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Abstract: Integration and analysis of real-time and historic sensor data provides important insights into the operational
status of buildings. There is a need for the integration of sensor data and digital representations of the built environment
for furthering stakeholder engagement within the realms of Real Estate 4.0 and Facility Management (FM), especially in a
spatial representation context. In this paper, we propose a general system architecture that integrates point cloud data and
sensor data for visualization and analysis. We further present a prototypical web-based implementation of that architecture
and demonstrate its application for the integration and visualization of sensor data from a typical office building,
with the aim to communicate and analyze occupant comfort. The empirical results obtained from our prototypical
implementation demonstrate the feasibility of our approach for the provisioning of light-weight software components
for the service-oriented integration of Building Information Modeling (BIM), Building Automation Systems (BASs),

Integrated Workplace Management Systems (IWMSs), and future Digital Twin (DT) platforms.
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1. Introduction

One of the key challenges in FM is visualization of
historic and current sensor data within as-is built
environment representations, e.g., digital floor plans or 3D
building models, derived from a building’s DT. Sensors
measuring building-related natural and man-made
phenomena can provide information and insights about
the current operational status of a building or a site. Using
3D point clouds, we are able to routinely capture the as-is
state of the built environment at varying resolutions, and
to keep the geometric dimension of a building’s DT up to
date. Continuously measured sensor data can then be
mapped to point cloud representations. Visualizing sensor
data within its spatial context offered by point cloud
representations, which depict the physical locations of
where this data occurs and is measured in, can enhance
analysis, intervention, forecasting, and decision making
processes within the context of FM (specifically,
Operations and Maintenance (OM)). In that sense, the
combined visualization of sensor data and indoor point
clouds forms a key component of representation for DTs.
However, the linking of captured sensor data to the
physical assets (e.g., rooms, Mechanical, Electrical and
Plumbing (MEP) components) they refer to, and their
combined visualization and resulting enhancement of
decision making and communication, remains a key
challenge in today’s Architecture, Engineering and
Construction (AEC) domains.

There is a lack of approaches and related methods in
current research for service-oriented systems integration
and visualization of indoor sensor data with 3D point
cloud representations. The presented research addresses
this problem by providing a conceptual system
architecture and approach for combined visualization of

indoor sensor data and as-is point cloud representations.
With this architecture, we address the following
requirements and challenges: (1) routine acquisition and
processing of the digital representation of the built
environment using low-cost devices (e.g., commodity
mobile devices), (2) acquisition and processing of data
from multiple sensors, and (3) its interactive mapping and
visualization in a service-oriented system.

We implement and test key components of the conceptual
system architecture, which are used to enable combined
visualization of sensor and indoor point cloud data, using
web-based 3D visualization. We focus on as-is point
cloud representations instead of as-built and as-is BIM
representations. With a case study and empirical results,
we further evaluate our visualization approach, using
point cloud representations of actual indoor
offices (Fig. 1).

2. Foundations and Related Work
2.1 Point Cloud Representations

The main benefit of point clouds is that they can capture
spatial attributes of a physical scene (Qu and Sun, 2015),
encode as XY Z Cartesian or longitude/latitude
coordinates, as well as appearance characteristics, such
as Red-Green-Blue (RGB) color data (Otepka et al.,
2013). Initially acquired point clouds need to be further
processed, which can be automated using established
point cloud processing methods (Berger et al,
2017), (Kehoe et al., 2015). The fact that they can encode
the physical attributes of a given location in 3D space
makes them useful for generating further semantics using,
for example, specific shape-grammar rules (Tran et al.,
2018), clustering (Xue et al., 2019) or deep-learning
methods (Griffiths and Boehm, 2019).
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Figure 1. The case study office area. (a) The office area floor plan, (b) The acquired and processed 3D point cloud used for
the case study, and (c) Point cloud representation of the specific room according to the office floor plan, and an illustration
of where one of the sensors (temperature sensor) is located within the room.

Integration of semantically-enriched point clouds with
existing CAD and BIM systems allows for more practical
and flexible comparison with existing as-built or
as-designed BIM geometry, as well as possibilities for
reconstruction to as-is BIM data (Volk et al., 2014).

Coupled with the fact that point clouds can be acquired
routinely and flexible (especially using commodity mobile
hardware (Froehlich et al., 2017), (Kalyan et al., 2016)),
and are cheaper and easier to generate than BIM models
(encoded e.g., in Industry Foundation Classes (IFC)
format), makes point clouds a desirable entity for indoor
built environment representations.

2.2 Service-Oriented Systems

An important feature of service-oriented systems is that
they can decouple hardware requirements, needed for
computing complex visualizations and analytics, from
client devices that may not have certain hardware
capabilities (Hildebrandt et al., 2011). Service-oriented
systems can benefit FM by seamlessly integrating various
data sources required for creating a complete DT of the
built environment (Teizer et al., 2017). Due to the routine
and frequent nature of FM operations, a centralized online
system with on-demand processing capabilities and
streaming to thick, medium or thin clients provides an
advantage over using monolithic enterprise software on
workstations (Discher et al., 2019). This facilitates routine
acquisition, processing and visualization of required data,
and allows for analytic insight into various operational
data, such as occupant comfort features of indoor
spaces (Teicholz et al., 2013).

In recent years, a number of specifications for integrating
Internet-of-Things (IOT) devices, related digital data and
web-based services have emerged, e.g., standards
introduced and maintained by the Open Geospatial
Consortium (OGC)! (e.g., OGC SensorThings, OGC
SOS, OGC SensorML), as well as the experimental
Building Information Modelling Sensor
Language (BIMSL) (Alves et al., 2017), and IFCSensor
data representations for BIM models?.

Thttp://www.opengeospatial .org/standards

2http://www.buildingsmart-tech.org/ifc/IFC4/
final/html/schema/ifcbuildingcontrolsdomain/lexical/
ifcsensor.htm

Scheffer et al. describe a prototype system for integrating
sensor data readings into simple IFC model
representations (Scheffer et al., 2018). Santhanavanich
et al. present a prototypical service-oriented platform for
integrated  sensor and  geospatial  information
representation (Santhanavanich et al., 2018).  They
evaluate three different sensor specifications (OGC
SensorThings, OGC SOS and Advanced Sensor Data
Delivery Service (ASDDS)). We make use of a
REST-based system for acquiring the sensor data from an
edge controller prior to further visualization.

2.3 BIM and Sensors Technology Integration

BIM enables multidimensional modeling and simulation
of various aspects of the built environment (e.g., 3D
geometry, cost, time, etc (Smith, 2014)). This allows BIM
models or other as-is built environment representations,
such as point clouds, to be used alongside spatio-temporal
data to simulate, assess and forecast various scenarios
associated with the as-is state of a built
environment (Khan and Hornbzk, 2011).

Lu et al. describe the development and testing of a
prototypical DT of their University of Cambridge campus.
They propose an integrated system architecture, making
use of as-is BIM models as the main representational data
source, along with other data sources (e.g., real-time
sensor data, IoT devices, asset management data, tags and
other digital documentation) (Lu et al., 2019).

A web-based BAS system was developed by Lee et al. ,
intended to provide better insight into energy efficiency
monitoring and decision making (Lee et al., 2016). This
web-based visualization system uses 3D visualization of a
simplified as-built BIM of a school building, alongside
graph-based 2D visualization of sensor data readings.

Arthur et al. simulate the use of integrating numerous
sensors within a given building (Arthur et al., 2018). Their
approach simulates the use of temperature and humidity
sensors using a Data as a Service Platform paradigm,
which allows for empirical results to be collected and
analyzed for further implementation feasibility studies.

Further, Pasini et al. propose an integrated sensor
framework using BIM models and focus on occupant
comfort analysis (Pasini et al., 2016). They propose a



workflow using remote sensors that are stored in a given
Building Management System (BMS) and use it to
perform analysis and building control tasks, while sensor
data is visualized wusing the BIM for furthering
stakeholder engagement. Earlier research by Kensek
focuses on integrating sensor data acquired using
affordable sensors and its mapping to as-built BIM
representations using commercial BIM software and
related plugins (Kensek, 2014).

2.4 Sensor Analytics Platforms and Frameworks

Tezel and Aziz propose a conceptual IT system
architecture to support Visual Management (VM), and
decision making concerning construction progress
monitoring, focusing on lean construction concepts (Tezel
et al., 2017). They state the advantages of integrating
”Site Data Collection” (e.g., GPS, LIDAR, RFID and
other sensor data), and transmitting this data via WLAN
or 3G/4G networks to a database and associated Enterpise
Resource System (ERP), as well as to thin, medium and
thick clients for further digital documentation and
visualization.

Chien et al. describe AssetHub, a cloud BIM-based
integrated platform for building services (Chien et al.,
2017). The authors make use of a Level-of-Detail (LOD)
500 as-built BIM model together with associated digital
object identification numbers, and then map location
specific sensor data analysis and visualization outputs.

Research by Khalid er al. describes the development of a
prototypical BMS wusing a game engine to enable
combined interactive 3D visualization of built
environment and sensor data (Khalid et al., 2017). The
authors state the benefit of using a modern 3D graphics
engine to visualize the information-rich BIM models in
3D and enhance stakeholder engagement through visual
communication.

2.5 Visualization of Indoor Sensor Data

Different visualization approaches for sensor data include
examples of: thematic color mapping of segmented indoor
areas (Patlakas et al., 2017), textual information displayed
alongside the 3D model (Pouke et al., 2018), abstracted
3D visualization elements such as 3D bar graphs (Virtanen
et al., 2016), and combined 2D data results with spatially
corresponding 3D scene markers for linked visualization of
energy-related building data (Sihombing and Coors, 2018).

Chang et al. describe the design and implementation of a
BIM-based sensor data visualization platform for
assessing occupant comfort in a classroom, based on
temperature data readings and visualization (Chang et al.,
2018). Additionally, they map an RGB color-based scale
to this data, over a finite element 3D mesh, placed at a
given height in the BIM representation of the given
classroom. They also note that their approach of sensor
data visualization offers FM operators greater insight into
occupant comfort and energy usage, in comparison the
original 2D analytics and textual-based system they
previously used.

The cited research has influenced us to make use of
modern web-based 3D visualization frameworks that
allow for rapid prototyping focusing on suitable
visualization styles for sensor data analytics.
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3. Approach

We address the main challenge of mapping and
visualizing sensor data to indoor point clouds that
represent the corresponding environment. Here, we use a
service-oriented system design (Fig. 2), in order to cope
with data size and complexity as well as to provide
reusable components for construction of corresponding
visualization systems. While state-of-the-art methods
focus on conceptual integration, in practice the integration
of sensor technology with IWMSs is complex due to the
heterogeneity of sensor equipment (accuracy, availability,
cost) and its interfaces, and the expertise required to
combine these two areas in one as-is built environment
representation. We therefore focus on use of affordable
hardware for sensing of room properties, e.g.,
temperature, humidity, and carbon dioxide concentration,
and processing corresponding data. We then map this
processed sensor data onto the point cloud using the
visualization techniques outlined in Sec. 4.

The sensor data is filtered and stored by the Sensor Data
Platform, from where it can be queried by the
Representation Provider and external FM realted IT
systems, such as Facility Management Information
Systems (FMISs) and Computerized Maintenance
Management Systems (CMMSs). The filtered sensor data,
along with the point cloud representation, is given
additional attributes via the Entity-ID  Provider
component. This component extracts location and other
information from existing building documentation (e.g.,
longitude and latitude coordinates and room dimensions
acquired from as-built BIM model, radio-frequency
identification (RFID) or near-field communication (NFC)
tags, etc.), in order to enable automated or manual adding
of semantics into the combined point cloud and sensor
data information model. These semantics can then be
used by stakeholders to identify important physical and
location aspects, wusing the as-is point cloud
representation. The generated visualization result, as well
as the acquired and filtered sensor data, are sent to clients.

Clients are distinguished by their hardware specifications
and processing capabilities as thick, medium, and thin
clients. Thick clients are typically PCs that have hardware
specification similar to that of the server (e.g., high-end
workstation PCs). Such computers can be used to process
the acquired point cloud data as well as the sensor data
visualization, thus they can receive the full 3D point
cloud, sensor data and other associated data required for
generating the final visualization result. Medium clients
are defined as commodity PCs and mobile devices, that
feature hardware that is still capable of visualizing (to
some acceptable degree), the results generated by the
Representation Provider, and to process the sensor data to
generate the visualization result. However, they are best
suited for receiving the processed point cloud and sensor
data and computing the combined visualization result of
the two. Thin clients are usually defined as low-end
hardware specification devices (e.g., consumer mobile
devices), which do not have the sufficient hardware
capabilities to compute the visualization result in
real-time. Thus they are provided only with the finalized
visualization result, usually in the form of an image of the
current 3D scene rendered on the server side and streamed
to them (Ddéllner et al., 2012).
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Figure 2. Proposed general system architecture for combined analysis and visualization of indoor sensor data and point

cloud representations using a service-oriented approach.

Acquisition of indoor point clouds is accomplished using
a mobile scanning device. Modern mobile devices can be
used to generate a 3D point cloud for indoor space using
photogrammetry and/or depth sensing. Once this acquired
point cloud is processed, it can be used to map different
sensor data visualizations onto. We present the process for
point cloud acquisition and processing in Sec. 3.2.

3.1 Sensor Data Platform

The Sensor Data Platform component is responsible for
the storage, analysis, monitoring, querying, and
web-based streaming of sensor data. Sensors can either be
connected through the industry standard MQTT? protocol
for lightweight data transmission, or by issuing Hypertext
Transfer Protocol (HTTP) POST requests, with both
containing JavaScript Object Notation (JSON)-formatted
data as payload. There are numerous types of
communication protocols for sensors based on
low-energy, low-bandwidth radio transmission (e.g.,
ZigBee, Z-Wave, EnOcean, or LoRaWAN), or wired bus
connections. Low-cost edge controllers translate the local
sensor data messages sent through such low-level
protocols into JSON data packets that can be evaluated by
the services of the Sensor Data Platform.

For querying sensor data (stored e.g., in a temporal
database) and corresponding metadata, the platform
provides an Application Programming Interface (API)
following the Representational State Transfer (REST)
paradigm and JSON:API specification*.  Further, live
updates of sensor data values can be subscribed using a
websocket message-based API. Through this, sensor
value changes are propagated e.g., to the Mapping Service
to be visually reflected in the final visualization.
Historical sensor data is stored in a time series database
that combines efficient access to sensor values as well as

3MQTT 5 OASIS Standard: https://docs.oasis-open.org/
mqtt/mqtt/v5.0/mqtt-v5.0.html
4https://jsonapi.org

memory efficient data organization. The Monitoring
sub-component of the Sensor Data Platform evaluates
given rules for sensor data and generates events in case of
identified matches. For such events, an Alerting
sub-component can calls previously registered notification
targets, such as IWMS or FMIS APIs. These systems are
then able to react to the changes or by triggering
automated responses such as turning on the
air-conditioning if the recorded temperature value is
above a certain temperature at a given time of day.

3.2 Point Cloud Processing

The Point Cloud Processing component is responsible for
the processing and generation of a semantically-enriched
as-is point cloud of a given indoor environment. It
provides three sub-components, which can be used
individually or combined, to segment, classify and
reconstruct a given 3D point cloud.

The Segmentation sub-component is used to divide and
mark the homogeneous regions of point clusters, which
allows for quicker identification of physical
features (Nguyen and Le, 2013). After segmentation, the
normal vectors for each of the point clusters are
pre-computed. The use of normal vectors is required for
tasks such as those performed by the 3D reconstruction
component (Mitra and Nguyen, 2003).

The Classification sub-component generates labels for
certain point clusters, thus contributing significantly to the
semantic-enrichment of the complete point cloud
representation. Point clusters are typically classified using
a Convolutional Neural Network (CNN) (Ioannidou et al.,
2017), though varying data sources can be used to training
a CNN, as well as using different deep-learning
models (Griffiths and Boehm, 2019).

The 3D Reconstruction sub-component is used to
generate triangular mesh representations of the processed
point cloud data. Most of the current point cloud



reconstruction methods for BIM applications are based on
a semi-automatic approach. These are able to detect
important structural features such as walls, floors, and
ceilings (Xiong et al., 2013), along with methods for
general 3D mesh reconstruction (Lim and Haron, 2014).

3.3 Representation Provider

The Representation Provider provides a set of services for
generating the visualization result using the acquired and
processed 3D point cloud and sensor data — in particular
services for geometry generation, mapping, and rendering.
The Geometry Generation Service is used to create the as-
is geometry from the semantically-enriched point cloud or
reconstructed geometry.

The Mapping Service is used to map the acquired sensor
data values to a given point cloud or reconstructed
triangular mesh geometry partition. This may include
sensor data that maps specific attributes such as
temperature for a given room. Semantically-enriched
point clusters are critical to this this task, as semantics
allow for the association of labelled geometry segments
with sensor data that is physically located in the
real-world counterpart of the 3D representation (e.g.,
labelled point clusters that distinguish different types of
typical office furniture or other indoor environment
elements e.g., doors, radiators or lighting fixtures —
obtained from the Classification sub-component of the
Point Cloud Processing component).

The Rendering Service is responsible for generating the
final visualization result. The rendering service can make
use of low or high-level graphics APIs and frameworks
(e.g., OpenGL, WebGL, etc.) in order to generate
rendered images (usually in real-time), which can easily
be displayed on the client side (either partially/fully
processed and displayed by the client hardware, or
partially/fully streamed from the server).

4. Case Study

For the case study we implemented and made use of all of
the key components from the proposed general system
architecture (Fig. 2), and tested our approach using a
prototypical web-based application for visualizing indoor
sensor data. We used a medium client for generating the
final visualization results (a commodity laptop with an
Intel i5 1.8 GHz CPU, 8 GB RAM, and NVidia GeForce
MX150 GPU with 2 GB video memory, using the FireFox
67.0 web browser). The main focus of our case study was
to visualize room temperature, humidity and carbon
dioxide recordings for occupant comfort assessment of a
typical office environment (Fig. 1) by linking this data to a
given point cloud representation that visualizes the
physical features of the corresponding room location.

While we acquired the point cloud representation of the
majority of the office area, we focused on visualizing
temporal changes for a single office where the sensors are
located (Fig. 1(c)). The indoor point cloud was acquired
using an ASUS ZenFone AR mobile device with a
depth-sensing camera. The point cloud was then
registered using the provided floor plan, cleaned, and
segmented (using both manual and automated
segmentation methods).  The processed point cloud
contains 3435027 points, with additionally computed
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normal vectors for each point, along with RGB color
information.

Since we make use of real-time 3D graphics, the
implemented rendering service is based on Web Graphics
Library (WebGL), using the Three.js framework’. The use
of WebGL allows for accessing the programmable
graphics pipeline and utilize various per-vertex and
per-pixel rendering techniques based on shader programs.

The Three.js framework is used for visualizing 3D
geometry (e.g., point clouds, triangulated meshes), and to
perform any texture-based rendering tasks (e.g., mapping
the given sensor data readings to a given color value). The
client application is implemented in JavaScript and
HTMLS, while the majority of the server components are
also implemented in JavaScript. We make use of Node.js°
for implementing an express server’ for parsing processed
sensor data stored as JSON files on the server. We make
use of the Socket.io® framework for implementing a
simple WebSockets-based client-server system. For our
prototype implementation, we did not make explicit use of
a database, but instead used JSON files stored on the
server to access processed sensor valuess obtained for a
given time period.

We used temperature, humidity and carbon dioxide
sensors to record room temperatures over a period of one
month during April 2019. Since the sensors produced a
large amount of sensor data, for practicality we sampled
100 time points in increments from the filtered sensor data
and visualized it. Based on the reviewed visualization
examples in Sec. 2.5, we decided to make use of
combined visualization styles to visually convey temporal

changes alongside the associated point cloud
representation. We used three different visualization
methods: (1) thematic color-mapping, (2) textual data

display, and (3) abstracted 3D geometric representation.
The selected visualization methods are based on
established visualization idioms used to convey geometric
and textual abstractions of processed numerical data
(Haber and McNabb, 1990)

The first method maps the given temperature, carbon
dioxide and humidity sensor data to a given color, using
three different thematic color scales based on diverging,
saturated and multi-hue color scales to visually represent
the related changes. The color scales were based on
research by Engel et al. looking at qualitative and
quantitative evidence collected from user study evaluating
impact of rendering techniques on information and spatial
perception (Engel et al., 2013).

We mapped the sensor data by taking into account the
maximum and minimum room temperatures, humidity
and carbon dioxide levels that were recorded in the
sampled sensor data time-series. The minimum and
maximum values were then used to interpolate between
the selected color ranges every time new sensor data was
parsed and sent to the visualization component. We use
ranges from 0 to 30 degrees Celsius for the temperature
mapping, 0 to 100 percent for humidity mapping, and 0 to

Shttps://threejs.org/
Shttps://nodejs.org/en/
"https://expressjs.com/
Shttps://socket.io



1000 parts per million (ppm) for the carbon dioxide
mapping.

The second visualization method makes use of a vertically
scaled 3D cuboid for 3D bar-graph style visualization. The
scaling and the RGB color value of the cuboid is based on
the current sensor value.

The third method renders the parsed sensor data as a 2D
billboard (Akenine-Moller et al., 2018), displaying the
current temperature. The billboard is further associated
with each 3D cuboid used in the second visualization
method, using a line element whose starting point changes
with the current height of the 3D cuboid. Billboard
rendering is accomplished using the provided 2D text
rendering functionality offered by the Three.js framework.
This method is useful for giving better context alongside
the other two visualization methods.

An additional 2D bar graph is also included alongside the
main visualization of each individual sensor data type to
provide better visualization context in relation to previous
and future sensor data values.

Empirical Results. We present empirical results
showing the visualization outputs obtained using the
prototypical  implementation of our  described
approach (Figs. 3 to 5). We demonstrate the temporal
visualization changes using two different time points (z0,
t1), with different temperature, humidity and carbon
dioxide readings. We also show simultaneous
visualization results using a combined approach, featuring
thematic color-mapping, textual and abstracted geometry
visualization for each parsed time point of the
temperature, humidity and  carbon  dioxide
readings (Fig. 6).

5. Discussion and Conclusions

The obtained experimental results demonstrate a simple
but effective method for mapping acquired sensor data to
an interactive 3D visualization, using the spatially
corresponding indoor 3D point cloud representations of a
typical office space. We also address how the proposed
system architecture meets the original requirements
outlined in Sec. 1.

Firstly, the prototypical application demonstrates that
lower-fidelity RGB point cloud representations, acquired
using photogrammetry and/or depth sensing with
commodity mobile devices, provide enough visual
information to enhance the spatially-aligned sensor data
visualization. This means that they can be used as a
practical alternative to BIM models for combined sensor
data visualization.

Secondly, we have demonstrated that multiple sensor data
sources can be utilized for capturing different natural and
man-made phenomena from a given indoor environment,
by processing and visualizing room temperature, humidity
and carbon dioxide levels.

Thirdly, with the use of Web3D-based visualization
frameworks, which are implemented as visualization
components within the proposed service-oriented system
architecture, we can interactively and simultaneously
visualize the indoor point cloud with the corresponding
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spatially correlated sensor readings for a given period of
time — allowing us to intuitively present insights into the
underlying spatio-temporal data through visualization to
stakeholders.

Finally, our proposed general system architecture has
potential for integration as a flexible and practical solution
for IWMSs that require sensor data acquisition and
visualization of indoor environments.
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Figure 5. Visualization of room carbon dioxide captured for two time points: (a) 0: 681 ppm. (b) ¢/: 406 ppm.

|

opom Opom

Humidity: Humidity:

o oo o oo
Temperature: Temperature:

0C 3

(a) (b)

Figure 6. Visualization of combined room temperature, humidity and carbon dioxide captured for two time points: (a) t0:
22.6 Celsius, 27 % and 415 ppm. (b) ¢/: 26 Celsius, 23 % and 557 ppm.
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