
ThreadCity:
Combined Visualization of Structure and Activity

for the Exploration of Multi-threaded Software Systems

Sebastian Hahn, Matthias Trapp, Nikolai Wuttke, Jürgen Döllner
Hasso Plattner Institute, University of Potsdam, Germany

firstname.lastname@hpi.de

Abstract—This paper presents a novel visualization tech-
nique for the interactive exploration of multi-threaded soft-
ware systems. It combines the visualization of static system
structure based on the EvoStreets approach with an additional
traffic metaphor to communicate the runtime characteristics of
multiple threads simultaneously. To improve visual scalability
with respect to the visualization of complex software systems,
we further present an effective level-of-detail visualization
based on hierarchical aggregation of system components by
taking viewing parameters into account. We demonstrate our
technique by means of a prototypical implementation and
compare our result with existing visualization techniques.

Keywords-Visual Software Analytics, Trace-Visualization,
Multi-threaded Software Systems

I. INTRODUCTION

Program understanding is a crucial but tedious and time-
consuming task within the software development and main-
tenance process that becomes even more complex with the
use of multi-threading. Visual software analytics tools can
help to gain insight into the non-trivial processes of such
systems. However, most of these tools create depictions that
either focus on the runtime behavior or the static structure,
not taking into account that for various comprehension tasks
the combination of both information bases are required.

Although, previous research in combining static structure
of a system with its runtime information for sequential
working applications was conducted, there are no suitable
approaches for the visualization of systems with concurrent
runtime behavior. In this work, we present a visualization
technique and prototypical tool (Fig. 1) that allows for
the analysis of multi-threaded systems using a combination
of both, the organizational structure as well as concurrent
runtime-behavior information of a system.
The outline of this paper is as follows. Section II presents
an outline of the problem statement and related work. In
Section III the visualization approach for combining struc-
tural and dynamic information is described. Details about
a novel hierarchical aggregation technique are presented in
Section IV. Section V gives additional information about the
usability of the ThreadCity tool, its usage, and the results of
a preliminary study. Finally, Section VI concludes this paper
and present possible future research directs.

Figure 1. Exemplary screen shot and inset of the presented visualization
technique and tool ThreadCity.

II. PROBLEM STATEMENT

This section covers fundamental related and previous work
with respect to software maintenance, data acquisition, as
well as as suitable visualization approaches.

A. Software Maintenance

Software maintenance is the most important stage during
the lifecycle of almost all complex software systems [1],
[2]. A deep understanding of both, a program’s structure
and behavior, is a critical requirement for a successful
software maintenance process. According to Fowler, soft-
ware developers spend about 40% of their time working on
program understanding tasks, due to the high complexity of
large software systems [3]. Additionally, the use of parallel
computation increases the complexity of this tasks [4], [5].
Visual software analytic tools are a common approach to
gain insights into software systems. However, most ap-
proaches focus on either the depiction of the software static
structure or the visualization of its runtime behavior. Since
the use of multiple tools would yield a high amount of
context switches [6], we argue that a combined visualization
of both allows for a better understanding of a software
system. For it, we propose a novel approach that combines



the visualization of structural and dynamic information in a
metaphorical way especially suitable for the visualization of
multi-threaded behavior.

Since the number of tasks that belong to the field of
software maintenance is exhaustive, we focus on two major
tasks: program understanding and performance analysis.

Program Understanding: Program understanding de-
scribes the process of gaining knowledge about the software
system to “determine the effort (in terms of resources
expended) for corrective, preventive, adaptive, and perfective
maintenance” [7]. For common maintenance tasks, such as
(1) enhancing a component’s functionality, (2) adapt the ex-
isting behavior to new requirements, or (3) generalizing the
existing functionality and transfer it into a new component
or library, the insight gained from the static structure of
a software systems (e.g., from source code analysis) is not
sufficient. For it, a software developer also needs knowledge
about the runtime behavior of components, e.g., to map
execution periods to components.

Performance Analysis: Performance analysis is usu-
ally accessed as a non-functional software requirement.
In the software maintenance process, the improvement of
implementations efficiency represent an important factor of
success. For it, profiling tools, working on a high granularity
level, are used, creating function list with additional runtime
information, such as completion time, caller, and internal
function calls.

In addition to the aforementioned tasks, the use of multi-
threaded computations within implementations involves par-
ticular challenges. A software developer needs to know
whether (1) a software system component uses task or data
parallel computation, (2) decide which component handles
a specific thread, and (3) which component is active during
an execution period. Begel et al. underline the importance of
this question in their work, presenting that one of the most
important questions for software developers is: “What are
the common patterns of execution in my application?” [8].

B. Dataset and Acquisition

The input data for the present visualization approach requires
for (1) gathering data using static source code analysis
as well as for (2) a runtime analysis of a given software
system. For the static source code analysis, we first extract
the hierarchical organizational structure of a object-oriented
system’s artifacts (e.g., package structure in java systems
or nested namespaces in C++ systems). Depending on the
analysis task, a granularity level is defined for the hierarchy
leaf nodes (e.g., classes, functions, or statements). A com-
mon approach for visualization of large software systems is
mapping classes as leaf nodes [9], [10]. Since we aim at
presenting an approach that is independent from a specific
object-oriented programming language, we apply the term
”package“ to all non-leaf nodes of a hierarchy. Moreover,

all leaf nodes are classes in the system’s hierarchy with
aggregated information about their functions.

These functions, aggregated on class level, represents the
basis for the dynamic information. An instrumentation of
the running system is required to extract the dynamic call
information:

• Caller: Function that calls another function.
• Callee: Function that is called by caller.
• Timestamp: Point of time a call starts.
• Thread-ID: Unique identifier of a certain thread.

To summarize, the information gathered form static source
code analysis and dynamic tracing is combined using the
structural organization of a system in a hierarchical way
using classes as leaf-nodes and dynamic runtime information
(calls), which is acquired during a trace between these
classes by aggregating functions (callers and callees).

C. Limitations of EvoStreet Approach

There are various approaches for the visualization of the
static structure of a software system. Space-filling ap-
proaches, such as treemaps, are unsuitable for the de-
piction of additional relationship information, since on-
top rendered glyphs would lead to occlusion and visual
clutter. To counterbalance the occlusion problem, we rely
on a non-space-filling approach: EvoStreet represented by
Steinbrückner et al. [11]. This metaphor-based approach cre-
ates a ”software city“ for a given hierarchy, with packages
as non-leaf nodes and classes as leaf nodes. Caserta et al.
present an approach to depict relationships between leaf
nodes by drawing hierarchical edge bundles on top of the
city. This, however, yield the same occlusion problems as
in treemaps [12]. Khan et al. use this technique to depict
static software related structure and relationship informa-
tion [13]. SynchroVis, another visualization tool that also
depicts multi-threaded systems, presented by Waller et al.
is faced with the same problems [14]. With respect to this,
we argue, that the fact, that the structural elements have an
explicit space (not like with the nesting in treemaps) should
be used, to create explicit visual artifacts for relationships on
these structural elements. Also, by using a traffic metaphor
we do not break the metaphor of a software city but add an
easy to understand extension, that is also able to explicitly
separate threads by using different traffic lanes.

III. COMBINED VISUALIZATION

Since software systems have no inherent or natural shape, the
use of metaphor-based visualization techniques allow for an
intuitive understanding of a system’s structure, e.g., software
cities [11] or software maps [15].

Conceptual Overview: As aforementioned, we show
the structure of a software system using an orthogonal
arrangement of streets for the structural nodes of a hier-
archy and buildings attached to streets for depiction of the
leaf nodes. Additionally, the hierarchy depth of a node is



root

a

b

c

d

e

f

h

g i

root

a

c d e f

b

g h i

Figure 2. Metaphor-based visualization concept: a hierarchical city
layout is extended by a depiction of call dependencies of different threads
(different colors used) with a traffic metaphor.

indicated by its width, i.e., wider streets are communicating
elements on a higher level in the hierarchy.

While existing approaches focusing on the static system
structures and their associated attributes (e.g., using size,
height, and color of buildings) only, our approach extends
the notion of software cities by visualizing relations between
leaf nodes using an explicit ”traffic” metaphor (in contrast
to the implicit depiction by nesting in a treemap-based
approach). This explicit separation of structure and leaf
nodes allows for the possibility of combining static structural
information with dynamic call data, showing traffic routes
between the buildings. This creates a metaphor for function
calls between classes.

Visualization of Function Calls: The routes are imple-
mented using shortest paths between two class representa-
tions with respect to the connecting streets and rendered
by line segments. The traffic itself is illustrated as right-
hand or left-hand traffic. For it, the traffic directions and
starting points are set on either the right or left side of
a street. As a result, the direction of a call is implicitly
visualized by the lane its route is using. In addition to that, a
separation of calls from different threads is implemented by
using a driving lane separation. That means, the two halves
of a street (or building) are subdivided into a number of
driving lanes with respect to the number of selected threads.
Moreover, calls from different threads are displayed by
different colors. Furthermore, we implemented an animated
texture with arrow symbols to underline the direction and
to achieve a more clear perception of callers and callee’s.
Finally, by combining the city metaphor with routes between
buildings, we create an metaphor-based approach that can be
understand easily (Fig. 2).

IV. LEVEL-OF-DETAIL VISUALIZATION

In order to achieve visual scalability and enable meaningful
insights for complex software systems, (e.g., reduction of
visual clutter) the presented approach supports level-of-
detail visualization as a major functionality. The level-of-
detail visualization is based on an aggregation technique
for software system information that is controlled based on

user navigation (perspective) and selection (user interaction).
While Shneiderman’s information seeking mantra ”overview
first, zoom and filter, then details on demand“ [16] is not
sufficient for our use case, we focus on visual analytics
mantra: ”Analyze, first, show the important, zoom, filter and
analyze further, details on demand“ [17], by providing a
multi-scale visualization with respect to three dimensions:
(D1) Number of threads
(D2) Number of structural elements (hierarchy depth)
(D3) Number of function calls (traffic)
While D1 is not main focus of this work (non-massive
multi-threading), the concept of hierarchical aggregation is
sufficient for D2 and D3.

Aggregation Principles: Therefore, the depiction is
simplified by aggregating a number of visualization elements
into a single visual element according to the hierarchical
aggregation guidelines of Elmquist and Fekete [18], that are
summarized as follows:
(R1) Entity budget: a maximum number of elements is

constrained by a ”budget“
(R2) Visual summary: aggregates should display condensed

information
(R3) Visual simplicity: aggregates should be kept simple
(R4) Discriminability: should be possible to easily distin-

guish aggregates from non-aggregates
(R5) Fidelity: aggregates should display the condensed in-

formation as accurate as possible
(R6) Interpretability: just aggregate as much as you need

for a correct interpretation, show what you can show
The ThreadCity visualization technique basically comprises
streets, buildings, and associated traffic.

Aggregation Approach: A street can be aggregated by
its bounding box comprising its child elements (serves R3
and R4) yielding a simple box that easy to distinguish.
The root node is not aggregated, thus it will not appear
as a single street. This approach allows for collapsing and
expanding of packages, a standard interaction technique
for hierarchies [18]. Requirement R6 is mostly important
for visualization techniques for which overlapping causes a
problem. However, software cities are free of overlapping.
The first requirement R1 is currently not implemented but
could be easily implemented in future work. The remaining
requirements R2 and R5 are considered by the implemen-
tation of specific diagrams that are displayed on aggregates
and described in the following.

Detail Levels and Aggregation Diagrams: Figure 3
presents an overview of different detail levels, automatically
computed by the visualization technique. This LoD concept
serves D3. Here, LoD-2 represents non-aggregated view of
a street (Fig. 3.c). Aggregating such visual representation
of streets requires for an alternative for displaying traffic
and information mapped on buildings. To counterbalance
this problem, additional diagrams displayed on aggregates



(a) LoD-0: Complete aggregation of thread activ-
ities.

(b) LoD-1: Aggregation of thread activities based
on incoming calls, outgoing calls and internal calls.

(c) LoD-2: No aggregation of thread activities.

Figure 3. The three levels of detail for a given node. Visualization of thread activities are aggregated based on a users perspective and interaction
parameters (e.g., hovering and explicit selection).

are introduced (Fig. 3.b). To generate these diagrams, the
following approach is used: (1) find all calls of set of
children in aggregate and cluster these into three groups of
calls (incoming calls, outgoing calls, and internal calls); and
(2) show rate of each thread in each group. We apply pie
charts for the depiction of a combined chart (Fig. 4) with
respect to size of an aggregate in LoD-1. If the remaining
size of an aggregate is too small, a bar chart depicting
only the ratio of each thread without the thread grouping
is shown in LoD-0 (Fig. 3.a). We use alpha-blending for the
transitions between detail levels that are selected according
to the projected item size and the distance to the camera.

Figure 4. The aggregated diagram shows the amount of incoming (left),
outgoing (right), and internal calls (center) per thread with respect to a
given aggregate.

V. APPLICATION EXAMPLE

This section describes how a user can interact with the
presented system based on an application examples, and
discusses the results by means of an expert user evaluation.

A. Overview of User Interface

Fig. 5 shows an overview of the user interface provided by
ThreadCity. This section briefly describes its components as
well as supported navigation and interaction techniques.

User Interface Components and Operation.: The basis
for data exploration is temporal filtering of the thread data.
Therefore, a thread selection widget and time-line overview
are included in the user interface (Fig. 5.A and B). After
(multiple) thread selection is performed, the overview widget
shows the temporal ordering of all events: a single thread
is depicted as icicle plot while remaining threads are shown

using a 1D scatter plot. Subsequently, the temporal focus can
be changed by user selection. Each focus thread is presented
by a unique color. To perform further temporal filtering, a
point in time or a time range can be set in the overview.
After filtering is completed, the main view then contains the
combined visualization of structure and dynamic information
with the selected time range. Elements that are not active as a
caller or callee within the given time range are shown using a
wire-frame mode. All active elements have colored top faces
based on the thread they are used in. If this comprises more
than one thread, it’s a bar diagram is shown (cf. Sec. IV).
Additionally, the detail window shows further information
about selected elements (Fig. 5.C).

Navigation Techniques.: The thread city is visualized
in 2D only by rendering a top view (Fig. 5.D). Therefore,
the navigation techniques rely on standard pan and zoom
metaphors [19]. This avoids getting-lost situations often
occurred when relying on 3D virtual environments [20]. For
convenience reasons, zooming is performed with respect to
the current cursor position or based on a rectangular on
screen selection. As start for interaction, an overview of the
complete data shown using the lowest LoD.

Interaction and Selection.: The main purpose of the
detail widget (Fig. 5.D) is to display additional information
such as function calls on a per-class level. Here, hovering or
explicit selection is used to filter the additional information
to reduce visual clutter in the display. For example, hovering
over a building object just shows the connected traffic
is shown while non-connected traffic is hidden. Further,
pinning a building (using mouse click) marks it as selected
and assigns the current focus, i.e., if the mouse cursor
leaves the building, the connected traffic is still visualized.
A special zoom-out mode allows for fast changes of focused
classes if pinning is active on a particular class (right-mouse
on pinned element) by automatically setting the zoom value
in order to show all connected classes.

B. Preliminary System Evaluation

For a qualitative preliminary system evaluation we asked a
small group of users to perform three tasks with two different
datasets. The users were not involved in the implementation



Figure 5. Exemplary screen shots of the user interface provided by the
ThreadCity application comprising: (A) thread selection widget, (B) time-
line overview, (C) details and meta information, (D) main view.

of neither the visualization tool nor the two systems that
were analyzed. To show the usefulness of our system we
compared our prototypical implementation with ViewFusion,
another tool that allows the combination of structure and run-
time visualization [6]. The datasets are open-source projects
making use of parallel processing:

Chromium: Chromium is an open-source web-browser
with about 2.7 million lines-of-code. The tracing was done to
investigate the behavior while opening a website by selecting
a bookmark. This trace included tasks such as network
requests, data parsing and construction and rendering.

Povray: POV-Ray2 is another open-source tool, en-
abling offline rendering using ray-tracing. The investigated
version is 3.7, containing about 180k lines-of-code. We
extracted the dynamic data during the rendering of a 3D-
scene, which uses data-parallel computation.
The three tasks that each user had to perform were:

1) Categorization of multi-threaded behavior: Can a user
determine whether a program’s behavior is either data
parallel or task parallel.

2) Program behavior overview: The primary goal is to get
an overview about the main tasks of a certain thread
based on its involved components.

3) Activity or performance analysis: Users should ana-
lyze which component in each thread is the most time
consuming one and therefore a candidate for a deeper
performance analysis.

The qualitative study showed that tasks 1 and 2 could be
completed well by all participants. Compared to ViewFusion,
which does not allow for analyzing multiple thread in a
single visualization but rather creates one instance of the
visualization for each selected thread, the users stated that
the tasks were easier to complete and the aggregation,
implemented in ThreadCity would help to get a faster

overview over the systems behavior. The participants stated
that the most benefiting properties of our system were the
aggregation and the used LoD concept in combination with
the “easy-to-understand” city layout. Further, the users stated
that the hovering for additional information in the deeper
level was useful. Nevertheless, most users had problems
completing task 3 with both systems, which indicates that
the used interactions and visualization techniques have a
need for improvement to complete such tasks. However, the
preliminary study showed that the described concept works
good for program understanding tasks of multi-threaded
systems.

VI. CONCLUSIONS AND FUTURE WORK

The presented work facilitates analysing and program un-
derstanding of tasks within multi-threaded software systems.
Especially, the combined visualization of static system struc-
ture and threading information, aggregated and presented
using additionally diagrams, enables insights in activities of
software components during runtime. With respect to exist-
ing approaches, the presented concept and implementation
shows advantageous characteristics that are experimentally
verified by a preliminary user study. However, the presented
approach is limited with respect to missing chronological
ordering when limited to static non-animated visualizations.
Further, the visualization and analysis of particular function
calls are limited. Similar, a quantification of calls represented
by routes (e.g., a number of calls in a single thread) is
currently not supported and requires suitable aggregation
techniques.

Despite limitations described previously, there are various
aspects for future research. For example, introducing 3D
visualization by mapping components attributes to height
comprise a possible extension. Further, functionality for
aggregation and highlighting, as well as mapping of ad-
ditional visual variables (e.g., width or shape) to routes
can enhance the visualization technique. Finally, one can
think of extincting the presented metaphor with respect to
underground routes or similar.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments. This work was funded by
the Research School on “Service-Oriented Systems En-
gineering” of the Hasso-Plattner-Institute and the Federal
Ministry of Education and Research (BMBF), Germany,
within the InnoProfile Transfer research group “4DnD-Vis”
(www.4dndvis.de).



REFERENCES

[1] T. A. Corbi, “Program understanding: Challenge for the
1990s,” IBM Systems Journal, vol. 28, no. 2, pp. 294–306,
1989.

[2] D. L. Parnas, “Software aging,” in ICSE. IEEE Computer
Society Press, 1994, pp. 279–287.

[3] M. Fowler, “Refactoring: Improving the design of existing
code,” 1997.

[4] J. Trümper, J. Bohnet, and J. Döllner, “Understanding com-
plex multithreaded software systems by using trace visualiza-
tion,” in SOFTVIS. ACM, 2010, pp. 133–142.

[5] B. Karran, J. Trümper, and J. Döllner, “Synctrace: Visual
thread-interplay analysis,” in Software Visualization (VIS-
SOFT), 2013 First IEEE Working Conference on. IEEE,
2013, pp. 1–10.

[6] J. Trümper, A. Telea, and J. Döllner, “Viewfusion: Correlating
structure and activity views for execution traces,” in TPCG.
European Association for Computer Graphics, 2012, pp. 45–
52.

[7] “ISO/IEC 14764:2006 Software engineering – software life
cycle processes – maintenance,” Geneva, CH, 2006.

[8] A. Begel and T. Zimmermann, “Analyze this! 145 questions
for data scientists in software engineering,” in ICSE. New
York, NY, USA: ACM, 2014, pp. 12–23.

[9] R. Wettel and M. Lanza, “Visualizing software systems as
cities,” in VISSOFT. IEEE, 2007, pp. 92–99.

[10] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps
for the visualization of software metrics,” in Symposium on
Software visualization. ACM, 2005, pp. 165–172.

[11] F. Steinbrückner and C. Lewerentz, “Representing develop-
ment history in software cities,” in SOFTVIS. ACM, 2010,
pp. 193–202.

[12] P. Caserta, O. Zendra, and D. Bodénes, “3d hierarchical edge
bundles to visualize relations in a software city metaphor,” in
VISSOFT. IEEE, 2011, pp. 1–8.

[13] T. Khan, S. R. Humayoun, K. Amrhein, H. Barthel, A. Ebert,
and P. Liggesmeyer, “ecity+: A tool to analyze software
architectural relations through interactive visual support,” in
Proceedings of the 2014 European Conference on Software
Architecture Workshops. ACM, 2014, p. 36.

[14] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring,
“Synchrovis: 3d visualization of monitoring traces in the city
metaphor for analyzing concurrency,” in VISSOFT. IEEE,
2013, pp. 1–4.

[15] J. Bohnet and J. Döllner, “Monitoring code quality and
development activity by software maps,” in Workshop on
Managing Technical Debt. ACM, 2011, pp. 9–16.

[16] B. Shneiderman, “The eyes have it: A task by data type
taxonomy for information visualizations,” in Symposium on
Visual Languages. Washington, DC, USA: IEEE Computer
Society, 1996, pp. 336–343.

[17] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler,
“Challenges in visual data analysis,” in IV. IEEE, 2006, pp.
9–16.

[18] N. Elmqvist and J.-D. Fekete, “Hierarchical aggregation for
information visualization: Overview, techniques, and design
guidelines,” TVCG, vol. 16, no. 3, pp. 439–454, 2010.

[19] A. Cockburn, A. Karlson, and B. B. Bederson, “A review
of overview+detail, zooming, and focus+context interfaces,”
ACM Comput. Surv., vol. 41, no. 1, pp. 2:1–2:31, Jan. 2009.

[20] H. Buchholz, J. Bohnet, and J. Döllner, “Smart and
physically-based navigation in 3d geovirtual environments,”
in IV, 2005, pp. 629–635.


