
ProsumerFX: Mobile Design of Image Stylization Components
Tobias Dürschmid
Hasso Plattner Institute,

University of Potsdam, Germany

Maximilian Söchting
Hasso Plattner Institute,

University of Potsdam, Germany

Amir Semmo
Hasso Plattner Institute,

University of Potsdam, Germany

Matthias Trapp
Hasso Plattner Institute,

University of Potsdam, Germany

Jürgen Döllner
Hasso Plattner Institute,

University of Potsdam, Germany

A B C D E

Figure 1: Use case of the presented app for creating and sharing new visual styles: (A) Original photo; (B) adding a neural style
transfer effect with corresponding preset; (C) adding a watercolor filter with adjusted parameters; (D) adding a color filter with
corresponding preset; (E) sharing the created parameterizable visual effect and using it on another device.

ABSTRACT
With the continuous advances of mobile graphics hardware, high-
quality image stylization—e.g., based on image filtering, stroke-
based rendering, and neural style transfer—is becoming feasible and
increasingly used in casual creativity apps. The creative expression
facilitated by these mobile apps, however, is typically limited with
respect to the usage and application of pre-defined visual styles,
which ultimately do not include their design and composition—
an inherent requirement of prosumers. We present ProsumerFX, a
GPU-based app that enables to interactively design parameteriz-
able image stylization components on-device by reusing building
blocks of image processing effects and pipelines. Furthermore, the
presentation of the effects can be customized by modifying the
icons, names, and order of parameters and presets. Thereby, the
customized visual styles are defined as platform-independent ef-
fects and can be shared with other users via a web-based platform
and database. Together with the presented mobile app, this system
approach supports collaborative works for designing visual styles,
including their rapid prototyping, A/B testing, publishing, and dis-
tribution. Thus, it satisfies the needs for creative expression of both
professionals as well as the general public.

SA ’17 Symposium on Mobile Graphics & Interactive Applications , November 27-30, 2017,
Bangkok, Thailand
© 2017 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of SA
’17 Symposium on Mobile Graphics & Interactive Applications , https://doi.org/10.1145/
3132787.3139208.

CCS CONCEPTS
• Human-centered computing → Collaborative content cre-
ation; • Computing methodologies→ Image manipulation;

KEYWORDS
Image stylization, design, effect composition, mobile devices, inter-
action, rapid prototyping

ACM Reference Format:
Tobias Dürschmid, Maximilian Söchting, Amir Semmo, Matthias Trapp,
and Jürgen Döllner. 2017. ProsumerFX: Mobile Design of Image Stylization
Components. In Proceedings of SA ’17 Symposium on Mobile Graphics &
Interactive Applications . ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3132787.3139208

1 INTRODUCTION
Interactive image stylization enjoys a growing popularity in mobile
expressive rendering [Dev 2013]. Prominent mobile apps (e.g., In-
stagram, Snapchat, or Prisma) attract millions of users each day—a
popularity that may also be reasoned by the increased likelihood
of stylized photos to be viewed and commented on [Bakhshi et al.
2015]. Typically, these apps provide stylization components with
predefined parameter values to synthesize artistic renditions of
user-generated contents, and thus are primarily directed towards
“consuming” rather than “producing” custom parameterizable vi-
sual styles to facilitate creative expression.

Providing users with interactive tools for low-level and high-
level parameterization of image stylization components is a desired

https://doi.org/10.1145/3132787.3139208
https://doi.org/10.1145/3132787.3139208
https://doi.org/10.1145/3132787.3139208
https://doi.org/10.1145/3132787.3139208


SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand T. Dürschmid et al.

goal in three respects: (1) to facilitate creative expression at multi-
ple levels of control—e.g., for interactive non-photorealistic render-
ing [Isenberg 2016; Semmo et al. 2016b]; (2) for the prosumption of
image and video processing operations (IVOs), i.e., by combining
aspects of consumption and production [Ritzer et al. 2012; Ritzer
and Jurgenson 2010]; and (3) for the creation and manipulation
of visual styles and their user interface (UI) to enable rapid proto-
typing of IVOs. In particular, these are important aspects of app
development to shorten the time-to-market, facilitate user-centered
design, and thus increase customer satisfaction. However, the de-
velopment of a system that considers these aspects faces multiple
technical challenges:

Interactivity: The modifications of the IVOs should be ap-
plied with interactive performance to provide immediate
visual feedback, e.g., when adding or removing an effect, or
reordering the effect pipeline. In this respect, however, mo-
bile devices typically provide very constrained processing
capabilities and memory [Capin et al. 2008].

Device Heterogeneity: Mobile graphics hardware and APIs
often vary considerably. On the one hand, IVOs should be
hardware optimized, but on the other hand, the IVOs need
to be platform-independent to be used on different devices.

Technology Transparency: The adaption of image process-
ing operations to new technology (e.g., Vulkan or newer
OpenGL versions) and new hardware features, as well as
APIs, must be as simple as possible.

Reusable Building Blocks: IVOs should be handled as mod-
ular units that can be referenced by others and reused for
the design of new image stylization components.

In previous works [Dürschmid et al. 2017; Semmo et al. 2016b], we
described a framework for interactive parameterization of image
filtering operations on three levels of control: (1) convenience pre-
sets; (2) global parameters; and (3) local parameter adjustments
using on-screen painting metaphors [Semmo et al. 2016a]. Based
on that framework, this paper presents a system that enables its
users to easily modify and recombine IVOs, i.e., to create and share
new image stylization components that support these three inter-
action concepts. To summarize, the contributions of this paper are
as follows: (1) a concept for mobile prosumption of image styl-
ization components is proposed, which enables rapid prototyping
for professionals and casual creativity for the general public; (2)
a document format for platform-independent persistence of IVOs
is provided that allows to exchange image stylization components
across different devices and platforms; and (3) a web-based platform
demonstrates how created IVOs can be shared among users, thus
supporting collaboration.

2 RELATEDWORK
This section describes the basic background of the prosumer culture
and discusses previous work of interactive composition as well as
design of image stylization components on desktop and mobile
platforms.

2.1 Prosumer Culture
Aprosumer is a person “who is both producer and consumer” [Ritzer
et al. 2012]. The term traces back to Alvin Toffler in 1980 [Toffler

1980]. However, the 21st century gives rise to the prosumer, espe-
cially because of the Web 2.0, which popularizes user-generated
content [Fuchs 2010; Ritzer et al. 2012]. Prominent examples are
Wikipedia, Facebook, YouTube, and Flickr. Nowadays, consumers
want to become prosumers, co-create value, and be creative on their
own [Prahalad and Ramaswamy 2004].

2.2 Desktop Applications
Artistic stylization of images and video has been explored par-
ticularly on desktop systems for the task of non-photorealistic
rendering (NPR) [Kyprianidis et al. 2013; Rosin and Collomosse
2013]. Applications using NPR techniques, however, primarily im-
plement stylization techniques as invariable rendering pipelines
of pre-defined parameter sets that cannot be individually designed
or composed. First interactive tools such as Gratin [Vergne and
Barla 2015] or ImagePlay1 enable interactive effect specification
and editing of such pipelines, whereas contemporary 3D modeling
software (e.g., Autodesk®Maya and 3dsMax) traditionally supports
the professional creation of rendering effects, but which cannot be
shared and applied to images or video on mobile platforms.

2.3 Mobile Applications
In recent years, mobile expressive rendering [Dev 2013] has gained
increasing interest to simulate popular media and effects such as
cartoon [Fischer et al. 2008], watercolor [DiVerdi et al. 2013; Oh et al.
2012], and oil paint [Kang and Yoon 2015; Wexler and Dezeustre
2012] for casual creativity and image abstraction [Winnemöller
2013]. For instance, the popular image filtering app Instagram uses
vignettes and color look-up tables [Selan 2004] to create retro looks
through color transformations. Thereby, users are able to adjust
global parameters, such as contrast and brightness. More complex
stylization effects are provided by neural style transfer apps [Gatys
et al. 2016; Johnson et al. 2016] such as Prisma, which simulate
artistic styles of famous artists and epochs, but typically do not pro-
vide explicit parameterizations of style components or phenomena.
Conversely, this can be achieved by mask-based parameter painting
apps such as BeCasso [Pasewaldt et al. 2016; Semmo et al. 2016a]
and PaintCan [Benedetti et al. 2014], where image filtering tech-
niques that simulate watercolor, oil paint, and cartoon styles can be
adjusted with a high, medium and low level-of-control [Isenberg
2016]. The combination of neural style transfer with post processing
via image filtering can be done with Pictory [Semmo et al. 2017b].

Given these applications to reflect the state of the art in semi-
automatic image and video stylization, however, mobile users are
only able to consume effects. By contrast, this work seeks to enable
the modification and platform-independent sharing of user-defined
visual styles. To achieve this, a system approach is proposed for
collaborative designing of visual styles and their application across
different platforms by providing reusable IVOs. Sharing reusable
aspects of IVOs has already been addressed in previous apps, but
which are typically limited to sharing parameter configurations
for pre-defined effects, e.g., the app Snapseed uses QR codes. By
contrast, the proposed system and app provide a more generalized
approach by also enabling to share user-defined parameterizable
effects.
1http://imageplay.io/

http://imageplay.io/


ProsumerFX: Mobile Design of Image Stylization Components SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand

low medium high

Consumption

Prosumption

Preset SelectionParameter AdjustmentParameter Painting

Parameter Modification Preset Modification

Effect Recombination

Level of Control

Figure 2: Creativity space with regard to level of control of the interactions. Low-level control is the adjustment of image
details, e.g., local parameter painting. High-level control is the convenient modification of more abstract image properties,
e.g., using presets or by adding / removing effects. The other dimension indicates whether the interaction just modifies the
image by consuming an effect, or rather produces a new effect with a custom presentation.

3 DESIGNING EFFECTS ON MOBILE DEVICES
In contrast to existing image manipulation apps, the proposed ap-
proach enables users to modify image stylization components, save
the new components, and share them online. These components
consist of image and video processing operations (IVOs) (Sec. 3.1).

The client application covers two major IVO aspects: (1) the pro-
cessing function, i.e., the visual transformation function applied to
the input image to create an output image (Sec. 3.2), and (2) the pre-
sentation, i.e., the offered user experience (Sec. 3.3). The presented
mobile app provides modifications of both aspects bundled in a
single view to adjust both concurrently.

The proposed concept enables its users to parameterize IVOs
on three levels of control [Isenberg 2016]: convenience presets,
global parameters, and local parameter adjustments using on-screen
painting [Semmo et al. 2016b]. Furthermore, prosumers can modify
and recombine IVOs to create a new visual style that supports these
three levels of control. A classification of the presented interaction
concepts is given in Fig. 2.

3.1 Image and Video Processing Operations
To enable manipulation and combination of IVOs, a modular rep-
resentation is required. To provide such a modular structure, hier-
archical decomposition into effect pipelines, effects, and passes is
used [Semmo et al. 2016b] and briefly described in the following.

Effect pipeline. An effect pipeline represents the highest-level
abstraction of IVOs. It has a single input image, which can originate
from different sources (e.g., camera or gallery), and produces a
single output image to be displayed to the user. A pipeline mainly
consists of an ordered list of effects that defines the processing steps
of the component. By recombining effects, a variety of visual styles
can be created.

Effect. An effect is a parameterizable IVO that receives a single
image as input, and outputs one resulting image. It constitutes one
atomic, sequenceable element of a visual style. Effects can delegate
reoccurring processing steps (e.g., the computation of contours
using a difference-of-Gaussians filter [Winnemöller et al. 2012])
to effect fragments. An effect fragment is a reusable part that can
be shared among many effects. It can have multiple inputs and
outputs and can delegate steps to other effect fragments. Effects
and effect fragments can be parameterized by users via presets and
parameters that map to technical inputs of rendering passes.

Rendering pass. A rendering pass is the lowest-level IVO. In the
context of OpenGL ES, a rendering pass is basically a shader pro-
gram having multiple inputs (textures or parameter values) and it
usually renders one output texture or buffer. More complex passes
(e.g., based on convolutional neural networks, ping-pong rendering,
compute passes, or passes that execute Java code) can be used in
combination with the standard render-to-texture passes.

3.2 Modifications of Processing Function
Modifications of the processing function (i.e., the visual transfor-
mation of an input image into an output image) of IVOs are the
most crucial modifications, users can perform. Users get instant
feedback, because these modifications influence the output image
directly and immediately. Hence, this enables rapid prototyping of
IVOs.

To extend the visual style, users can add an effect to the effects
list. Subsequently, they can interactively explore the effect data-
base of the web-based platform and choose one effect to add. The
effect is downloaded, parsed, and appended to the current pipeline.
To reduce the network traffic and to provide support for offline
situations, the web pages and the downloaded effects are cached
locally. Moreover, to remove an element of the visual style, effects
can be removed from the current pipeline using a swipe gesture.
To test new combinations, the execution order of the effects in the
current pipeline can be changed by using a Drag & Drop interaction
technique. The real-time rendering performance provides immedi-
ate feedback of the current effect order, even before releasing the
currently dragged effect.

3.3 Modifications of the Presentation
An IVO can be presented in different forms tailored to different
target groups, e.g., technical parameterization for experts or nu-
merous convenient presets for novice users. The proposed app
encourages the users’ creativity by enabling them to adjust the
user interface presentation of the IVO components. To provide a
consistent set of convenient parameter configurations, users can
add, remove, and reorder presets similar to the effect interactions
described previously. Furthermore, users can remove and reorder
parameters similar to presets. To customize the appearance of the
parameters, presets or effect, users can rename them and change
their representative images, e.g., icons, teaser images.



SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand T. Dürschmid et al.

Serializer

IVO
domain 
model

Rendering

User

User 
interface MVC

XML

Local Asset
Storage

Network 
I/O

Client User Server

View 
Renderer

Asset 
Bundler

Asset 
Publisher

Archive

HTML

requests

Data Server

REST 
API

Asset Storage
File System

Meta Data Storage
Relational Database

JSON

Archives

downloads

Archives

requests

uploads
Input
Image

Output 
Image

Archive

XML

displays

downloads

downloads

uploads

displays web pages

reads and writes 
meta data

writes

reads

reads and writes 
asset files

Name
Software
Module

Name

Application 
Boundaries

Network 
Communication

File System
Access

Database
Access

Local Module 
Communication

Figure 3: Overview of the system structure: Direct manipulation of image and video processing operations (IVOs) is provided
by a Model-View-Controller (MVC) [Apple Inc. 2015]. The IVOs are persisted to extensible markup language (XML) files by a
serializer [Riehle et al. 1997]. To exchange these effect XML files in conjunction with corresponding meta data, the user server
offers a REST API. The data server stores this in form of assets (i.e, reusable effect modules), and the associated meta data.

4 IMPLEMENTATION
An overview of the proposed client-server system, which enables
the design of visual effects on mobile devices, is given in Fig. 3.
To handle the complexity of the IVOs implementations, a domain
model is used, which represents the IVOs as classes and objects
(Sec. 4.1). The direct manipulation of the domain model for IVOs
is implemented using a Model-View-Controller [Apple Inc. 2015]
(Sec. 4.2). To persist the state of the model, a serializer [Riehle
et al. 1997] is used (Sec. 4.3). Based on this developed persistence
concept, the server components implement the management and
provisioning of IVO assets (Sec. 4.4) according to [Dürschmid 2017].

4.1 Domain Model of IVOs
The states and associations of IVOs can become very complex.
Therefore, the IVOs described in Sec. 3.1 are implemented in corre-
sponding classes and objects with their relationships (Fig. 4). Since
effects and effect fragments share common responsibilities, such
as maintaining passes, parameters as well as presets, a common
super class is extracted. This object-oriented layer generalizes the
graphics APIs by encapsulating calls to them in convenience meth-
ods. By abstracting a common interface for image processing, the
domain model facilitates technology transparency.

Effect EffectFragment

EffectBase

Pass

ParameterEffectPipeline

Preset

<<Interface>>

IRenderable

1..*

0..*

1

0..*

1

1

0..*

1 0..*

0..*

Figure 4: Overview of the architectural domain model of
IVOs (blue) and related classes. Notation: UML 2.5 class di-
agram.

4.2 Direct Manipulation of IVOs
IVO changes performed by the user should directly influence the
rendering state of the IVOs. Addressing usability, the user-perceived
latency of modifications has to be interactive while keeping the
memory consumption low. Furthermore, the persistence of the
current state of the model needs to be as easy as possible.

To provide an architecture that supports all of these require-
ments, a Model-View-Controller (MVC) [Apple Inc. 2015] is used.
Hence, the domain model has the role of the model that represents
the domain logic of IVOs, stores the data and defines respective
operations. The user interface has the role of the view that directs
input events such as drag and drop gestures, or clicks on buttons
to the controller that transforms the events to model changes. The
controller calls the corresponding methods to manipulate the state
of the model. Afterwards, the model notifies the views that regis-
tered of changes of the model (e.g., the name of a parameter) using
the Observer design pattern [Gamma et al. 1995].

By offering information hiding [Parnas 1972], this separation
provides domain model evolution. Since all information is kept
in the model, the implementation of persistence is simplified. Re-
moving an effect or preset immediately removes the underlying
model. Thereby, memory consumption is minimized. The MVC pro-
vides interactive manipulation performance, because it immediately
updates GPU resources.

4.3 Persistence of IVOs
Users should be able to share modified effects. Therefore, performed
modifications should be durable in a platform-independent form.
To reuse common building blocks (e.g., common algorithms, tex-
tures, or other resources) without duplication, the document format
should support modularity.

IVOs are persisted using multiple XML files (Fig. 6) that define its
content in a high-level, human readable form. To provide platform
independence, each IVOs is separated in a platform-independent
part (the definition) and possibly multiple platform-specific parts



ProsumerFX: Mobile Design of Image Stylization Components SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand

(the implementations). This separation is designed to modularize the
abstract, user-modifiable parts of an IVO in a single file. To support
platform independence, the app keeps implementations transparent,
i.e., users cannot modify implementations from within the app. Fur-
thermore, to avoid duplication, reusable parts of implementations
can be modularized in effect fragments.

The effect definition basically specifies the name of the IVO, its
parameters (icon, name, type, and range), and its presets (icon,
name, and values for each parameter). Furthermore, it can con-
tain textures or geometry that define the visual appearance of the
IVOs (e.g., canvas textures or color look-up tables) to be shared
among all implementations. The effect implementation specifies the
processing algorithm by defining rendering passes, corresponding
shader programs, and a control flow that defines the execution
order of the passes. An implementation set file defines the mapping
of a definition to a corresponding implementation for each device
specification.

4.4 Server-based Provisioning of IVOs
In order for effect authors to effectively share their work and profit
from each others’ creativity, a web-based platform with an effect
database has been developed and set up. It enables users of the
presented app and future apps to browse, download, and upload
IVOs. In addition thereto, the server stores meta data such as met-
rics, example images, and textual descriptions of the IVO. Instead
of simply uploading and manage complete IVOs, a modular asset
format has been developed that reduces redundancy in uploaded
effect files, optimizes bandwidth, and enables versioning of assets.

Asset Modularization. An asset can either contain an effect defi-
nition, an effect implementation, an implementation set, or an effect
fragment in combination with corresponding resources, e.g., tex-
tures, icons, shaders, and feed-forward convolutional neural net-
works. To reduce duplication, reusable resources can be stored in
separate, common assets and then be referenced (cf. Fig. 6). Since

A B

C D

Figure 5: Four views of the web store interface: (A) a scrol-
lable gallery; (B) a full screen carousel; (C) a basic list; (D) a
detailed list. The two former views are based on asset listings
and therefore include an example image and a short descrip-
tion for each asset. The latter two views display all available
assets and are intended for development purposes only.

Effect definition

Implementation set

Effect 
implementation

(Vulkan)

Effect 
implementation

(OpenGL ES)

Common asset
(canvas textures)

Common asset
(icons)

Implementation set

Effect 
implementation

(WebGL)

Effect 
implementation

(OpenGL)

IVO 2IVO 1

Effect definition

Depends on

Asset

Figure 6: Two example IVOs, separated into appropriately
categorized assets. IVO 1 is implemented for the two plat-
forms OpenGL ES and Vulkan. The specific render pipelines
are described in the respective effect implementation files.
Due to the asset separation, all implementations of IVO 1
and IVO 2 can reference and reuse the same set of canvas
textures.

assets are usually small sized, atomic units, setting up dependen-
cies between different assets belonging to the same IVO is possible.
These references are resolved by the user server once a client re-
quests an asset with dependencies, delivering all depended assets
using the asset bundler module. The separation into assets also en-
ables versioning of atomic assets, i.e., users can submit updated
versions of their assets and iteratively improve them. Older ver-
sions of assets can still be referenced and downloaded, but are
not visible for consumption on the database web site. Since the
device heterogeneity is addressed using implementation sets and
implementations, the server can utilize this concept to deliver only
compatible implementations. On requesting IVOs from the server,
clients can submit a device specification describing their hardware
specification and supported graphics APIs within the query. The
server then resolves the optimal implementation that is compatible
for the requesting device and delivers it as part of the IVO archive.
This reduces required bandwidth and client storage space.

Server Architecture. In order to fulfill the three basic use cases
(browsing, downloading, and uploading IVOs), a modularization
over two different servers has been considered appropriate during
the design stage (cf. Fig. 3).

The Data Server provides a REST (Representational State Trans-
fer) API that allows for creation and retrieval of asset meta data,
asset files, and user accounts. Authentication with a user account
is required for the creation and deletion of assets. The data server
REST API is designed for developers, as all responses are delivered
as machine-readable JSON objects. The Data Server contains mini-
mal domain knowledge as it knows of the properties of the assets
but does not know any semantic meaning for any of the properties.

The User Server enables a more user-friendly interaction with
the data provided by the Data Server. First, the User Server offers
rendered HTML pages that allow for easy asset exploration through
a web-store-like interface (cf. Fig. 5). Furthermore, the server allows
users to request asset bundles, which are executable sets of assets
put into one single archive [Söchting 2017].



SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand T. Dürschmid et al.

5 USE CASES AND STYLIZATION EFFECTS
The proposed concept and implementation provides manifold use
cases and a flexible design of stylization effects, which are outlined
in the following.

5.1 Use Cases
Use cases and scenarios are directed to two main target groups: (1)
novice users that utilize the system to share results of their casual
creativity, and (2) technical artists that use the system for rapid
prototyping and A/B testing of new image stylization components.

Consumption of IVOs. Components of IVOs can be consumed
and applied to user-generated contents by the users of both target
groups. In addition thereto, the individual parameters and presets
of the respective IVOs can be edited and stored locally on device for
reuse. This functionality represents also the basis for both target
groups to create variants of IVOs. Furthermore, it can be coupled
with notification or subscription models to keep users up-to-date.

Production of IVOs. By manipulating the processing function and
the presentation of IVOs, users can produce a new IVO. This use case
is common for both target groups. Rapid prototyping enables easy
and quick creation of IVOs. In the context of casual creativity, this
is the foundation to provide a tool that can be used by novice users.
Technical artists can apply the rapid prototyping features to quickly
modify the presentation of IVOs between A/B testing sessions.
Therefore, they can simply conduct multiple iterations and instantly
respond to collected feedback by adjusting the parameter order,
exchanging icons, or using more descriptive names. Afterwards,
the created visual style can be integrated in a tailored stand-alone
app, using a product line approach [Dürschmid et al. 2017].

Community as Channel for Prosumers. The web-based platform
offers possibilities of downloading (consuming) and uploading (pro-
ducing) IVOs. Therefore, it provides a channel for prosumers of IVOs
to share their created components to different users and groups.
Furthermore, they can rate IVOs and share them using linking or
transferred using push notifications. This use case supports casual
creativity by proving an open social media channel that enables
sharing of the created results. Technical artists can use the com-
munity to distribute their work and to sell it to a wide range of
customers.

5.2 Stylization Effects
By offering a modular document format that supports to reference
common effects, effect fragments, shaders, or textures, the con-
cept supports the creation and usage of re-usable building blocks.
Thereby, two main objectives are of particular interest: the imple-
mentation of state-of-the-art stylization effects that were initially
dedicated to desktop platforms; and the convenient combination of
popular effects or buildings blocks within a single effect pipeline.
The following examples are described for the paradigms of image
filtering and example-based rendering [Kyprianidis et al. 2013].

Recreating state-of-the-art effects. We used generalized building
blocks, such as bilateral filtering and flow-based smoothing for
color abstraction as well as difference-of-Gaussians filtering for

edge enhancement, together with effect-specific fragments to simu-
late popular media and styles. In particular, this comprises a Car-
toon effect that additionally uses color quantization [Winnemöller
et al. 2006]; oil paint filtering using an a specialized paint texture
synthesis [Semmo et al. 2016c]; watercolor rendering using a dis-
tinguished wet-in-wet pass as described in [Wang et al. 2014] and
a composition pass that blends multiple texture assets to simulate
phenomena such as pigment dispersion [Bousseau et al. 2006]; and
a pencil hatching effect that uses orientation information to align
tonal art maps [Praun et al. 2001].

Designing new effect compositions. We used our system to com-
bine each of the previously described filtering effects with a neural
style transfer (NST, e.g., known from Prisma) and color transforma-
tion (e.g., known from Instagram), as shown in Fig. 1. This combined
approach enables to transform images into high-quality artistic ren-
ditions on a global and local scale as proposed in [Semmo et al.
2017a]. Thereby, shading-based implementations of Johnson et al.’s
feed-forward NST [Johnson et al. 2016] are used in a first processing
stage to yield an intermediate result. Subsequently, joint bilateral up-
sampling [Kopf et al. 2007] of a low-resolution NST is used with the
original input image to filter high-resolution images and maintain
interactivity. The result is then processed using mentioned image
filtering effects—e.g., watercolor rendering or oil paint filtering—to
reduce fine-scale visual noise and locally inject characteristics of
artistic media, which may be interactively refined by a user. Finally,
color moods may be adjusted by using fast color transfer functions
based on color look-up tables [Selan 2004].

6 RESULTS AND DISCUSSION
The effects used for measurements in this section are: Toon (bilateral
filtering, local luminance thresholding for color quantization, and
artistic contours, comprising 14 render-to-texture passes, five half-
float textures and 16 byte textures); Oilpaint (flow-based painting
strokes painted on a canvas texture, consisting of 18 render-to-
texture passes, 9 half-float textures, and 16 byte textures); Pencil
Hatching (flow-oriented example-based hatching with contours,
consisting of 14 render-to-texture passes, five half-float textures, 17
byte textures, and 18 small tonal art map textures);Watercolor (sim-
ulated wobbling, edge darkening, pigment density variation, and
wet-in-wet, comprising 22 render-to-texture passes, 13 half-float
textures, and 25 byte textures); and Color Transformation (adjusting
saturation, brightness, expose, contrast, gamma, lights, and shad-
ows of the image, consisting of only one render-to-texture pass
and one byte texture). Example images of the complex effects are
shown in Fig. 7.

The used devices are the Sony Experia Z3 (a medium-class smart-
phone with a Qualcomm Adreno 330 GPU (578MHz), a 2.5GHz

original toon oil paint pencil hatching watercolor

Figure 7: Overview of the effects used for evaluating the ap-
proach.



ProsumerFX: Mobile Design of Image Stylization Components SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand

Effect Z3 (HD) S7 (HD) S7 (FHD) S7 (WQHD) Pixel C (WQHD)

Pencil Hatching 14.2 fps 30.0 fps 14.8 fps 7.8 fps 9.8 fps
Oil paint 4.3 fps 11.8 fps 3.9 fps 1.6 fps 1.1 fps
Toon 13.1 fps 30.0 fps 15.0 fps 7.8 fps 7.8 fps
Watercolor 7.3 fps 21.6 fps 8.3 fps 4.2 fps 3.6 fps
Color Transform 29.8 fps 30.0 fps 30.0 fps 30.0 fps 30.0 fps

Table 1: Frame rate of the filter effects on different devices.

Effect Z3 S7 Pixel C

Pencil Hatching 1.68 s 0.87 s 0.45 s
Oil paint 1.33 s 0.41 s 0.88 s
Toon 1.09 s 1.97 s 0.42 s

Table 2: Time for parsing effects.

quad-core Krait 400 CPU, and an HD 720 × 1280 display); the
Samsung Gallaxy S7 (a high-end smartphone with an ARM Mali-
T880 MP12 GPU (650MHz), an Octa-core (4×2.3GHz Mongoose
& 4×1.6GHz Cortex-A53) CPU, and a Wide Quad High Definition
(WQHD) 2560 × 1440 display that can also be changed to Full High
Definition (FHD) and High Definition (HD); and the Google Pixel C
(a high-end tablet with a Nvidia Maxwell GPU (850MHz), a 1.9 GHz
quad-core “big.LITTLE” ARMv8-A CPU, and a WQHD 2560 × 1800
display).

Interactivity. The presented app enables its users to modify high-
quality effects during run-time. It immediately updates the render-
ing pipeline and displays the resulting image with interactive frame
rates. Recombining or removing effects takes less than a millisec-
ond, even with more than ten effects in the pipeline. Downloading,
extracting, parsing, and adding an effect to the pipeline using a
100MBit/s connection takes 1 s to 3 s in total. About half of this
duration is utilized for parsing the effect files (cf. Table 2).

However, the time to display the result image depends on the
performance of the IVOs and their parameterization. Complex artis-
tic effects such as pencil hatching achieve a frame rate of 10 fps to
20 fps in FHD on the Samsung S7 and similar devices (cf. Table 1).
Simpler effects achieve higher frame rates. The color transforma-
tion effect even reaches the devices’ limit of 30 fps. However, neural
style transfer targeting an output resolution of 10242 pixels com-
putes 3 s to 15 s, depending on the device. To improve the rendering
performance, the system re-renders only the passes and effects
that have their inputs changed. Additionally, the app automatically
reduces the preview quality while painting as well as in the camera
live view.

Furthermore, the amount of effects is limited with respect to their
memory consumption. If the rendering has a target resolution of
WQHD, the S7 is able to hold nine pencil hatching effect in a pipeline.
With a resolution of FHD, the limit grows to 12 pencil effects. With
HD, even 14 pencil hatching effects can be rendered in one pipeline.
Furthermore, the complexity of the effects influences the limit of
effects in the pipeline. Six oil paint effects or six watercolor effects
can be hold in one pipeline targeting WQHD on the S7. In contrast
to this, more than 100 of the small color transformation effects can
be rendered together.

Device Heterogeneity. The platform-independent document for-
mat and the separation of IVOs in definition and implementation
addresses the device heterogeneity of the created effects. However,
if one IVO supports only one target API, e.g., one pass uses OpenGL
ES 3.1 features and does not provide a fall back for OpenGL ES 2.0,
all components that contain it cannot be executed or manipulated

on such a device. Hence, the concept enables platform independence
but does not solve it completely on its own.

Technology Transparency. The proposed concept provides sup-
port for technology transparency of IVOs by defining a document
format that abstracts concrete technologies. Therefore, adjustments
to new rendering APIs do not affect existing assets. However, if a
change to the document structure (e.g., an XML schema update)
is required, it can easily be performed by the data server using
migration scripts.

Reusable Building Blocks. The presented framework and XML-
based document format has been successfully used for teaching
image processing techniques with OpenGL ES in undergraduate
and graduate courses. In total, 190 effects have been designed and
developed using the presented document format. Since the students
were able to create new high-quality IVOs, the document format
can be considered simple enough for the use by less experienced
developers.

7 CONCLUSIONS AND FUTUREWORK
We presented a system that enables novice users and professionals
to create and manipulate their individual platform-independent,
parameterizable image stylization components based on existing
components, customize their presentation, as well as share them
in a web-based community. This kind of prosumer culture goes
beyond user-generated content, because users generate tools that
enable other users to generate content. Our scenarios represent
examples on how this concept provides a higher level of creativity
for users and supports rapid prototyping and rapid A/B testing of
visual styles for professionals. The presented concept is not limited
to support mobile devices only, and can be used as blueprint for
other implementation platforms such as desktop PCs or server-
based rendering approaches.

7.1 Future Work
Low Level Effect Modifications. To extend the control that users

have over their effects, the app might support interactions for low
level effect modifications, especially on tablets. Possible extensions
could be: exchanging processing steps of effect (e.g., choose another
contour extraction algorithm) to optimize visual quality or perfor-
mance; exchanging textures (e.g., canvas textures or color lookup
tables) to adjust the visual attributes of the effect’s processing func-
tion; or collapsing similar parameters to a single one to simplify
the presentation of the effect.



SA ’17 MGIA, November 27-30, 2017, Bangkok, Thailand T. Dürschmid et al.

Hinting Rendering Performance. When a user combines many
effects that have low rendering performance, the total rendering
time of the style might increase substantially. To give users advice
on their created effects, the system might hint slow effect in the
pipeline and give the user control of the rendering quality. Thereby,
users could tailor the quality/performance ratio to their purpose.

ACKNOWLEDGMENTS
We thank Erik Griese, Moritz Hilscher, Alexander Riese, and Hen-
drik Tjabben for their contributions to the design and implementa-
tion of the presented system. This work was partly funded by the
Federal Ministry of Education and Research (BMBF), Germany, for
the AVA project 01IS15041B and within the InnoProfile Transfer
research group "4DnD-Vis" (www.4dndvis.de).

REFERENCES
Apple Inc. 2015. Model-View-Controller. (21 Oct. 2015). https://developer.apple.com/

library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.
html

Saeideh Bakhshi, David A. Shamma, Lyndon Kennedy, and Eric Gilbert. 2015. Why We
Filter Our Photos and How It Impacts Engagement. In Proc. ICWSM. AAAI Press,
12–21. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10573/
10484

Luca Benedetti, Holger Winnemöller, Massimiliano Corsini, and Roberto Scopigno.
2014. Painting with Bob: Assisted Creativity for Novices. In Proc. ACM Symposium
on User Interface Software and Technology. ACM, New York, 419–428. https://doi.
org/10.1145/2642918.2647415

Adrien Bousseau, Matt Kaplan, Joëlle Thollot, and François X. Sillion. 2006. Interactive
Watercolor Rendering with Temporal Coherence and Abstraction. In Proc. NPAR.
ACM, New York, 141–149. https://doi.org/10.1145/1124728.1124751

Tolga Capin, Kari Pulli, and Tomas Akenine-Möller. 2008. The State of the Art in
Mobile Graphics Research. IEEE Computer Graphics and Applications 28, 4 (2008),
74–84. https://doi.org/10.1109/MCG.2008.83

Kapil Dev. 2013. Mobile Expressive Renderings: The State of the Art. IEEE Computer
Graphics and Applications 33, 3 (2013), 22–31. https://doi.org/10.1109/MCG.2013.20

Stephen DiVerdi, Aravind Krishnaswamy, RadomirMäch, and Daichi Ito. 2013. Painting
with Polygons: A Procedural Watercolor Engine. IEEE Transactions on Visualization
and Computer Graphics 19, 5 (2013), 723–735. https://doi.org/10.1109/TVCG.2012.
295

Tobias Dürschmid. 2017. A Framework for Editing and Execution of Image and Video
Processing Techniques on Mobile Devices. (26 July 2017). https://doi.org/10.13140/
RG.2.2.13252.32648

Tobias Dürschmid, Matthias Trapp, and Jürgen Döllner. 2017. Towards Architectural
Styles for Android App Software Product Lines. In Proc. International Conference on
Mobile Software Engineering and Systems. IEEE Press, Piscataway, NJ, USA, 58–62.
https://doi.org/10.1109/MOBILESoft.2017.12

Jan Fischer, Michael Haller, and Bruce H Thomas. 2008. Stylized Depiction in Mixed
Reality. International Journal of Virtual Reality 7, 4 (Dec. 2008), 71–79. http:
//mi-lab.org/files/publications2008/fischer2008-ijvr.pdf

Christian Fuchs. 2010. Web 2.0, Prosumption, and Surveillance. Surveillance &
Society 8, 3 (2 Sept. 2010), 288–309. https://ojs.library.queensu.ca/index.php/
surveillance-and-society/article/view/4165

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer
Using Convolutional Neural Networks. In Proc. CVPR. IEEE Computer Society, Los
Alamitos, 2414–2423. https://doi.org/10.1109/CVPR.2016.265

Tobias Isenberg. 2016. Interactive NPAR: What Type of Tools Should We Create?. In
Proc. NPAR. Eurographics Association, Goslar, Germany, 89–96. https://doi.org/10.
2312/exp.20161067

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In Proc. ECCV. Springer International, Cham,
Switzerland, 694–711. https://doi.org/10.1007/978-3-319-46475-6_43

Dongwann Kang and Kyunghyun Yoon. 2015. Interactive Painterly Rendering for
Mobile Devices. In Proc. International Conference on Entertainment Computing.
Springer International Publishing, Cham, Switzerland, 445–450. https://doi.org/10.
1007/978-3-319-24589-8_38

Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matt Uyttendaele. 2007. Joint
Bilateral Upsampling. ACM Transactions on Graphics 26, 3 (July 2007). https:
//doi.org/10.1145/1276377.1276497

Jan Eric Kyprianidis, John Collomosse, Tinghuai Wang, and Tobias Isenberg. 2013.
State of the “Art”: A Taxonomy of Artistic Stylization Techniques for Images and
Video. IEEE Transactions on Visualization and Computer Graphics 19, 5 (May 2013),
866–885. https://doi.org/10.1109/TVCG.2012.160

Junkyu Oh, SeungRol Maeng, and Jinho Park. 2012. Efficient Watercolor Painting
on Mobile Devices. International Journal of Contents 8, 4 (2012), 36–41. https:
//doi.org/10.5392/IJoC.2012.8.4.036

David Lorge Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.1145/
361598.361623

Sebastian Pasewaldt, Amir Semmo, Jürgen Döllner, and Frank Schlegel. 2016. BeCasso:
Artistic Image Processing and Editing on Mobile Devices. In Proc. SIGGRAPH
ASIA Mobile Graphics and Interactive Applications. ACM, New York, 14:1–14:1.
https://doi.org/10.1145/2999508.2999518

Coimbatore Krishna Prahalad and Venkat Ramaswamy. 2004. The future of competition:
Co-creating unique value with customers. Harvard Business Press.

Emil Praun, Hughes Hoppe, Matthew Webb, and Adam Finkelstein. 2001. Real-Time
Hatching. In Proc. SIGGRAPH. ACM, New York, 581–586. https://doi.org/10.1145/
383259.383328

Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, and Heinz Zülighoven. 1997.
Pattern Languages of Program Design 3. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, Chapter Serializer, 293–312.

George Ritzer, Paul Dean, and Nathan Jurgenson. 2012. The Coming of Age of the
Prosumer. American Behavioral Scientist 56, 4 (2012), 379–398. https://doi.org/10.
1177/0002764211429368

George Ritzer and Nathan Jurgenson. 2010. Production, Consumption, Prosump-
tion. Journal of Consumer Culture 10, 1 (2010), 13–36. https://doi.org/10.1177/
1469540509354673

Paul Rosin and John Collomosse (Eds.). 2013. Image and Video based Artistic Stylisation.
Computational Imaging and Vision, Vol. 42. Springer, London/Heidelberg. https:
//doi.org/10.1007/978-1-4471-4519-6

Jeremy Selan. 2004. Using Lookup Tables to Accelerate Color Transformations. In GPU
Gems. Addison-Wesley, 381–392. http://http.developer.nvidia.com/GPUGems2/
gpugems2_chapter24.html

Amir Semmo, Jürgen Döllner, and Frank Schlegel. 2016a. BeCasso: Image Stylization
by Interactive Oil Paint Filtering on Mobile Devices. In ACM SIGGRAPH 2016 Appy
Hour. ACM, New York, 6:1–6:1. https://doi.org/10.1145/2936744.2936750

Amir Semmo, Tobias Dürschmid, Matthias Trapp, Mandy Klingbeil, Jürgen Döllner,
and Sebastian Pasewaldt. 2016b. Interactive Image Filtering with Multiple Levels-of-
control on Mobile Devices. In Proc. SIGGRAPH ASIA Mobile Graphics and Interactive
Applications. ACM, New York, 2:1–2:8. https://doi.org/10.1145/2999508.2999521

Amir Semmo, Tobias Isenberg, and Jürgen Döllner. 2017a. Neural Style Transfer: A Par-
adigm Shift for Image-based Artistic Rendering?. In Proc. International Symposium
on Non-Photorealistic Animation and Rendering. CM, 5:1–5:13.

Amir Semmo, Daniel Limberger, Jan Eric Kyprianidis, and Jürgen Döllner. 2016c. Image
Stylization by Interactive Oil Paint Filtering. Computers & Graphics 55, C (April
2016), 157–171. https://doi.org/10.1016/j.cag.2015.12.001

Amir Semmo, Matthias Trapp, Jürgen Döllner, and Mandy Klingbeil. 2017b. Pictory:
Combining Neural Style Transfer and Image Filtering. In ACM SIGGRAPH 2017
Appy Hour (SIGGRAPH ’17). ACM. https://doi.org/10.1145/3098900.3098906

Maximilian Söchting. 2017. Design, Implementation and Web-based Provisioning of a
Database for Image Processing Operations. (26 July 2017). https://doi.org/10.13140/
RG.2.2.23550.48964

Alvin Toffler. 1980. The Third Wave. Bantam Books.
Romain Vergne and Pascal Barla. 2015. Designing Gratin, A GPU-Tailored Node-Based

System. Journal of Computer Graphics Techniques (JCGT) 4, 4 (Nov. 2015), 54–71.
http://jcgt.org/published/0004/04/03/

Miaoyi Wang, Bin Wang, Yun Fei, Kanglai Qian, Wenping Wang, Jiating Chen, and Jun-
Hai Yong. 2014. Towards PhotoWatercolorization with Artistic Verisimilitude. IEEE
Transactions on Visualization and Computer Graphics 20, 10 (Feb. 2014), 1451–1460.
https://doi.org/10.1109/TVCG.2014.2303984

Daniel Wexler and Gilles Dezeustre. 2012. Intelligent Brush Strokes. In Proc. ACM
SIGGRAPH Talks. ACM, New York, NY, USA, 50:1–50:1. https://doi.org/10.1145/
2343045.2343112

Holger Winnemöller. 2013. NPR in the Wild. In Image and Video based Artistic
Stylisation, Paul Rosin and John Collomosse (Eds.). Computational Imaging and
Vision, Vol. 42. Springer, London/Heidelberg, Chapter 17, 353–374. https://doi.org/
10.1007/978-1-4471-4519-6_17

Holger Winnemöller, Jan Eric Kyprianidis, and Sven Olsen. 2012. XDoG: An eXtended
Difference-of-Gaussians Compendium including Advanced Image Stylization. Com-
puters & Graphics 36, 6 (Oct. 2012), 740–753. https://doi.org/10.1016/j.cag.2012.03.
004

Holger Winnemöller, Sven C. Olsen, and Bruce Gooch. 2006. Real-Time Video Ab-
straction. ACM Transactions on Graphics 25, 3 (July 2006), 1221–1226. https:
//doi.org/10.1145/1141911.1142018

www.4dndvis.de
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10573/10484
http://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10573/10484
https://doi.org/10.1145/2642918.2647415
https://doi.org/10.1145/2642918.2647415
https://doi.org/10.1145/1124728.1124751
https://doi.org/10.1109/MCG.2008.83
https://doi.org/10.1109/MCG.2013.20
https://doi.org/10.1109/TVCG.2012.295
https://doi.org/10.1109/TVCG.2012.295
https://doi.org/10.13140/RG.2.2.13252.32648
https://doi.org/10.13140/RG.2.2.13252.32648
https://doi.org/10.1109/MOBILESoft.2017.12
http://mi-lab.org/files/publications2008/fischer2008-ijvr.pdf
http://mi-lab.org/files/publications2008/fischer2008-ijvr.pdf
https://ojs.library.queensu.ca/index.php/surveillance-and-society/article/view/4165
https://ojs.library.queensu.ca/index.php/surveillance-and-society/article/view/4165
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.2312/exp.20161067
https://doi.org/10.2312/exp.20161067
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-24589-8_38
https://doi.org/10.1007/978-3-319-24589-8_38
https://doi.org/10.1145/1276377.1276497
https://doi.org/10.1145/1276377.1276497
https://doi.org/10.1109/TVCG.2012.160
https://doi.org/10.5392/IJoC.2012.8.4.036
https://doi.org/10.5392/IJoC.2012.8.4.036
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/2999508.2999518
https://doi.org/10.1145/383259.383328
https://doi.org/10.1145/383259.383328
https://doi.org/10.1177/0002764211429368
https://doi.org/10.1177/0002764211429368
https://doi.org/10.1177/1469540509354673
https://doi.org/10.1177/1469540509354673
https://doi.org/10.1007/978-1-4471-4519-6
https://doi.org/10.1007/978-1-4471-4519-6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter24.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter24.html
https://doi.org/10.1145/2936744.2936750
https://doi.org/10.1145/2999508.2999521
https://doi.org/10.1016/j.cag.2015.12.001
https://doi.org/10.1145/3098900.3098906
https://doi.org/10.13140/RG.2.2.23550.48964
https://doi.org/10.13140/RG.2.2.23550.48964
http://jcgt.org/published/0004/04/03/
https://doi.org/10.1109/TVCG.2014.2303984
https://doi.org/10.1145/2343045.2343112
https://doi.org/10.1145/2343045.2343112
https://doi.org/10.1007/978-1-4471-4519-6_17
https://doi.org/10.1007/978-1-4471-4519-6_17
https://doi.org/10.1016/j.cag.2012.03.004
https://doi.org/10.1016/j.cag.2012.03.004
https://doi.org/10.1145/1141911.1142018
https://doi.org/10.1145/1141911.1142018

	Abstract
	1 Introduction
	2 Related Work
	2.1 Prosumer Culture
	2.2 Desktop Applications
	2.3 Mobile Applications

	3 Designing Effects on Mobile Devices
	3.1 Image and Video Processing Operations
	3.2 Modifications of Processing Function
	3.3 Modifications of the Presentation

	4 Implementation
	4.1 Domain Model of IVOs
	4.2 Direct Manipulation of IVOs
	4.3 Persistence of IVOs
	4.4 Server-based Provisioning of IVOs

	5 Use Cases and Stylization Effects
	5.1 Use Cases
	5.2 Stylization Effects

	6 Results and Discussion
	7 Conclusions and Future Work
	7.1 Future Work

	References

