
INTERACTIVE REVISION EXPLORATION USING SMALL MULTIPLES OF SOFTWARE MAPS
Willy Scheibel, Matthias Trapp and Jürgen Döllner

Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, Germany

INTERACTIVE REVISION EXPLORATION USING SMALL MULTIPLES OF SOFTWARE MAPS
Willy Scheibel, Matthias Trapp and Jürgen Döllner

Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, Germany

1 Introduction: Software Map

Leaf node depicts a software module

Spacing between nodes depicts hierarchy

Color: second independent variable
Height: first independent variable
Ground area: size of module

Inner nodes depict the hierarchical structure

Figure 1: A software map for the depiction of a software system.

The software map [Bohnet and Döllner 2011] is a visualization technique
based on the 2.5D treemap [Bladh et al. 2004] used to depict the structure
and characteristics of one revision of a software system. It is configured by
map themes, consisting of a mapping of metrics to visual variables (e.g.,
ground area, height, color, texture). A software map inhibits the following
properties:

• Nested nodes and their padding depict the hierarchy.

• One revision is visualized using one map theme.

• A leaf node depicts a measurable software entity.

• The ground area of the leaf node depicts its size.

• Its height represents a mapped metric, defined by the map theme.

• Its color represents a mapped metric, defined by the map theme.

While software maps are useful to visualize one revision using one map
theme, the interactive revision exploration is challenging. A software
system under development is a tree comparison problem with both changing
metric values and topology (category 3 or 4, depending on the metrics
used [Guerra-Gomez et al. 2013]). To support the use case, the following
concepts and characteristics of a softare map are missing:

• Depicting multiple revisions using the same map theme.

• Depicting multiple map themes using the same revision.

• Comparison between different depictions of the same software system.

We propose an extension to software maps where multiple instances using
different revisions and map themes are arranged into a matrix, constituting
a small multiples visualization [van den Elzen and van Wijk 2013].

2 Concept

Base Configuration
Dataset: POCO

Layout: Squarified
Margin: 0.05

Columns: Revisions

R
ow

s:
 S

of
tw

ar
e 

M
ap

 T
he

m
es

T
ec

hn
ic

al
 

D
eb

ts

R
is
k 

of
 

K
no

w
le

dg
e 

D
ra

in

Revision 100 Revision 150

POCO
Squarified (Margin 0.05)

Revision 100
Risk of Knowledge Drain

POCO
Squarified (Margin 0.05)

Revision 150
Risk of Knowledge Drain

POCO
Squarified (Margin 0.05)

Revision 100
Technical Debts

POCO
Squarified (Margin 0.05)

Revision 150
Technical Debts

Figure 2: Matrix-based configuration.

We build a small multiples visualization of
software maps by arranging the software
maps in a grid. The x-axis is used for the
time-component (i.e., differing revisions)
and the y-axis for different map themes.
To configure each software map, we dif-
ferentiate between the base configuration
(including, e.g., the dataset, the layouting al-
gorithm and the node padding) that is used
for all software maps and a per small mul-
tiple configuration that specifies the used
revision and map theme. A graphical user
interface allows to configure the revision per column and the map theme per row. Navigation
techniques for the virtual 3D scenes are zoom, pan, and rotate, while the virtual cameras
are all synchronized. A focus+context technique allows for highlighting one or multiple
software maps for direct comparison.

3 Implementation

The prototype is implemented using C++, Qt5 and OpenGL while relying on attributed point
clouds [Trapp et al. 2013] as geometry representation on the GPU and multi-frame sampling
[Limberger et al. 2016] for the shading. Two rendering pipelines were implemented and
evaluated: a multi-pass approach where each small multiple is rendered in its own draw call
and a single-pass approach where all small multiples are rendered using one draw call.

position

id
color

bottom height -

extent

Draw Call

Draw Call

Draw Call

Draw Call

Attributed Point Clouds Framebuffer

Figure 3: The multi-pass rendering pipeline
using per-pass viewport manipulation in
multiple draw calls.

position

id
color

bottom height vpi*

extent

*viewport index

Draw Call

Attributed Point Cloud Framebuffer

Viewports

Figure 4: The single-pass, single draw call
rendering pipeline using virtual viewports
and screen-space vertex displacement.

References

BLADH, T., CARR, D., AND SCHOLL, J. 2004. Extending tree-maps to three dimensions: A comparative study. In Computer
Human Interaction, vol. 3101 of LNCS.

BOHNET, J., AND DÖLLNER, J. 2011. Monitoring code quality and development activity by software maps. In Proc. of the 2nd
Workshop on Managing Technical Debt 2011, ACM.

GUERRA-GOMEZ, J., PACK, M. L., PLAISANT, C., AND SHNEIDERMAN, B. 2013. Visualizing change over time using dynamic
hierarchies: Treeversity2 and the stemview. IEEE TVCG 2013 19, 12.

LIMBERGER, D., TAUSCHE, K., LINKE, J., AND DÖLLNER, J. 2016. Progressive rendering using multi-frame sampling.
GPU Pro7: Advanced Rendering Techniques.

TRAPP, M., SCHMECHEL, S., AND DÖLLNER, J. 2013. Interactive rendering of complex 3d-treemaps. In Proc. of GRAPP 2013.

VAN DEN ELZEN, S., AND VAN WIJK, J. J. 2013. Small multiples, large singles: A new approach for visual data exploration.
Computer Graphics Forum 32, 3.

4 Interactive Revision Exploration

Revision 1 Revision 2 Revision 3 Revision 4 Revision 5 Revision 6

Different Revisions on X-Axis

Different
Map Themes
on Y-Axis

Map Theme 1

Map Theme 2

Map Theme 3

Map Theme 4

Map Theme 5

Softwaremap of Revision 3 using Map Theme 3

Common Dataset

Figure 5: A small multiples visualization of software maps showing 6 revisions (columns) and 5 different software maps themes (rows).

800

8000

80000

1 
S

M
4 

S
M

9 
S

M
64

 S
M

25
6 

S
M

1 
S

M
4 

S
M

9 
S

M
64

 S
M

25
6 

S
M

1 
S

M
4 

S
M

9 
S

M
64

 S
M

25
6 

S
M

1 
S

M
4 

S
M

9 
S

M
64

 S
M

25
6 

S
M

1 
S

M
4 

S
M

9 
S

M
64

 S
M

25
6 

S
M

1 
S

M
4 

S
M

9 
S

M
64

 S
M

25
6 

S
M

Rendering
time in μs

Multi-Pass Rendering Single-Pass Rendering

1080p : 453 nodes : 2160p 1080p : 1609 nodes : 2160p 1080p : 35125 nodes : 2160p

Figure 6: Rendering performance comparison of single-pass rendering and multi-pass rendering (logarithmic scale), depending on the size of
the software project (number of nodes), the resolution and the number of small multiples. The test system was an Ubuntu 14.10 x64 machine
with an Intel Xeon at 8 × 2.8Ghz with 6GB RAM and an Nvidia GTX 680 graphics card.

Figure 7: Configuration user interface. Figure 8: Focus+context. Figure 9: Touch navigation.

Willy Scheibel, M.Sc.
willy.scheibel@hpi.de
+49(0)331 5509 3914
hpi3d.de/people/current/scheibel.html

Prof. Dr. Jürgen Döllner
office-doellner@hpi.de
www.hpi3d.de

Computer Graphics Systems Group
Hasso Plattner Institute
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam, Germany

www.hpi3d.de


