTP request is message destination). On the other
hand, when a SOAP request is sent asynchronously (e.g., over JMS), response des-
tination may be in the message header, body or left up to the service implementation.
The goal of WS-Addressing is to provide capabilities for message routing or directing to
a third party. In order to do so, delivery, reply-to and fault handler addressing informa-
tion is incorporated into a SOAP envelope. WS-Addressing also defines a standard for
including service-specific attributes within an address for use in routing the message
to a service or for use by the destination service itself (useful for stateful services).
WS-Addressing introduces endpoint references and message addressing properties.
Endpoint reference is a model for describing destination at which service can be ac-
cessed, while addressing properties provide a context for the destination information.
When a service receives a message addressed using WS-Addressing, it will also in-
clude WS-Addressing headers in the reply message. If a client is sending multiple
Web Services requests and receiving asynchronous responses WS-Addressing pro-
vides a standard way to associate replies with their corresponding requests. The value
of WS-Addressing is most obvious in the asynchronous environment where it offers a
consistent addressing model which simplifies integration issues and helps implement-
ing applications where requests are routed to one of several related services using
endpoint references.

Returning to the Java world, Web Service Invocation Framework [13] offers a client
API for invoking Web Services asynchronously using a local proxy. It offers the capa-
bility to use different transports based on the context of the invocation. WSIF supports
asynchronous request-response model, where the response is handled in a different
thread of execution from the originating request. To support this, the requestor regis-
ters a callback object or a handler, that is invoked when the response is received. WSIF
also provides correlation and listener services.

The upcoming WSDL 2.0 specification [11] offers a new set of basic message ex-
change patterns: in-only (single input message), in-out (input message followed by
output message), request-response (like in-out but both messages travel on the same
channel), in-multi-out (input message followed by one or more output messages), out-
only (single output message), out-in (output message followed by input message), out-
multi-in (output message followed by multiple input messages) and multicast-solicit-
response (output message followed by one or two input messages). Finally, we should
mention the new Axis 2 Framework [1], bringing discontinuation with JAX-RPC and
introducing AXIOM object model instead. It is very interesting that Axis 2 supports
asynchronous service invocation using non-blocking clients and dual transports, as
well as all new message exchange patterns of WSDL 2.0. Also, senders and listeners
for SOAP over SMTP, FTP and JMS are provided up front.

Open Research Questions in SOA 5-9



Asynchronicity and Loose Coupling in Service Oriented Architectures

5 Loose Coupling in SOA

Although SOA advocates loosely-coupled architecture, the primary modus operandi of
Web Services is the one based on synchronous request-reply paradigm. However,
contrary to the popular belief, Web Services are not (or should not be) just remote
procedure calls (RPC) for the Internet. Alternative approaches are neither well doc-
umented nor supported in the majority of Web Service frameworks available today.
Apart from that, an approach is needed that solves the problem not only within an en-
terprise, where similar application platforms, native transport and interfaces are used.
Today, designers are encouraged to adopt one of the following approaches for basic
client-server Web Service invocation: using automatically generated proxy classes or
custom SOAP message processing.

In the first approach, a proxy class is generated automatically at design time in
the client language based on service’s WSDL, prior to client compilation. Proxy class
is then compiled together with the client and Web methods are invoked on the proxy
object. The benefit of this approach is simplicity: client has the illusion of working with
the local object and all issues of SOAP and remote invocation are abstracted from
it. The downside is flexibility: client is strongly-coupled with the target Web Service.
The client must know the location and relevant names of its partner service in design
time in order to generate the proxy class by compiling target WSDL. Target service
cannot be changed at runtime without recompiling the client. A client cannot react to
the WSDL change at runtime, without being recompiled again. Finally, the problem of
serialization/deserialization of SOAP/WSDL types into native language types is neither
trivial nor presently solved satisfactorily [21]. Although simple, this approach is exactly
the opposite of what Web Service architecture should be: flexible and dynamic, i.e.
providing an environment where binding between clients and services is performed on-
demand, at runtime. Any serious adaptation in the proxy class approach is not possible
without client recompilation.

The second approach expects that a client will generate SOAP requests and parse
SOAP response messages. Although theoretically this enables decoupling, such an
approach is not practical in design and development of enterprise-grade software sys-
tems. The complexity of WSDL files and different flavors of SOAP/WSDL bindings
(rpc/encoded, rpcl/literal, document/encoded, document/literal, document/literal wrapped)
makes it unreasonable to expect that program logic can parse WSDL, create adequate
SOAP message and parse response (at least not without unreasonable effort invested).
Frameworks exist that help clients in this task but without significant or noticeable suc-
cess/acceptance and support for true decoupling (anonymity). It is also somewhat
difficult to work at the SOAP level unassisted, making this approach unpopular. Sev-
eral approaches are situated between these two principal extremes (e.g., Dispatcher
or Dynamic Invocation Interface in JAX-WS framework) that enable dynamic (runtime)
configuration and binding between client and server, but still rely on the built-in se-
rialization/deserialization mechanisms and partially on the use of the proxy classes.
Although a step in the right direction, these solutions are not complete.

Finally, whichever approach is chosen, one important issue remains: evolution. By
encouraging developers to use Web Services as Internet-enabled RPC extension, po-

5-10 Open Research Questions in SOA



5 LOOSE COUPLING IN SOA

tentially rich Web Service design model is downgraded to closed-world RPC where all
of the users are known in advance, a data model is shared and all needs can be com-
municated directly to everyone. Evolution is relatively easy in such an environment:
a notification is sent that API is going to change to all relevant parties. If a new sys-
tem is introduced, point-to-point integration is performed. In the Web Services world,
such assumptions are just not realistic: the user base is simply too large. The prob-
lems begin when new version of the service is deployed, which is a well-known issue in
RPC-based systems. Updates, evolution and versioning of clients and services have to
be synchronized and coordinated in such environment, otherwise application will face
serious problems. Evolution has to be performed on both sides (client and Web Ser-
vice) with the minimal shared understanding. RPC-like communication is poorly suited
for this scenario, but in spite of that, most developers (encouraged by available tools,
or rather discouraged by the absence of support for alternative invocation and com-
munication means) use Web Services in the strong-coupled RPC context, thus making
independent evolution difficult to achieve. Web Services architecture should decouple
clients and services, but since static invocation (using pre-generated stubs) is the pre-
ferred method of issuing remote procedure-based calls, this architectural benefit is lost
due to implementation-time assumption of a static service description (static WSDL).
Once WSDL document changes, a new set of stubs has to be generated and client
application rewritten, recompiled and redeployed. The core of Web Services design
should be centered on programming without assumptions paradigm instead: nothing
is assumed in advance, everything is discovered on-demand. Independent evolution
is necessary for Web Service architecture to be able to scale to the Internet. There-
fore, instead of using underlying (software) components as boundaries, data objects
(parameters, messages) should be used. In the remainder of this section, we will in-
vestigate several options for achieving loose coupling, such as using design patterns,
alternative transports and message oriented middleware.

5.1 Design Patterns

Design pattern is a description of the core of an engineering problem that occurs re-
peatedly in practice, and description of the solution to that problem, such that it is
reusable in different contexts. Design patterns were first described in [4] and applied to
civil engineering. They were introduced to object-oriented software engineering in [15].
The benefits of design patterns are that they provide high-level language for describ-
ing design issues and that combinations of design patterns lead to development of
reusable architectures.

Many design patterns have been identified for object-oriented software systems,
and some of them have become standard design elements (e.g., Observer, Facade,
Command) or have been incorporated in programming languages (e.g., Factory Method).
With the introduction of service-oriented computing, it has been noted [23] that usability
of "new” patterns is approaching zero. We are thinking at the new level of granularity
when developing service-oriented applications: instead of the object/class, we work at
the subsystem/application level. Surprisingly little research is being done in the area
of developing methodologies of "good” service-oriented engineering, with the notable

Open Research Questions in SOA 5-11



Asynchronicity and Loose Coupling in Service Oriented Architectures

exception of [24] and [5, 6], where several practical Web service design patterns are
explained. The design patterns proposed in this section should be considered comple-
mentary to them, as well as to SOA Blueprints initiative [30], as "best-effort” solution
for enforcing decoupled design [28]. For the more detailed discussion on the proposed
patterns, refer to [22].

There are two main differences between object-oriented and service-oriented de-
sign patterns: 1) different levels of design granularity and abstractions; 2) service-
oriented design is not inherently client-server, but loosely coupled and dynamic: clients
can choose among many servers (services). The goal of the proposed patterns is
to identify best practice solutions that are specific to loosely coupled service-oriented
design. The following patterns are described: proxy, facade, security, load balancer,
logger, dynamic input, producer/consumer and publish subscribe. The patterns are
summarized in Figure 3.

The easiest way to access a Web Service is directly, using specific API on the client
side that connects to the WSDL interface of a target service. However, this method cre-
ates strong coupling between client and called service, and makes reuse difficult, since
the same calling code has to be repeated. A solution is to use a service proxy pattern
that decouples target service from the client by using surrogate (proxy) service instead
of a target service. A proxy pattern should not be confused with the proxy class created
by compiling WSDL, a feature offered by most Web Service development frameworks.
For a proxy pattern, it is irrelevant how actual service invocation is performed (using
a proxy class or generating SOAP messages directly). Single proxy pattern is used
to access single Web Service indirectly. The task of a proxy service is to read input
parameters, invoke target Web Service and receive results. Therefore, communication
with the target service is implemented only once, inside proxy. This facilitates reuse
and it is also possible to change the interface of the back-end service without notifying
the clients, as it is enough to update only proxy accordingly. The main benefit of using a
proxy pattern is that it enforces loose coupling between client and called service. Also,
this extra layer of indirection can be used for logging or load balancing, as will be shown
later. A service can have more than one proxy. In case of multiple proxies, they are
used to convert (transform) interface of the target service according to the expectations
of different clients. The alternative name for this pattern is transformer. Transformer is
used to enforce understanding on semantic meaning of parameters, or to help con-
necting services developed with different back-end technologies. Further expansion
of the proxy pattern is decoupling of communication protocol and business interface.
A channel service is introduced that deals with communication protocol issues while
proxy service deals with parameters and business logic. That way communication pro-
tocol can be changed without changing either client or service proxy. Multiple proxies
can share a single channel, or choose among several available ones.

While proxy pattern facilitates access to a single Web Service, facade pattern per-
forms the same for compositions of services. The problem that facade pattern solves
iIs how to access a composition of Web Services. Contrary to the OO-Facade, mul-
tiple network calls are not a problem when invoking Web Service composition, since
composite request is sent to the server (e.g., BPEL server) which manages network
calls. However, the problem is the coupling between the client and called services.

5-12 Open Research Questions in SOA



5 LOOSE COUPLING IN SOA

0

proxy,

proxy |—>| target |

proxy transformer
;

proxy with channel

. ublish ublish,
| client, proxy |—>|IoadBaIancer O P ‘ ! P ‘
T, | aggregate | | transform |§
load balancer 3
message busi
| queue | | directory |i
r 'y |

client

queue

producer/consumer

publish/subscribe

target, |—>| target,,

facade

| client |—>| encrypt |—>| https |—>| channel |—>| decrypt

security

| proxy |

integrity

client integrator|—>| target |

logger dynamic input

request
Log

Figure 3: Service design patterns

Open Research Questions in SOA 5-13



Asynchronicity and Loose Coupling in Service Oriented Architectures

Although mediated by the composition server, the client has to have intimate knowl-
edge of all services involved. This makes replacement of services in composition dif-
ficult. Reusability is not that problematic, as composition can be stored in a directory
and then re-invoked when necessary. Finally, in this case it is up to the client and/or
composition server to specify non-functional behavior of the constituent services (e.g.,
transactions) which is a weak design point that can introduce potential inconsistencies.
The idea is to represent fine grained operations offered by partner Web Services in a
composition through a single Facade service, which offers a coarse grained composite
operation to the client. Facade and target services are strongly coupled, but that can
be eliminated by applying proxy pattern for each target service. This is the question of
the composition complexity, as combining proxy and facade patterns can prove to be
an overkill for the application, depending on its size and requirements. The benefit of
applying facade pattern is in decoupling client from the partner services comprising the
composition. Also it is more natural that the provider of one or more partner services
specifies non-functional behavior (e.g., transactions, security, timeliness) instead of the
client or the composition server.

There are two ways security requirements can be addressed. The first is to exploit
native security capabilities of partner services that build the application. Although eas-
ier, it can result in incorrect behavior in case when partner services do not support rel-
evant security properties themselves. The second option is to 'reinforce’ an invocation
with dedicated services, creating a security pattern or wrapper for the entire operation.
Transport protection secures the channel transmitting data from client to facade/ proxy.
It encrypts the connection between two services, thus protecting the channel. SSL and
HTTPS can be used for this purpose. While in transit, all data is secure. However, data
itself is not encrypted, meaning that at the endpoint information is easily read. There-
fore, all data is also encrypted before being sent to the channel and decrypted at the
receiving end. Finally, after being received by the facade and before being forwarded
to proxy, authorization, access control and message integrity verification is performed.
It is up to the architect to decide which of these security services should be used in a
particular use case, since they introduce significant overhead.

Web Service messages can be very complex, comprising many input/output param-
eters. It is in accordance with basic postulates of service-oriented computing, which
recommend using small number of operations with relatively large and complex mes-
sages. Those messages are often not known until runtime, that is, they are constructed
dynamically. Data necessary for message construction can come from an XML file, a
relational database or from a human user input. Many Web Services also operate with
persistent resources which have to be identified (e.g., relational database, table name
and primary key). This data is also not known during design time. In such cases it is
convenient to remove logic for dynamic message construction outside of the client, into
a combination of service proxy and configuration manager. Dynamic proxy decouples
client from server and configurator consults persistent resource to retrieve necessary
data. Both forward their output to integrator which generates the complete request
by filling missing information that it receives from the configurator. In order to remove
latency required for consulting persistent resource, configurator caches configuration
data in memory, accelerating dynamic message construction and lowering overall re-

5-14 Open Research Questions in SOA



5 LOOSE COUPLING IN SOA

sponse time.

Reputation system is the necessary part of a service-oriented architecture. In order
for reputation system to be fair and usable, it is convenient to introduce standard design
pattern that requires services to log their input and output messages. That way logging
logic is removed from the partner services. Apart from being useful for building stan-
dardized reputation systems, logging pattern can be used for debugging and testing,
which is often neglected. Developers creating service-oriented applications are often
in darkness when trying to debug and diagnose application errors. Even access to er-
ror logs is a problem since target services execute in different application servers and
access to their logs is not always trivial and/or possible. Introducing standard logging
pattern helps in the validation and diagnosis of service-oriented applications. Prac-
tice shows that it is recommendable to perform logging in a database, since long XML
messages result in unusable log files. It is desirable to have related messages grouped
together (concurrency issues). If all related messages are stored in a database, a
simple cross join retrieves all relevant data.

Frequently a pool of Web Services that perform the same function is available. In-
stead of invoking them randomly, they can be load balanced using proxy pattern. Insert-
ing a proxy between clients and a pool of target services, and equipping that proxy with
a load balancing algorithm optimizes the performance of the whole system. The role
of a load balancer is to distribute client requests among available service instances. If
a synchronous load balancer is implemented, only a guessing algorithm can be used,
since there is no way that load balancer can know for sure which services are avail-
able and which are not. This decision has to be taken based upon imperfect historical
data. This is a push model, where requests are pushed to the target service instances
without their cooperation. With asynchronous load balancer, a pull model can be used.
Load balancer can store requests in a queue and target instances can retrieve and
process (pull) them once they are free.

The main actors in the publish/subscribe pattern are publishers, subscribers and
communication middleware services (message bus). Publishers produce values (com-
putations, measurements) and put them on the message bus. Subscribers opt to re-
ceive a selection of available data from the bus. The bus comprises aggregator, trans-
former, queue and directory. Aggregators perform data merging, transformers perform
transformation on raw data (e.g., a FFT), queue stores raw, aggregated or transformed
data, while directory collects descriptions of available data. Subscribers consult direc-
tory when choosing data to subscribe to.

The producer/consumer pattern comprises producer, consumer and storage ser-
vices. Producer receives input data, processes it and puts it into the queue. Consumer
takes values from the queue, performs its own processing and sends data to the output.
They are both executing asynchronously. Producer and consumer model two elements
of a business logic. For example, producer can receive requests for bank transfer, pre-
process them (authorization, feasibility) and then put a request in a persistent storage
(queue) for producer to take and perform the actual transfer and generate the report.
This part of the workflow can involve human interaction. The entire process is executing
inside a loop controlled by an external service.

Open Research Questions in SOA 5-15



Asynchronicity and Loose Coupling in Service Oriented Architectures

5.2 Alternative Communication Mechanisms

Another way to achieve loose coupling is to investigate alternative communication and
transport mechanisms, e.g., using Java Message Service (JMS) or JavaSpaces in-
stead of standard SOAP over HTTP approach. Both JMS and JavaSpaces provide a
concept that enables provision of loosely-coupled communication in terms of naming,
location and time. Both also provide run-time extensibility and binding, time and loca-
tion independence as well as latency hiding (asynchronous communication). JMS is
principally information delivery platform which offers exchange of structured messages
via message oriented middleware. JavaSpaces, on the other hand, is information shar-
ing system.

In the context of SOA, the JMS infrastructure can be understood as a component in
the service bus [19]. The basic idea is that service calls are managed and scheduled
by the JMS. The infrastructure thus provides a layer between the client and the actual
services. The goal is exactly to facilitate asynchronous communication and make it
more convenient. Users and services need to agree on the message format in advance,
in terms of a contract. Although communication is decoupled using topics and queues,
it is still necessary for a client to know how to access the type of message or the topic
it is interested in. The boundary between client and service thus becomes the format
or content type. That means that they are needed to establish a concrete binding.

In order to use JMS, standard client-service architecture needs to be modified
somewhat. From the clients perspective, the endpoint it communicates with isn’t stan-
dard Web Service but a protocol handler that listens for SOAP messages and passes
them into a message queue. With the aid of a listener, the messages are then routed
to the correct target (Web service) asynchronously. The motivation for this approach
is that while the Web Services technology enables the execution of remote services, it
does not provide a robust infrastructure for information/message handling. The advan-
tages of using JMS for message routing and delivery are numerous. First, the data will
be not lost if the application fails because it is persisted. Second, if the system is over-
loaded with requests, it must be able to handle the increased load. And finally, in the
case that the application needs to communicate with a back end system, there must
be a bridge for efficient and reliable communication. JMS supports these requirements
and provides features to couple both systems, standard SOAP Web Service commu-
nication with the outer world and JMS messaging within a network to handle service
requests. Besides these advantages, the JMS technology has some drawbacks and
problems such as overhead, additional complexity and the risk to form a communication
bottleneck. The queues or topics need to maintain and control all incoming messages,
perform (de-) serialization of messages and schedule outgoing messages.

JavaSpaces is a technology for loosely coupled communication with respect to lo-
cation, time and reference. It offers scalable storage and exchange mechanism in form
of distributed shared memory make it usable for services, which are executed asyn-
chronously and concurrently. As with JMS, JavaSpaces provide a communication mid-
dleware component for services to exchange data. This makes architectures feasible
where "workers” perform the computing by fetching any object from the space and do-
ing its processing locally by calling the computing method. The idea of this approach is

5-16 Open Research Questions in SOA



5 LOOSE COUPLING IN SOA

to use distributed memory as a shared repository of service requests, descriptions and
responses with the main goal of achieving time and space decoupling between clients
and the respective services (workers). In the JavaSpaces approach, however, the term
service is interpreted in a slightly different way then it is the case for SOAP Web Ser-
vices. The service as an open, self descriptive component that provides a contract
between provider and consumer in SOA does not explicitly exist in this architecture.
JavaSpaces comprise object-centric data structures while each object can contain ser-
vice logic. In fact, since the processing is performed by objects with access to the
space, the service itself is distributed over an unknown and not controllable number of
systems consuming space objects. When a service is distributed as a data structure
written to the space, no service level agreement can be verified. However, JavaSpaces
can be combined with standard Web Services in the same manner as it was the case
for IMS. The Web Service client uses the well known SOAP interface to call a gateway
which distributes the service execution in a space (distributed shared memory). The
difference is that with JavaSpaces the main purpose is to distribute workload, not to
call third-party systems (like JMS clients), although both are possible with appropriate
extensions.

5.3 (Enterprise) Service Bus

Enterprise Service Bus (ESB) [10] is at the same time best-practice design pattern, an
architecture and a new type of product. ESB constructs SOA by integrating "accidental
architectures” into a decentralized infrastructure called service bus, which is inherently
message-based, asynchronous and loosely coupled. In ESB all applications are pro-
vided as (business) services and connected via reliable, secure and managed virtual
channels. The main consequence is that orchestration, transformation and mainte-
nance can be moved to the bus and processed in a controlled manner. The structure
of the ESB is shown in Figure 4.

The main elements of ESB are: message oriented middleware (MOM), service con-
tainers, management facility, routing and XML-processing. Arguably, the most impor-
tant element is MOM. The task of MOM is to support reliable and asynchronous mes-
sage exchange. In an ESB architecture, all direct (or legacy) communication channels
are replaced by virtual channels, managed by MOM. That way, strongly coupled, syn-
chronous, point-to-point interaction (method invocations) are replaced by loosely cou-
pled indirect interaction implemented using message passing. MOM supports point-to-
point (1-1) messaging model as well as publish-subscribe (1-many) model. One exam-
ple of using MOM is JMS in conjunction with SOAP (see previous section). However,
having MOM alone is not enough. The service container is the key element that en-
ables all applications and components to access MOM transport services. To do that, it
Is connected to topics and queues and is able to transform messages into appropriate
service invocations. We can think of service container as an application server (e.g.,
J2EE). ESB endpoint is part of the service container and is situated between internal
services on one side and message clients and MOM on the other side. Continuing
with J2EE analogy, endpoint can be understood as a servlet. Apart from the core func-
tionalities (message management, configuring and invoking ESB endpoints), container

Open Research Questions in SOA 5-17



Asynchronicity and Loose Coupling in Service Oriented Architectures

message-oriented middleware (MOM)

2 ¥

h. v

internal adapter XML routing
services services services services
. . 4 . .
service service service service
container container container container

2 2

external
services

management facility

!

central repository

Figure 4: Enterprise Service Bus Architecture

can add any arbitrary function such as transaction management or security.

ESB is based upon a distributed and decentralized structure in which many ser-
vice containers can be connected via MOM. Therefore, containers, services and MOM
need to be configured, monitored and maintained. That is the task of the management
facility. The idea is to have decentralized infrastructure which is, however, managed
centrally. The management facility comprises central repository and a network of man-
agement servers, interfaces and tools. Two other special facilities of the ESB should
be mentioned: routing and XML processing. ESB provides three principal means to
route messages on the bus: itinerary-based routing, orchestration and content-based
routing. Itinerary based routing is used to manage short-living, transient fragments (so
called microflows). Each message contains an itinerary that determines its route. The
itinerary consists of a list of endpoints that have to be visited and those that have al-
ready been visited. On the other hand, orchestration is used to manage long-running
transactions using BPEL process definitions. BPEL is provided by ESB as a separate
ESB endpoint. Finally, content-based routing employs XML processing facilities which
enable validation, transformation and routing of XML messages. Of course, XML facil-
ities can be used for other purposes (e.g., microflows). WS-Policy specifications can
be integrated in service containers (e.g., WS-Transactions) or special facilities (e.g.,
WS-ReliableMessaging).

6 Belinda

In the current research of SOA, usually three major assumptions are made:

e in the service interaction process, discovery has already taken place: consumers
have found the adequate providers or composition partners have been identified

5-18 Open Research Questions in SOA



6 BELINDA

e asynchronous, loosely-coupled interaction is trivial to achieve
¢ the underlying network is "perfect” (e.g., dependable, efficient and secure)

These assumptions facilitate development of various frameworks for investigating prop-
erties of complex service interactions. Both assumptions are, however, also fundamen-
tally false.

As has been argued in the previous sections, current WS frameworks encourage
designers to invoke Web Services using synchronous SOAP-RPC. Although it is pos-
sible to design asynchronous/loosely-coupled systems that way, the missing support
makes this approach unpopular and infeasible. As a direct consequence of this lim-
itation, there is room to propose a more satisfactory model (and middleware) for in-
vestigating properties of complex service interactions. Using generative communica-
tion paradigm to model invocation, communication and composition, a step away from
treating Web Services as an RPC-for-the-Internet can be achieved. In order to mitigate
the problems identified with service interactions (discovery, inflexibility, strong-coupling,
naming, evolution, fault-tolerance), the idea is to investigate generative communication
(Figure 5) as an alternative to classical publish-discover-bind interaction paradigm.

Figure 5: Using generative communication to model service invocation

Generative communication is a distributed programming paradigm that has been
proposed as a foundation of the Linda coordination language [16]. The abstract en-
vironment called tuple space is the basis of generative communication. Processes
involved in a program can generate tuples, store, read or remove them from the tuple
space using out, in and read operations. A tuple exists in a tuple space independently
of the process that has created it. Generative communication has two distinguishing
properties: communication orthogonality and free naming. Communication orthogo-
nality means that the receiver has no prior knowledge about the sender, nor the sender
has prior knowledge about the receiver. Direct consequence of this property is space
and time uncoupling. Space uncoupling means that any process among many equiv-
alent processes may read a tuple from tuple space (assuming that tuple signature
matches positively - that is, assuming that a process is interested in reading such a
tuple or that can legally read a tuple). Time decoupling means that a tuple may be
written in a tuple space before receiving process is created. Also, a process that has
created a tuple may terminate before the tuple has been read by another process. The
property of free naming means that variable and operation names are integral parts of

Open Research Questions in SOA 5-19



Asynchronicity and Loose Coupling in Service Oriented Architectures

tuples. Tuple space ensures that one tuple can be removed by one and only one legal
process. Taken together, generative communication enables interaction of space- and
time-disjointed processes that can share distributed names and variables with ensured
atomicity.

We propose to use a tuple space, shared by clients and services, that mediates
between clients’ requests and services’ responses, creating a language for process-
oriented service interaction that we call 'Business-process Execution Linda’ (Belinda).
The fundamental advantage that Belinda brings is anonymity that results in the loose
coupling. Client writes a tuple representing anonymous request into tuple space. One
of the available services reads the tuple, performs processing and writes back the tu-
ple representing results. The client can read the tuple and use the results at some
point during its execution. This is the simplest kind of asynchronous interaction be-
tween a client and a Web Service. Tuples can describe requests, responses, service
descriptions and attachments. Tuple space mediates between requests and responses
by performing matching of client requests with service capabilities (descriptions). The
essence is that the tuple space selects services that can fulfill client’'s request, without
requiring the client to know/discover any particular service in advance. Why is this im-
portant? Service-oriented architecture represents a model of a distributed system with
minimal shared understanding among system components. By allowing clients not to
know their respective partners (Web Services), clients do not have to adapt, which ul-
timately leads to programming without assumptions. The key is to let the middleware
(tuple space) perform necessary adaptations and matching in a standardized way, in-
stead of requiring clients to adapt. In that way, mediation of the broker is elegantly
removed and becomes the responsibility of the tuple space. The following benefits of
this approach can be identified:

e Anonymity: client does not have to know its target Web Service. This of course
doesn’t mean that service directory like UDDI is no longer needed. Rather, it will
be used by tuple space to perform necessary matching.

e Anonymity leads to loose coupling: service can be changed without any notifica-
tion to the client. If the new service can still serve the same client, this change
will be transparent, otherwise another matching service is located.

e Loose coupling leads to programming without assumptions: flexible invocation,
decoupling in space.

e Decoupling in time: easy modeling of synchronous and asynchronous calls, as
well as long running transactions.

e Modeling stateful Web Service interactions using tuple space as a context repos-
itory.

e Describing service compositions and interaction patterns (synchronous/ asyn-
chronous, publisher/subscriber, producer/consumer...).

e Environment for automatic composition/decomposition/matching analysis.

5-20 Open Research Questions in SOA



6 BELINDA

e Fault-tolerance/responsiveness through automatic and transparent retry, failover
and recomposition.

e Quality of service negotiations: services can first offer operations with certain
QoS guarantees and clients can opt to accept them or not.

On top of the generative communication model, predefined composition operators
will be introduced that enable creation of complex interaction topologies through tuple
exchanges. Operators like sequence, parallel, choice, selection or loop will be investi-
gated. The overall Belinda architecture is shown in Figure 6.

tuple space

composition operators

basic tuple operations

<:> user console

tuple definitions | matching rules

process execution server

belinda endpoint

S = - L —

external services

Figure 6: Belinda architecture

Belinda’s interface towards external services is called Belinda endpoint and it gives
access to tuple space to all interesting parties. Tuple definition comprise requests,
responses, attachments and services descriptions. Matching rules determine how tu-
ple signature matching is performed in order to establish communication between two
processes (e.g., client and a Web service). Basic tuple operations that will be im-
plemented are in, out, read and eval (tuple creation), with infrastructure guaranteeing
unique naming and atomicity. Composition operators are envisioned as high-level lan-
guage constructs that are defined as 'macros’ containing basic tuple space operations
and describe complex service interactions (such as synchronous/asynchronous, paral-
lel, sequential, choice, selection or loop execution). Finally, tuple space represents a
shared memory in which tuples are stored and read. User communicates with Belinda
via process execution server that provides input/output console as well as monitoring
tools. An example of asynchronous communication between a client and a Web ser-
vice can be modeled in the following way:

client:

out (method,me,actual _request);

Open Research Questions in SOA 5-21



Asynchronicity and Loose Coupling in Service Oriented Architectures

in(me,formal response)
service:

in(method,who:name,formal request) ==>
[procedure;

out (who,actual response) ]

The obvious challenge here is how to model SOAP requests and responses using
tuples, how to implement uniqgue method naming, and how to map and match actual
and formal parameters (requests and responses). These and other problems will be
detailed in the Belinda development plan:

1. Belinda syntax and semantics definition: Belinda syntax will comprise low-level
and high-level commands, the former being basic tuple operations (in, out, read
and eval) and the latter being composition operators (sequence, parallel, choice,
selection, loop). A small command set will enable static program verification. The
goal is to define syntax and semantics for the command set and develop grammar
that will be used for parsing. The deliverables of this stage should be command
set, grammar and parser.

2. Tuple definitions and mappings: The basic units of communication in Belinda
are tuples. They represent service requests, responses, descriptions and at-
tachments. Processes (users and services) communicate by writing and reading
tuples from a distributed shared memory called tuple space. Algorithms for map-
ping SOAP requests and responses, service descriptions and attachments will
be developed. This will essentially enable a client to issue anonymous service
request in form of a tuple, which comprises the mapped SOAP request without
defined service endpoint. The process of matching will determine which services
can serve the anonymous request. The mapping mechanism between actual and
formal parameters will be also developed. The outcome of this phase should be
tuple definitions, algorithms for mapping between SOAP/WSDL and tuple nota-
tion, and between actual and formal parameters.

3. Tuple space implementation: Tuple space acts as a distributed shared memory
and mediates between client and a service, or between composition partners.
It has a dual role: supplementing service broker and performing process-based
service composition. The key issues are development of unique naming mecha-
nism for processes, methods and parameters and ensuring support for transac-
tional (ACID) properties of basic operations. Basic operations (in, out, read and
eval) will be implemented here, as well as following message exchange patterns
(MEPSs): one-way, request/response, solicit/response and notification. Relevancy
and applicability of related approaches (Java Spaces [14], XML spaces [27]) will
be investigated. The deliverables expected are definition and implementation of
tuple space and basic operations.

5-22 Open Research Questions in SOA



6 BELINDA

4. Definition of matching rules: The fundamental problem of tuple space-based ser-
vice invocation and interaction is how to define matching rules, namely, which
service can accept a client’'s request, process it and write a response back into
tuple space. Purely functional matching based on names/types is not possible
here: there are many services accepting the same tuple 'signatures’ but perform-
ing semantically different operations. The semantic description must therefore
be extended not only to services, but also to clients: a client must specify se-
mantics of the request if a tuple space is to provide the best (closest) matching
available. Semantic annotations and rules will be defined that will be employed
in the matching process. The problem of multiple matches will be also treated.
Formalisms and ontologies will be investigated which can potentially describe the
semantic issues, such as Frame logic [18], abstract machine notation [2], abstract
state machines [7], Web Service Modeling Language [31], Resource Description
Framework [29], etc. Deliverables of this phase will be methodologies and algo-
rithms for semantic tuple matching.

5. Composition operators, data flow, process execution: Composition operators are
high-level language commands that enable composition of processes (services)
into arbitrary topologies using mediation of the tuple space. The basic com-
position operators that will be defined are sequence, parallel (with and without
communication), selection, choice and loop. They will be realized as 'macros’
using basic commands (in, out, read, eval). Arity of the composition operators,
as well as their properties (commutativity, associativity and distributivity) will be
determined. With each operator, a set of data flow rules will be associated, defin-
ing how to perform mapping of formal and actual parameters exchanged by the
interacting processes. A process execution server (e.g., an BPEL server imple-
mentation) is in charge of service composition enactment by scheduling basic
Belinda operations with respect to the specified composition. Deliverables ex-
pected are composition operators and data flow rules, process execution server
implementation/integration.

6. Static Belinda verification: Due to the limited command set, it is expected that
static verification of Belinda programs (processes) will be possible to some extent.
The intention is to use the specifics of generative communication and its proper-
ties to enable following verification forms: type checking, invariant preservation,
correct termination and feasibility. This will be done in accordance with the cho-
sen formalism for semantic matching. The role of the static program verification is
twofold: preventing incorrect programs to execute and discovering incorrect com-
binations during the matching process, thus speeding it up and making it more
effective. Note that up to this point (due to timing constraints), realization of ex-
ception handling mechanism is not planned. We strongly believe that verification
and not exception handling should be the preferred way of addressing incorrect
behavior of Belinda program. However, this does not mean that in some later
stage exception handling mechanism will not be supported. Although a formal
exception handling mechanism will not be supported initially, user console and
process execution server will monitor process enactment and maintain log file

Open Research Questions in SOA 5-23



Asynchronicity and Loose Coupling in Service Oriented Architectures

structure. The outcome of this phase should be a formal method and algorithms
for static verification of Belinda programs (processes).

7. User console: User console encompasses standard input/output that serves as
a connection to the process execution server. All communication is directed to
the process execution server, even in the case of basic client-server invocation.
No graphical user interface is planed for now, only terminal window. Belinda pro-
grams can be submitted either by typing them in the console, or by loading their
description from a file. It will optionally be possible to use the console to include
new external services to the tuple space by connecting them to the Belinda end-
point, but this process is not the part of the Belinda syntax and will be performed
using pre-defined scripts, activated from within the user console. Deliverable is
an input/output mechanism for the user console.

The basic idea behind Belinda, eliminating the service broker using shared dis-
tributed memory for achieving space- and time-decoupled communication, presents a
radical departure from the well established practice of the service-oriented computing
principles. This approach potentially offers a possibility of easy and natural application
of message exchange patterns and automated service invocation and composition,
which are highly desirable, but at this time not available, features in the area of service-
oriented computing.

7 Conclusion

Taking historical perspective into account, SOA is a logical step initiated by the recent
developments in the areas of distributed computing and business process modeling,
as well as increasing ubiquity of networking technologies. The main goal of SOA is
to introduce standard methodologies, languages and protocols for development of dis-
tributed applications out of loosely coupled, independent and autonomous software
entities. The goal of this document was to identify asynchronous service invocations
and loose coupling as enabling architectural properties, offer an overview of available
options for realizing them, as well as to sketch a new process-based language Belinda,
aimed at modeling asynchronous and decoupled service interactions.

References

[1] Apache Axis 2. http://ws.apache.org/axis2/index.html, 2006.
[2] J.R. Abrial. The B Book. Cambridge University Press, 1996.

[3] Holt Adams. Asynchronous operations and Web services, Part 2. http://www-128.ibm.com/
developerworks/library/ws-asynch2/index.html, 2002.

[4] C. Alexander. A Pattern Language. Oxford University Press, 1977.

[5] A. Barros and E. Boerger. A Compositional Framework for Service Interaction Patterns and In-
teraction Flows. In Proceedings of the Seventh International Conference on Formal Engineering
Methods (ICFEM’2005), pages 5-35, Manchester, UK, 2005.

5-24 Open Research Questions in SOA



REFERENCES

(6]

(7]

(8]

9]

(10]
(11]

[12]

(13]
(14]

[15]
[16]
(17]
(18]

[19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

A. Barros, M. Dumas, and A. ter Hofstede. Service Interaction Patterns: Towards a Reference
Framework for Service-based Business Process Interconnection. In Technical Report FIT-TR-2005-
02, Faculty of Information Technology, Queensland University of Technology, Brisbane, Australia,
2005.

E. Boerger and R. Staerk. Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer-Verlag, 2003.

Don Box, Francisco Curbera, and et al. Web Services Addressing (WS-Addressing).
http://www.w3.org/Submission/ws-addressing/, 2004.

S. Burbeck. The Tao of e-business Services. Emerging Technologies, IBM Software Group,
ftp://www6.software.ibm.com/software/developer/library/ws-tao.pdf, 2000.

D.A. Chappel. Enterprise Service Bus. O'Reilly Media Inc., 2004.

R. Chinnici, J-J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description Language
(WSDL) Version 2.0. http://www.w3.org/TR/wsdl20/, 2006.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Lan-
guage (WSDL) 1.1. http://www.w3.0org/TR/wsdl, 2001.

Web Services Invocation Framework. http://ws.apache.org/wsif/, 2006.

E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and Practice. Addison-
Wesley, 1999.

E. Gamma, R. Helm, R. Johnson, and J. Ulissides. Design Patterns. Addison-Wesley, 1995.
D. Gelernter. Generative Communication in Linda. Communications of the ACM, 7(1), 1985.
W3C Working Group. Web Services Architecture. http://www.w3.org/TR/ws-arch/, 2004.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages.
Journal of the ACM, 42(4):741-843, 1995.

D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Architecture Best Practices
(The Coad Series). Prentice Hall PTR, 2004.

Doug Lea, Steve Vinoski, and Werner Vogels. Asynchronous Middleware and Services. |EEE
Internet Computing, 10(1):14-17, 2006.

S. Loughran and E. Smith. Rethinking the Java SOAP Stack. HP Laboratories Bristol Technical
Report, HPL-2005-83, 2005.

N. Milanovic. Service Engineering Design Patterns. In Proceedings of the IEEE Symposium on
Service-oriented System Engineering, Shanghai, China, 2006.

G. Prasad, R. Taneja, and V. Todankar. Web and Enterprise Architecture Design Patterns for J2EE.
O’Reilly OnJava, http://www.onjava.com/Ipt/a/4161, 2003.

J.M. Snell. Web services programming tips and tricks: Learn simple, practical Web services design
patterns. www-106.ibm.com/developerworks/library/ws-tip-altdesignl/, /ws-tip-altdesign2/, /ws-tip-
altdesign3/, /ws-tip-altdesign4/, 2005.

Richard Stevens. UNIX Network Programming, Volume 2, Second Edition: Interprocess Commu-
nications. Prentice Hall, 1999.

Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall, 2002.

R. Tolksdorf, F. Liebsch, and D. M. Nguyen. XMLSpaces.NET: An Extensible Tuplespace as XML-
Middleware. In Report B 03-08, Free University Berlin, ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-03-
08.pdf, 2003.

Open Research Questions in SOA 5-25



Asynchronicity and Loose Coupling in Service Oriented Architectures

[28] A. van Moorsel. On Best-Effort and Dependability. In Proceedings of the 2nd International Service
Availability Forum (ISAS), pages 99-101, Berlin, Germany, 2005.

[29] W3C. Resource Description Framework (RDF). http://www.w3.0org/RDF/, 2006.

[30] S. Wilkes and J. Harby. SOA Blueprints Reference Example Requirements Specification. SOA
Center, 2004.

[31] WSML working group. The Web Service Modeling Language WSML. http://www. wsmo.org/
wsml/wsml-syntax/, 2006.

[32] Uwe Zdun, Markus Voelter, and Michael Kircher. Design and Implementation of an Asynchronous
Invocation Framework for Web Services. In Web Services - ICWS-Europe, pages 64—-78, 2003.

5-26 Open Research Questions in SOA



Technische Berichte des Hasso-Plattner-Institut

Band

10

11

12

13

14

ISBN

3-937786-37-6

3-935024-98-3

3-937786-28-7

3-937786-10-4

9-937786-14-7

3-937786-54-6

3-937786-56-2

3-937786-72-4

3-937786-73-2

3-937786-78-3

3-937786-81-3

3-937786-89-9 /
978-3-937786-
89-6

3-939469-13-0/
978-3-939469-
13-1

3-939469-23-8 /
978-3-939469-
23-0

Titel

Auf dem Weg zu einem
Softwareingenieurwesen

Conceptual Architecture Pattern

Grid-Computing

JAVA Language Conversion Assitant An
Analysis

The Apache Modeling Project

Konzepte der Softwarevisualisierung fir
komplexe, objektorientierte
Softwaresysteme

Visualizing Design and Spatial Assembly
of Interactive CSG

Resourtcenpartitionierung fur Grid-
Systeme

Sichere Ausfuhrung nich
vertrauenswiuirdiger Programme

Survey on Service Composition

Requirements for Service Cinoisutuib

An e-Librarian Service - Natural Anguage
Interface for an Efficient Semantic Search
within Multimedia Resources

A Virtual Machine Architecture for
Creating IT-Security Labs

Aspektorientierte Programmierung —
Uberblick tiber Techniken und Werkzeuge

Autoren / Redaktion

Prof. Dr. Ing. S. Wendt

Bernhard Grone, Frank Keller

Dipl.-Inf. Peter Troger; Sabine
Wagner

Stefan Richter, Stefan Henze,
Eiko Bittner, Steffen Bach,
Andreas Polze

Bernhard Grone, Andreas
Kndépfel, Rudolf Kugel und Oliver
Schmidt

Prof. Dr. Jirgen Déllner,
Johannes Bohnet

Prof. Dr. Jurgen Ddllner, Florian
Kirsch, Marc Nienhaus

Prof. Dr. A. Polze Matthias
Lendholt, Peter Tréger

Prof. Dr. A. Polze Johannes
Nicolai, Peter Troger

Prof. Dr. M. Weske Dominik
Kuropka Harald Meyer

Prof. Dr. M. Weske Dominik
Kuropka Harald Meyer

Serge Linckels, Christoph Meinel

Ji Hu, Dirk Cordel, Christoph
Meinel

Janin Jeske, Bastian Brehmer, Falko
Menge, Stefan Huttenrauch, Christian
Adam, Benjamin Schiler, Wolfgang
Schult, Andreas Rasche, Andreas
Polze



15

16

Application Server Technology

SAP Application Server Technology

Peter Tabeling, Rasmus Hofmann,
Bernhard Grone

Peter Tabeling, Bernhard Gréne






ISBN 978-939469-58-2
ISSN 1613-5652



	Titel
	Impressum
	Content
	Design and Composition of 3DGeoinformation Services (Benjamin Hagedorn)
	1 Introduction
	2 Geoinformation and Geovisualization
	2.1 Geoinformation
	2.2 From GIS to GDI
	2.2.1 GIS and Internet-Mapping
	2.2.2 Geodata Infrastructures

	2.3 3D Geovisualization

	3 Geoinformation Services
	3.1 Service-oriented Computing
	3.2 Geoservices
	3.2.1 Interoperability
	3.2.2 Geoservice Chaining

	3.3 Standards for Geoservices
	3.3.1 OGC Web Services
	3.3.2 The Google-Way

	3.4 The OGC Portrayal Model
	3.5 Open Questions

	4 Interoperable 3D Geovisualization
	4.1 Service-based construction of 3D geovirtual environments
	4.1.1 Utilization of CityGML
	4.1.2 Integration of other geoinformation sources

	4.2 3D Client Development
	4.2.1 Interaction with 3D Geoservices


	5 Integrative 3D Viewer Client
	5.1 Project overview
	5.2 3D View Client
	5.2.1 Technical Basis
	5.2.2 Requirements

	5.3 Current Results

	6 Conclusion and Future Work
	References

	Operating System Abstractions forService-Based Systems (Michael Schöbel)
	1 Introduction
	1.1 Service-based systems
	1.2 Special properties of service-based systems

	2 Related Work
	2.1 Request processing in current server systems
	2.1.1 Threaded request processing
	2.1.2 Event-driven request processing
	2.1.3 Design patterns for request processing
	2.1.4 Summary

	2.2 Task scheduling in current server systems
	2.2.1 Cohort scheduling
	2.2.2 Affinity Scheduling
	2.2.3 Coscheduling/Gangscheduling
	2.2.4 Scheduler activations
	2.2.5 Complete scheduling model
	2.2.6 Summary

	2.3 Virtualization
	2.3.1 Virtualization technologies
	2.3.2 Virtualization in service-based systems
	2.3.3 Flattening virtualization layers


	3 New abstraction: batch scheduling
	3.1 Problem description
	3.2 Solution approach
	3.2.1 General concept
	3.2.2 Implementation concept

	3.3 Implementation with the Windows Research Kernel
	3.3.1 Overview
	3.3.2 Implementation


	4 Conclusion and Future Work
	4.1 Expected contributions
	4.2 Next steps


	References
	A Task-oriented Approach toUser-centered Design of Service-basedEnterprise Applications (Matthias Uflacker)
	1 Introduction
	2 Problem Definition
	2.1 Enterprise Application Development: Dealing with Complexity
	2.2 Striving for Simplicity
	2.3 Enterprise Services and User Interaction

	3 Related Work
	3.1 User-Centered Design
	3.2 Usage-Centered Design
	3.3 Interaction Modeling

	4 Complexity in Enterprise Applications
	4.1 Classifying Complexity
	4.1.1 Functional Complexity
	4.1.2 Non-functional Complexity

	4.2 Case Study: R/3 Sales & Distribution
	4.2.1 Overview
	4.2.2 Customer Landscape
	4.2.3 Process Automation
	4.2.4 Distribution channels and Order variants

	4.3 Dealing with Complexity
	4.3.1 User-centered Interaction Design and Redesign
	4.3.2 Reduction by Focusing


	5 Designing Service-based Enterprise Applications
	6 Next Steps
	References

	A Framework for Adaptive Transport inService-Oriented Systems based onPerformance Prediction (Flavius Copaciu)
	1 Introduction
	2 Overview of the SOA Communication Stack
	2.1 SOAP
	2.2 REST
	2.3 HTTP
	2.4 SMTP
	2.5 TCP
	2.6 UDP
	2.7 Other protocols

	3 Quantitative Evaluation of SOA Communication Infrastructure
	4 ATrA - Adaptive Transport Architecture
	4.1 Related work
	4.2 Architecture Design

	5 WS invocation over UMTS
	6 Conclusions
	Acknowledgments
	References

	Asynchronicity and Loose Coupling inService Oriented Architectures (Nikola Milanovic)
	1 Introduction
	2 Asynchronicity and Loose Coupling in DistributedSystems
	3 Service Oriented Architecture
	4 Asynchronous Operations in SOA
	5 Loose Coupling in SOA
	5.1 Design Patterns
	5.2 Alternative Communication Mechanisms
	5.3 (Enterprise) Service Bus
	6 Belinda
	7 Conclusion
	References


	Technische Berichte des Hasso-Plattner-Institut



