Performance Evaluation and Comparison of Service-based
Image Processing based on Software Rendering

Ole Wegen

Hasso Plattner Institute,
Faculty of Digital Engineering,
University of Potsdam, Germany

ole.wegen@student.hpi.de

Jirgen Déliner

Hasso Plattner Institute,
Faculty of Digital Engineering,
University of Potsdam, Germany

juergen.doellner@hpi.de

Matthias Trapp

Hasso Plattner Institute,
Faculty of Digital Engineering,
University of Potsdam, Germany

matthias.trapp@hpi.de

Sebastian Pasewaldt

Digital Masterpieces GmbH
Germany

sebastian.pasewaldt@digitalmasterpieces.com

ABSTRACT

This paper presents an approach and performance evaluation of performing service-based image processing using
software rendering implemented using Mesa3D. Due to recent advances in cloud computing technology (w.r.t.
both, hardware and software) as well as increased demands of image processing and analysis techniques, often
within an eco-system of devices, it is feasible to research and quantify the impact of service-based approaches
in this domain w.r.t. cost-performance relation. For it, we provide a performance comparison for service-based

processing using GPU-accelerated and software rendering.

Keywords

cloud-rendering, image processing, software rendering, performance comparison

1 INTRODUCTION
1.1 Motivation

Today, image processing is a common task with various
applications ranging from processing high-quality pro-
fessional content to User-Generated Content (UGC).
Within recent years, simultaneous developments with
respect to the following major directions can be ob-
served: (1) an increase of mobile hardware and pro-
cessing capabilities, (2) an increase in cloud-processing
capabilities and infrastructure, as well as (3) the ex-
pected increase of network throughput and infrastruc-
ture, with new transmission standards such as 5G and
support for mobile devices such as Google Cloud Mes-
saging (GCM).

There are numerous applications to service-based
provisioning of image processing functionality,
both Business-to-Customer (B2C) and Business-to-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Business (B2B) application scenarios. Besides the
protection or Digital Rights Management (DRM) of
processing functionality internals or software source
code [12], the most prominent is the integration of
such services into collaborative web-based [2] and
mobile applications as well as cloud-processing ser-
vices. However, such a service-based provision has to
account for two major aspects:

GPU-based Processing: For efficient processing,
image processing components often rely on
hardware-acceleration based on Graphics Pro-
cessing Units (GPUs), thus require dedicated
graphics hardware (GPU). This is often the case
for real-time or high-performance applications. It
should be taken into account that not only the actual
processing time influences whether an application
is real-time capable. Also the network speed needs
to be considered.

Scalability: Providing image-processing functionality
via cloud-processing services to end users relies
on scalability features offered by cloud-service
providers. However, currently dedicated GPU-
instances are costly, thus infrastructures do not scale
well for usability in the B2C market.

Taken both of the aspects into account when provid-
ing service-based image processing for customers, the
financial impact varies significantly between hosting a
dedicated GPU-based server or rely on scalable GPU-
based cloud-computing services such as Amazon AWS
Elastic Compute Cloud (EC2) (ranging from approx.
€120 for a dedicated server to $2000 for a scalable
one). However, one important aspect of service-based
provisioning of any functionality in general, is the cov-
erage of operational cost for the server infrastructure.
With respect to this, one observation that can be made
is the cost span between server with and without ded-
icated GPU hardware. To reduce costs while main-
taining scalability simultaneously, Software Rendering
(SWR) is a promising alternative to servers and services
that support dedicated GPUs.

1.2 Problem Statement

Compared to GPU-based rendering, the run-time per-
formance of SWR is exspected to be significantly in-
ferior. Thus, especially for high spatial resolutions of
input images, SWR is not suitable for applications that
require fast, on-demand results, but it can be used for
processing tasks where speed or output quality plays
not a crucial role, e.g., for batch processing or preview
generation. This work relies on an image-processing
framework based on C++ and OpenGL that is an inte-
gral component of various desktop and mobile image-
abstraction applications; given an input image and a de-
scription of an image-processing operation, it computes
a transformed output image using GPU-acceleration.

However, depending on (1) the type of spatial process-
ing technique, i.e., pixel-based, neighborhood-based, or
global operations, as well as (2) the choice of imple-
mentation, there are approaches and frameworks that
can counterbalance some of the negative run-time per-
formance impact. Nevertheless, when using SWR there
are arguments — specific to software development as-
pects — to rely on standard rendering and graphics Ap-
plication Programming Interfaces (APIs) for implemen-
tation of image processing techniques:

Standardization: Using standardized APIs backed by
industry and research allows for fast adaption to new
software and hardware technology as well as ease
the integration of new processing algorithms and
techniques.

Software Maintenance: Software maintenance effort
and costs can be lowered by relying only on a single
framework for image-processing.

1.3 Approach and Contributions

This paper approaches the challenge of enabling SWR
for image processing as follows: first, it integrates soft-
ware rendering by using GPU emulation via The Mesa

3D Graphics Library (Mesa3D). This allows for a wide
support of cloud-computing providers and thus facili-
tates vertical (adding processing power) and horizontal
(adding computing instances) scaling. Based on this in-
tegration approach, performance measurements are ob-
tained for comparing a dedicated server with GPU sup-
port and standard servers running the GPU-emulation.

The remainder of the paper is structured as follows.
Section 2 reviews related work regarding service-based
approaches for image and video processing systems and
techniques. Section 3 describes the approach and im-
plementation details for integrating hardware and soft-
ware rendering. Section 4 presents and discusses re-
sults of a performance comparison between SWR and
GPU-based processing in a service-based environment.
Finally, Section 5 concludes this paper and discusses
future research directions.

2 RELATED WORK
2.1 Software Rendering Approaches

Besides special approaches for the implementation
of high-performance software rasterization using
GPUs [18, 14], only a few research focus on software
rendering in general.

Mileff and Dudra presents an overview of perfor-
mance improvement methods for Central Processing
Units (CPUs) by utilizing specific instruction sets
and describe how these methods can be applied in
(tile-based) software rendering [20]. Following this,
the authors reviews problems and opportunities of
two-dimensional rendering and propose and evaluate
an efficient, software-based rasterization method for
textures [21]. Mesa3D in particular, is used for in-situ
visualization in a particle-based volume rendering
Kyoto Visualization System [8].

2.2 Service-based Image Processing

Several software architectural patterns are feasible for
implementing service-based image-processing [4, 25].
However, one prominent style of building a web-based
processing system for any data is the service-oriented
architecture [36]. It enables server developers to set up
various processing endpoints, each providing a specific
functionality and covering a different use case. These
endpoints are accessible as a single entity to the client,
i.e., the implementation is hidden for the requesting
clients, but can be implemented through an arbitrary
number of self-contained services.

Since web services are usually designed to maxi-
mize their reusability, their functionality should be
simple and atomic. Therefore, the composition of
services [10] is critical for fulfilling more complex
use cases [16]. The two most prominent patterns for
implementing such composition are choreography and

orchestration [26]. The choreography pattern describes
decentralized collaboration directly between modules
without a central component. The orchestration pattern
describes collaboration through a central module,
which requests the different web services and passes
the intermediate results between them [28].

In the field of image analysis, Wursch et al. [40, 41]
present a web-based tool that enables users to perform
various image analysis methods, such as text-line ex-
traction, binarization, and layout analysis. It is im-
plemented using a number of Representational State
Transfer (REST) web services and application exam-
ples include multiple web-based applications for differ-
ent use cases.

Further, the viability of implementing image-
processing web services using REST has been
demonstrated by Winkler et al. [38], including the
ease of combination of endpoints. Another example
for service-based image-processing is Leadtools
(https://www.leadtools.com), which provides a fixed
set of approx. 200 image-processing functions with a
fixed configuration set via a web APL. In this work,
however, a similar approach using REST is chosen,
although with a different focus in terms of granularity
of services.

Applications with respect to medical image processing
are presented by Yuan et al. . [43] as well as Moulick
and Gosh [22]. They propose a web-based platform to
present and process medical images by using server-
side computing for a series of image processing algo-
rithms.

Further, in the field of geodata, the Open Geospatial
Consortium (OGC) set standards for a complete server-
client ecosystem. As part of this specification, different
web services for geodata are introduced [23]. Each web
service is defined through specific input and output data
and the ability to self-describe its functionality[42]. In
contrast, in the domain of general image-processing
there is no such standardization yet. However, it is pos-
sible to transfer concepts from the OGC standard, such
as unified data models. These data models are imple-
mented using a platform-independent effect format [3].
In the future, it is possible to transfer even more con-
cepts set by the OGC to the general image-processing
domain, such as the standardized self-description of
services.

2.3 Image Abstraction Techniques

In this work, we focus on edge-aware and content-
preserving image-processing as a fundamental tool in
computational photography and non-photorealistic ren-
dering for abstraction and artistic stylization for appli-
cation and testing purposes. Typical approaches that
operate in the spatial domain for abstraction use a kind
of anisotropic diffusion [27, 37] and are designed for

parallel execution, such as approximated by the bilat-
eral filter [35] and guided filter [9]. A plenitude of
stylization techniques exist using these filters as build-
ing blocks to simulate traditional painting media and
effects [13], such as cartoon [39] and oil paint [33].
However, these may become computationally expen-
sive when applied in an iterative multi-stage process.
This particularly applies to techniques using global op-
timizations to separate detail from base information,
e.g., based on weighted least squares [6] or locally
weighted histograms [11], and recent techniques that
separate style from content using neural networks [7].
Because of their global optimization scheme, they are
typically not suited for real-time application, in particu-
lar not on mobile devices. To this end, we implemented
a variety of these techniques using the proposed image-
processing service including stylization, High Dynamic
Range (HDR) tone mapping and compression, JPEG ar-
tifact removal and colorization, to demonstrate its ver-
satile application. We used a representative subset of
these techniques for performance evaluation.

3 SOFTWARE RENDERING

This section describes the approach for enabling
software rendering for an Open Graphics Li-
brary (OpenGL)-based rendering framework for
image processing techniques [29]. In particular, based
on our system requirements, this comprises justification
of middle-ware choices and specifics for the deploy-
ment process that is suitable for cloud-computing
providers.

3.1 Software Rendering using Mesa3D

A common approach for enabling software render-
ing for OpenGL-based applications [31] is using
Mesa3D [19]: an open source 3D graphics library
implementing OpenGL, Vulkan and other graphics
API specifications. It offers multi-platform support
and is used in Linux, Windows, and macOS. Basi-
cally, there are two architectures for Mesa3D driver
implementation. The older one uses Mesa’s Direct
Rendering Infrastructure. Gallium3D represents the
new architecture and API driver implementation and
development by abstracting from specific hardware and
operating systems. The following software drivers are
available for Mesa3D:

SWRast: represent the original/legacy software raster-
izer for Mesa3D implemented in C. It supports only
the fixed-function rendering pipeline that was used
in OpenGL before shaders were introduced.

OpenSWR: is a fast CPU OpenGL-compatible ren-
derer developed by Intel [30] with advantages in
cluster setups for large datasets.

Table 1: Comparison of Mesa3D software rendering drivers.

Software drivers for software rendering

Aspect SWRast OpenSWR Softpipe LLVMpipe
API Features OpenGL 2.0 (no GLSL) OpenGL 3.3 Core OpenGL 3.3 OpenGL 3.3

+ OpenGL 3.0 Compatibility (70.9% Extension Coverage) (64.8% Extension Coverage)
Performance Not tested High Low High

Softpipe: is a full Gallium reference driver for a CPU
supporting the programmable graphics pipeline by
implementing code generation for shader programs
and closely modeling of hardware behavior.

LLVMpipe: is a fast software rasterizer that supports a
sufficient amount of OpenGL core functionality and
extensions. It uses LLVM for x86 Just-in-Time (JIT)
code generation and is multi-threaded. It is based on
LLVM [17], which is a collection of modular and
reusable compiler and tool chain technologies.

Since the framework is not limited to OpenGL[31], also
Vulkan[32] should be supported by SWR, which un-
fortunately none of the available software renderer cur-
rently supports. For choosing a software rendering ap-
proach we have to account for the following aspects:

Level of Feature-Completeness: This depends on the
up-to-dateness of a specific software renderer. Apart
from SWRast, all available software renderer fully
support OpenGL 3.3.; OpenSWR is currently more
actively developed while Softpipe on the other hand
supports additional OpenGL extensions. Neverthe-
less, also LLVMpipe supports a sufficient amount of
extensions.

Processing Performance: The run-time performance
of SWR approaches represents the most crucial as-
pect and is required being as high as possible.

Table 1 shows a comparison of the available Mesa3D
software drivers, based on aggregated information ob-
tained from the Mesa3D feature set [5]. The prelim-
inary performance values are obtained using the ap-
proach described in Section 4. Specifically, the machine

108
107 /////

Time needed in microseconds

1280x720 1920x1080 2560x1440 3840x2160

Spatial resolution in pixels
llvmpipe =e=softpipe -=-openSWR

Figure 1: Runtime performance comparison in mi-

croseconds of software drivers (LLVMpipe vs. Softpipe

vs. OpenSWR) using morphological closing operation

with a kernel size of three (logarithmic scale).

used for the preliminary test has the following hard-
ware specifications: an Intel 15-8400, 2.8 GHz proces-
sor with six cores, and 16 GB Random Access Memory
(RAM). Only a separated morphological closing opera-
tion with a kernel size of three was tested as representa-
tive for multi-pass processing techniques that are based
on neighborhood sampling operations (Figure 2c). Fig-
ure 1 shows the resulting performance values at a log-
arithmic scale. It can be observed that Softpipe was
significantly slower than LLVMpipe while OpenSWR
was also slower than LLVMpipe but only by a smaller
factor.

Based on this analysis, the LLVMpipe backend for
SWR is chosen for the image-processing techniques be-
cause the supported features are sufficient and the per-
formance is compared to the other drivers the best one
for this task.

3.2 Deployment Process

Similar to approaches used for real-time 3D render-
ing [24], the deployment process basically comprises
the following steps that can be managed using an
automatic approach. At first, LLVM, is compiled and
linked. Subsequently, Mesa3D with LLVMpipe back-
end is compiled and linked. After that, the Mesa3D
OpenGL dynamic linked library for Windows targets
(opengl32.d1l1) or shared library for UNIX-like
systems (LibGL. so) is placed in the directory next to
the executable.

Following to that, OpenGL-specific application calls
are resolved using the LLVMpipe driver. Finally, for
patching the application, a docker image [1] is prepared
and deployed to the respective cloud-service providers.

4 PERFORMANCE EVALUATION

This section evaluates, compares, and discusses the run-
time performance of the service-based image processor
deployed to (1) a dedicated GPU server and (2) different
standard cloud-computing platforms.

4.1 Test Data and Processing Techniques

Different image resolutions were tested with differ-
ent image-processing techniques to estimate the perfor-
mance of software rendering regarding the spatial res-
olution of an image as well as the complexity of pro-
cessing techniques. The following common resolutions
in pixels were chosen: 1280 x 720 (HD), 1920 x 1080
(FHD), 2560 x 1440 (QHD), and 3840 x 2160 (4K).

(a) Original.
Figure 2: Exemplary results of different image-processing techniques (b) — (d) that are used for performance
evaluation and comparison applied to an input image (a).

In addition to various spatial resolutions, different im-
age processing techniques (Figure 2) have been tested
in order to cover a broad spectrum and obtain variant es-
timates on software rendering performance and behav-
ior with respect to different types of processing tasks:

Color Invert: This operation is pixel-based and inverts
the color value of every pixel. This requires only a
single sampling operation followed by an absolute
value of a single arithmetic operation (Figure 2b).

Morphological Closing: This operation is neighbor-
hood-based. 1It’s a morphological operation and
comprises a dilation followed by an erosion. Sepa-
rated kernels are used. Three different kernel sizes
were tested: 3, 14, and 90 (Figure 2c).

Oilpaint Abstraction: This multi-pass processing
technique [33] consists mainly of color palette
extraction, colorization, luminance quantization,
edge detection, flow-field computation, smoothing
and blending techniques (Figure 2d).

4.2 Overview of Test Systems

We evaluate the run-time performance of above pro-
cessing techniques applied to the test input data using
servers provided by different vendors. Table 2 (next
page) shows an overview of the hardware and software
specifications of the test systems:

Dedicated GPU Server: This server has dedicated
graphics hardware and was used to measure the
competitive performance of GPU-based processing
as well as processing using SWR.

Amazon EC2 t2.large: This is a general purpose
AWS EC2 instance of the type t2.large.

Amazon EC2 c4.4xlarge: This is a compute-
optimized AWS EC2 instance of the type c4.4xlarge.

(c) Morphological closing. (d) Oilpaint.

Amazon EC2 c5.18xlarge: This is highly compute-
optimized AWS EC2 instance of the type
c5.18xlarge. It has additional RAM and an in-
creased number of virtual CPUs (vCPUs) compared
to the c4.4xlarge instance.

4.3 Test Setup

In order to obtain the performance measurements, two
docker containers were launched. As shown in Fig-
ure 3, one container runs the actual image processor
instance, while the other container exposes a REST in-
terface for communication with the client. It consists of
a NodelS [34] server that communicates with the im-
age processor instance via WebSockets [29]. The im-
age processor itself had a profiler implementation that
could also be configured using the REST interface and
performed measurements whenever an image was pro-
cessed. Also the obtained performance results could be
queried using this interface.

After the docker containers were launched, the profiler
was configured to measure only the duration of the ac-
tual processing of an image — not the setup of the op-
eration or the transmission of the image. In a real-
world scenario the transmission and loading times are
of course relevant and should be taken into considera-
tion but these are not the focus of this work. The pro-
filer uses OpenGL query objects to obtain the measure-
ments of the actual processing time and not only the
time spend to call the asynchronous OpenGL requests.

Server e.g. Amazon EC2
Image | Prefier
Processor| @

Figure 3: Setup and deployment for service-based per-
formance testing. Via REST interface, a client commu-
nicates with the image-processing service that controls
an image processing instance using WebSockets.

Nodels
Server

Websockets

Client

Table 2: Overview of cloud-computing provider used for performance evaluation (all 64 bit architecture).

Aspect Dedicated GPU Server AWS EC2 t2.large = AWS EC2 c4.4xlarge AWS EC2 c5.18xlarge
Processor Xeon E5-2637 v4, 3.5 GHz Xeon, 3.0 GHz Xeon E5-2666 v3,2.9GHz Xeon Platinum, 3.0 GHz
Cores/Threads 8 cores 2 vCPUs 16 vCPUs 72 vCPUs

Memory 64 GB 8GB 30GB 144 GB

GPU NVIDIA Quadro M6000 24 GB None None None

When using software rendering, this obviously makes
no difference because everything that would be pro-
cessed by a GPU is processed by the CPU itself. For
every combination of resolution and processing tech-
nique six identical image processing requests were sent
and the results of the measurements queried and saved.

4.4 Test Results

From the six measurements obtained for every combi-
nation of image resolution and processing technique,
the first one was ignored and the average of the re-
maining ones was calculated. This was done due to
the fact that the first of these six measurements usu-
ally was significantly higher than the remaining (rang-
ing from a factor of 1.2 up to a factor of over 1000)
because OpenGL optimizes after the first run of pro-
cessing an image with a specific processing technique.
This, of course, is an important aspect that should be
taken into account when deploying a service-based im-
age processing service for multiple users that probably
want to process images with different resolutions and
different processing techniques.

Figure 4 shows the results of the measurements. The
first four charts show the absolute processing time in
microseconds for a specific resolution and processing
technique comparing GPU-based rendering (solid
lines) to SWR (dotted lines) on the different machines.
All charts are shown using a logarithmic scale.

Figure 5 shows the speed factor for software rendering
on each of the four test machines, i.e., how much slower
software rendering was comparedto GPU-based render-
ing. The factor was calculated by dividing the duration
of GPU-based processing by the duration using soft-
ware rendering. In the case that SWR was faster, its du-
ration of was divided by the duration of the GPU-based
approach. The result then was negated to emphasize
that software rendering was actually faster. Note that in
case of the color invert, the values are negative, i.e., for
this processing technique SWR was actually faster than
GPU-based rendering.

4.5 Discussion of Test Results

At first, the processing duration of software rendering
compared to GPU-based rendering is discussed. Subse-
quently, we discuss the computed speed factors.

It can be observed that SWR generally is significantly
slower than GPU-based rendering, but the relations be-
tween the different processing techniques and image

resolutions for SWR are similar to GPU-based render-
ing. For example, for both SWR and GPU-based ren-
dering, oilpaint abstraction, and morphological clos-
ing with kernel size 90 have a similar processing du-
ration for smaller image resolutions, but for higher im-
age resolutions the oilpaint abstraction exhibit high run-
times. This shows that SWR introduces an impact
to the processing performance, but it does not change
how the different processing techniques and image res-
olutions compare to each other regarding performance,
e.g., which processing technique has the shortest du-
ration for a specific resolution. While SWR is slower
for most of the processing techniques, interestingly for
color invert this is not the case. There are two possible
explanations for this: first of all we only tested GPU-
based processing using one specific GPU. It could be
that on other GPUs color invert would be faster. An-
other explanation could be that transferring the image
to the GPU takes longer compared to perform an invert
on the CPU, even if the CPU cannot parallelize this sim-
ilar to the GPU [15].

The measurements show that an approach for reducing
the processing time when using SWR is to increase the
number of vCPUs. Figure 6 shows the speed increase
by increasing vCPUs based on the taken measurements
for morphological closing with kernel size of 14 on a
Full High Definition (FHD) image on the three Ama-
zon EC2 instances. This speed factor is computed by
dividing the processing duration using the EC2 t2.large
instance (which has two vCPUs) by the processing du-
ration if using additional vCPUs. It can be observed that
the speed does not increase linearly with an increasing
amount of vCPUs. For a final conclusion, more mea-
surements on different machines would be required but
there probably exists an upper bound to which the speed
factor can be pushed.

Regarding the speed factor for SWR compared to
GPU-based rendering, it can be observed that for
single or multi-pass processing techniques based
on pixel-based or neighborhood-sampling of small
kernel-sizes the factor remains stable. This allows for
assessing the performance impact when using SWR
for these processing techniques. However, for complex
processing techniques it can be observed that with
increasing image resolution, GPU-based rendering
performance is superior compared to SWR.

Thus, for more complex processing techniques, the per-
formance impact depends strongly on the spatial res-

Time needed in microseconds

Time needed in microseconds

Speed factor

Speed factor

107
108 RSRPTRLILL 3 s
10°
10

10°

102

10!

1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—lnvert Closing (3) —o— Closing (14) —e—Closing (90) —e—Oilpaint
<@ Invert:SWR Closing:SWR (3) -4+ Closing-SWR (14) Closing:SWR (30) ++ @+ Oilpaint-SWR
(a) GPU vs. SWR on dedicated server.

107

106 PRI

10°

10°

10®

102

10t *

1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—nvert Closing (3) —#—Closing (14) ====Closing (30) === Oilpaint
<o Invertca Closing:c4 (3) ++#+ Closing-c4 (14)++#=» Closing-c4 (90) - #++ Oilpaint.c4

200
100

-100
-200
-300
-400
-500
-600

(c) GPU vs. AWS EC2 c4.4x large.
Figure 4: Comparing processing duration of GPU-based rendering to software rendering on different test systems.

-

\V

1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—Invert Closing (3) —e—Closing (14) =e=Closing (90) =—e=Oilpaint
(a) SWR on dedicated server.
e —
1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels

—e—Invert Closing (3) —=—Closing (14) =e=Closing (90) =-e=Oilpaint

(c) AWS EC2 c4.4xlarge.

Time needed in microseconds

Speed factor

Speed factor

Time needed in microseconds

108
10
106
108
10
108
10?

10!

107

108

10°

104

10

102

10!

600
400

200

-200
-400

-600

100

-100
-200
-300
-400
-500
-600
-700

serernerennenesnstte

1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—Invert Closing (3) ~ —e— Closing (14) === Closing (90) =&~ Oilpaint
e Invert-t2 Closing-t2 (3) ++ -+ Closing-t2 (14) «+ @+« Closing-t2 (90) -+ #++ Oilpaint-t2

(b) GPU vs. AWS EC2 t2.]arge.

ERRRRTITRTITIIIILL 4

1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—lnvert Closing (3) == Closing (14) === Closing (90) === Oilpaint

@ Invert-cs Closing-c5 (3) ++ @+ Closing-c5 (14) =+ @+« Closing-cS (90) - ®++ Oilpaint-c5

(d) GPU vs. AWS EC2 c5.18xlarge.

1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—Invert Closing (3) —e—Closing (14) =-e=Closing (90) =—e=Oilpaint
(b) AWS EC2 t2.large.
————
1280x720 1920x1080 2560x1440 3840x2160
Spatial resolution in pixels
—e—Invert Closing (3) =—Closing (14) =e=Closing (90) =e=Oilpaint
(d) AWS EC2 c5.18xlarge.

Figure 5: Speed factor of software rendering compared to GPU-based rendering for different machines.

Speed factor

0 10 20 30 40 50 60 70 80
Number of vCPUs
Figure 6: Speed factor for a specific amount of vCPUs
compared to two vCPUs.

olution of the input image. It’s interesting that for
complex processing techniques (e.g., oilpaint abstrac-
tion and morphological closing with kernel size of 90),
the speed factor for SWR on all test machines when
processing a FHD image is noticeable lower, which is
reflected by the bend in the graph. The origin of this
bend lies in a higher processing duration for FHD im-
ages compared to Quad High Definition (QHD) images
when using GPU-based rendering.

It should be mentioned that a FHD image has 2.25 times
more pixels than a High Definition (HD) image and a
4K image also has 2.25 times more pixels than a FHD
image, while a QHD image only has approx. 1.7 times
more pixels than a FHD image. This means that regard-
ing that number-of-pixels the measurements results for
QHD images would be closer to the FHD images, com-
pressing the graph in the horizontal direction. This of
course does not explain why the processing duration for
QHD is lower than the processing time for FHD. For
this, we found no sufficient explanation. The reason
may lie within the specific GPU we used for testing.

5 CONCLUSIONS

This paper presents the results of feasibility study and
rendering performance evaluation of service-based
image processing techniques based on OpenGL soft-
ware rendering. It compares the rendering performance
results with a dedicated GPU-accelerated service
deployment. The results show a significant negative
performance of software rendering compared to
GPU-accelerated processing. However and to a certain
extend, this limitations can be attenuated by increasing
the number of vCPUs/Threads.

Further, the performance of software rendering com-
pared to GPU-based rendering strongly depends on
the implementation complexity of the processing
technique, i.e., for less complex processing operations
the speed factor remains stable. Furthermore, for
less complex processing techniques using pixel-based
sampling, software rendering can be faster.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable feedback. This work was funded by the
Federal Ministry of Education and Research (BMBF),
Germany, for the AVA project 011S15041.

REFERENCES

[1] Carl Boettiger. An introduction to docker for re-
producible research. SIGOPS Oper. Syst. Rev.,
49(1):71-79, January 2015.

[2] Aleksey Bragin, Alexander Dubanov, and Alexan-
der Rechitskiy. User Interface Design for a Web-
based Image Processing and Analysis System. In
C. Wernhard S. Holldobler, A. Malikov, editor,
YSIP2 - Proceedings of the Second Young Scien-
tist’s International Workshop on Trends in Infor-
mation Processing, Dombai, Russian Federation,
2017. CEUR.

[3] Tobias Diirschmid, Maximilian S6chting, Amir
Semmo, Matthias Trapp, and Jiirgen Dollner.
Prosumerfx: Mobile design of image stylization
components. In SIGGRAPH Asia 2017 Mobile
Graphics & Interactive Applications, SA 17,
pages 1:1-1:8, New York, NY, USA, 2017. ACM.

[4] Thomas Erl. Service-Oriented Architecture: Con-
cepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

[5] Romain Failliot, Tobias Droste, and Robin Mc-
Corkell. The OpenGL vs Mesa matrix. https:
//mesamatrix.net. Accessed: 2019-04-26.

[6] Zeev Farbman, Raanan Fattal, Dani Lischinski,
and Richard Szeliski. Edge-preserving decompo-
sitions for multi-scale tone and detail manipula-
tion. ACM Transactions on Graphics, 27(3):67:1—
67:10, 2008.

[7] Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. Image style transfer using convolutional
neural networks. In Proc. Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pages 2414-2423, Los Alamitos, 2016. IEEE
Computer Society.

[8] Kengo Hayashi, Naohisa Sakamoto, Jorji Nonaka,
Motohiko Mastuda, and Fumiyoshi Shoji. An In-
Situ Visualization Approach for the K computer
using Mesa 3D and KVS. In ISC Workshop on
In-Situ Visualization 2018 (WOIV 2018), 2018.

[9] Kaiming He, Jian Sun, and Xiaoou Tang. Guided
image filtering. In Proc. European Conference on
Computer Vision (ECCV), pages 1-14. Springer,
2010.

[10] Alexander Jungmann and Bernd Kleinjohann.
Automatic composition of service-based image
processing applications. In Proc. IEEE Interna-

https://mesamatrix.net
https://mesamatrix.net

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

tional Conference on Services Computing (SCC),
pages 106—113. IEEE Computer Society, 2016.

Michael Kass and Justin Solomon. Smoothed
local histogram filters. ACM Transactions on
Graphics, 29(4):100:1-100:10, 2010.

David Koller, Michael Turitzin, Marc Levoy,
Marco Tarini, Giuseppe Croccia, Paolo Cignoni,
and Roberto Scopigno. Protected Interactive 3D
Graphics via Remote Rendering. ACM Trans.
Graph., 23(3):695-703, August 2004.

Jan Eric Kyprianidis, John Collomosse, Tinghuai
Wang, and Tobias Isenberg. State of the “art”:
A taxonomy of artistic stylization techniques for
images and video. IEEE Transactions on Visual-
ization and Computer Graphics, 19(5):866—885,
2013.

Samuli Laine and Tero Karras. High-performance
software rasterization on gpus. In Proceedings of
the ACM SIGGRAPH Symposium on High Per-
formance Graphics, HPG " 11, pages 79-88, New
York, NY, USA, 2011. ACM.

Victor W. Lee, Changkyu Kim, Jatin Chhugani,
Michael Deisher, Dachyun Kim, Anthony D.
Nguyen, Nadathur Satish, Mikhail Smelyanskiy,
Srinivas Chennupaty, Per Hammarlund, Ronak
Singhal, and Pradeep Dubey. Debunking the 100X
GPU vs. CPU Myth: An Evaluation of Through-
put Computing on CPU and GPU. In Proceedings
of the 37th Annual International Symposium on
Computer Architecture, ISCA 10, pages 451—
460, New York, NY, USA, 2010. ACM.

Angel Lagares Lemos, Florian Daniel, and
Boualem Benatallah. Web service composition: A
survey of techniques and tools. ACM Computing
Surveys, 48(3):33:1-33:41, 2015.

The LLVM Compiler Infrastructure. http://
1lvm.org. Accessed: 2019-04-26.

Kwan-Liu Ma and Steven Parker. Massively Par-
allel Software Rendering for Visualizing Large-
Scale Data Sets. IEEE Computer Graphics and
Applications, 21(4):72-83, July 2001.

The Mesa 3D Graphics Library. https://www.
mesa3d.org. Accessed: 2019-04-26.

Peter Mileff and Judit Dudra. Efficient 2D Soft-
ware Rendering. Production Systems and Infor-
mation Engineering, 6(2):55-66, May 2012.
Peter Mileff and Judit Dudra. Modern Software
Rendering. Production Systems and Information
Engineering, 6(2):99-110, May 2013.

Himadri Nath Moulick and Moumita Ghosh.
Medical image processing using a service oriented
architecture and distributed environment. Amer-
ican Journal of Engineering Research (AJER),

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

2(10):52-62, 2013.

Matthias Mueller and Benjamin Pross.
OGC WPS 2.0.2 Interface Standard.
Open Geospatial Consortium, 2015.
http://docs.opengeospatial.org/is/14-065/14-
065.html.

Christopher Niederauer, Mike Houston, Maneesh
Agrawala, and Greg Humphreys. Non-invasive
interactive visualization of dynamic architectural
environments. In Proceedings of the 2003 Sympo-
sium on Interactive 3D Graphics, 13D ’03, pages
55-58, New York, NY, USA, 2003. ACM.

Mike P. Papazoglou and Willem-Jan Heuvel. Ser-
vice oriented architectures: Approaches, tech-
nologies and research issues. The VLDB Journal,
16(3):389—-415, 2007.

Chris Peltz. Web services orchestration and chore-
ography. Computer, 36(10):46-52, October 2003.

Pietro Perona and Jitendra Malik. Scale-space and
edge detection using anisotropic diffusion. /IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12(7):629-639, 1990.

Ricardo Queirés and Alberto Simdes. SOS - Sim-
ple Orchestration of Services. In Ricardo Queir6s,
Mario Pinto, Alberto Simoes, José Paulo Leal,
and Maria Jodo Varanda, editors, 6th Symposium
on Languages, Applications and Technologies
(SLATE 2017), volume 56 of OpenAccess Se-
ries in Informatics (OASIcs), pages 13:1-13:8,
Dagstuhl, Germany, 2017. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Marvin Richter, Maximilian Sochting, Amir
Semmo, Jiirgen Dollner, and Matthias Trapp.
Service-based Processing and Provisioning of
Image-Abstraction Techniques. In Proceedings
of the 26th International Conference on Com-
puter Graphics, Visualization and Computer Vi-
sion, Proceedings International Conference on
Computer Graphics, Visualization and Computer
Vision (WSCG), pages 97-106, 2018.

Timothy Rowley. Software Rasterizer (SWR). In
Presented at the Intel HPC Developers Confer-
ence at SC14, 2014.

Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 4.6
(Core Profile) - May 14, 2018). The Khronos
Group Inc., May 2018.

Mark Segal and Kurt Akeley. Vulkan 1.0.107:
A Specification. The Khronos Group Inc., April
2019.

Amir Semmo, Daniel Limberger, Jan Eric Kypri-
anidis, and Jiirgen Dollner. Image stylization
by interactive oil paint filtering. Computers &
Graphics, 55:157-171, 2016.

http://llvm.org
http://llvm.org
https://www.mesa3d.org
https://www.mesa3d.org

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Lambert M. Surhone, Mariam T. Tennoe, and
Susan F. Henssonow. Node.Js. Betascript Pub-
lishing, Mauritius, 2010.

Carlo Tomasi and Roberto Manduchi. Bilateral
filtering for gray and color images. In Proc. Inter-
national Conference on Computer Vision (ICCV),
pages 839-846. IEEE, 1998.

Mircea-Florin Vaida, Valeriu Todica, and Mar-
cel Cremene. Service oriented architecture for
medical image processing. International Jour-
nal of Computer Assisted Radiology and Surgery,
3(3):363-369, 2008.

Joachim Weickert. Anisotropic diffusion in image

processing, volume 1. Teubner Stuttgart, 1998.

Robert P. Winkler and Chris Schlesiger. Image
processing rest web services. Technical Report
ARL-TR-6393, Army Research Laboraty, Adel-
phi, MD 20783-119, 2013.

Holger Winnemoller, Sven C. Olsen, and Bruce
Gooch. Real-time video abstraction. ACM Trans-
actions on Graphics, 25(3):1221-1226, 2006.

M. Wiirsch, R. Ingold, and M. Liwicki. Sdk rein-
vented: Document image analysis methods as
restful web services. In 2016 12th IAPR Work-
shop on Document Analysis Systems (DAS), pages
90-95, 2016.

Marcel Wiirsch, Rolf Ingold, and Marcus Liwicki.
Divaservices - a restful web service for document
image analysis methods. Digital Scholarship in
the Humanities, 32(1):1150-i156, 2017.

Xiaoxia Yang. Remotely sensed image processing
service automatic composition. State Key Labo-
ratory of Information Engineering in Surveying,
Mapping and Remote Sensing, Wuhan University,
2009.

Rong Yuan, Ming Luo, Zhi Sun, Shuyue Shi,
Peng Xiao, and Qingguo Xie. Rayplus: a web-

based platform for medical image processing. J.
Digital Imaging, 30(2):197-203, 2017.

	Introduction
	Motivation
	Problem Statement
	Approach and Contributions

	Related Work
	Software Rendering Approaches
	Service-based Image Processing
	Image Abstraction Techniques

	Software Rendering
	Software Rendering using Mesa3D
	Deployment Process

	Performance Evaluation
	Test Data and Processing Techniques
	Overview of Test Systems
	Test Setup
	Test Results
	Discussion of Test Results

	Conclusions

