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This paper describes an approach for using the Unity game engine for image processing by integrating a custom

GPU-based image processor. For it, it describes different application levels and integration approaches for
extending the Unity game engine. It further documents the respective software components and implementation
details required, and demonstrates use cases such as scene post-processing and material-map processing.

1 INTRODUCTION

Game Engines (GEs) such as the Unity or the Un-
real Engine, gain increasing popularity in Computer
Science with respect to teaching, training, or for pro-
totyping interactive visualization techniques. Besides
the potential support for multiple target platforms, GEs
offer basically a technology platform used for perform-
ing feasibility studies, performance tests, rapid appli-
cation development, and to generate test data for the
development of new techniques (Lewis and Jacobson,
2002).

Using such functionality enable faster iterations on
prototypes and support simplification of the overall
implementation process. Thus, one major advantage
of using GEs as a integration and implementation plat-
form is rapid prototyping, i.e., to effectively perform
feasibility studies or for teaching purposes. Further,
GEs can be considered a base system for integrating
3D rendering to multiple back-ends and Virtual Real-
ity (VR) applications. Generally, it lowers the techni-
cal barrier as well minimize project setup and deploy-
ment costs and thus enable practitioners and students
to focus on algorithm technique development instead
of engineering tasks.

Although previous work exist, that uses Unity as a
platform for image processing (de Goussencourt and
Bertolino, 2015; Anraku. et al., 2018), possible inte-
gration approaches and its implementation and impli-
cations are not covered so far. For a feasibility study,
the paper uses Unity as an example for a 3D GE, how-
ever, the described concepts are not limited to. We
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choose Unity because, it represents a popular and a
common-used real-time GE that is freely available and
well documented. It is easily extendable at different
levels (Section 3.2), e.g., using native rendering plug-
ins. Further, it potentially supports multiple platforms
and provides sophisticated Augmented Reality (AR)
and VR components and interfaces.

This paper presents the methodology and applica-
tion examples for performing image and video pro-
cessing techniques within real-time GEs using dedi-
cated hardware support, such as Graphics Processing
Units (GPUs). Therefore, it presents a concept for
integrating 3'-party image processors into Unity and
discusses the results by means of different applica-
tion examples. To summarize, this paper makes the
following contributions:

1. It describes and discusses different application lev-
els as well as suitable integration strategies for 3D
GEs.

2. It reports on a feasibility study regarding the
Unity GE and different Visual Computing As-
sets (VCAs) (Diirschmid et al., 2017).

3. It demonstrates our approach using different appli-
cation examples.

The remainder of this paper is structured as follows.
Section 2 reviews related and previous work with re-
spect to using GEs in scientific contexts. Section 3
describes the concept and implementation of integrat-
ing a 3™-party image and video processing component
into the Unity GE. Based on that, Section 4 presents
and discusses different case studies and present ideas
for future research directions. Finally, Section 5 con-
cludes this work.
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Figure 1: Overview of a basic integration approach of a 3™-party image processor into the Unity GE.

2 RELATED WORK

In recent work, game engines are often used for pro-
totyping interactive visualization techniques and for
educational purposes in 3D Computer Graphics (CG).
This section focuses on research results that use GEs
in scientific work, tools, and integration approaches.

Game Engines in Visualization. In the past, GE
were often used for innovations and prototyping inter-
active visualization (Rhyne, 2002; Wagner et al., 2016)
and pre-visualization (Nitsche, 2008). With respect
to geovisualization, Herwig and Paar discuss options
and limitations of GEs as low-priced tools for land-
scape visualization and planning (Herwig and Paar,
2002). They argue and demonstrate that particular
software components are useful alternatives to land-
scape architects and planners, e.g., to support collabo-
rative landscape planning, although a number of pro-
fessional features are not supported. Further, Fritsch
and Kada emphasis the usefulness real-time visualiza-
tion using GEs with respect to presentation purposes in
the domain of Geographic Information Systems (GIS)
and Computer Aided Facility Management-Systems
(CAFM) (Fritsch and Kada, 2004), especially consid-
ering the possibilities for mobile devices such as note-
books and cell phones. They show that the integration
of additional data and functionality into such systems
can be achieved by extending the internal data struc-
tures and by modifying the accompanying dynamic
link libraries.

Andreoli et al. provide a categorization of 3D GEs
regarding their usage in creating interactive 3D worlds
and a comparison of the most important characteris-
tics (Andreoli et al., 2005) regarding interactive ar-
chaeological site visualization. In addition thereto,
Wiinsche et al. analyze the suitability of GEs for visu-
alization research in general and present a software ar-
chitecture and framework for a data transformation and
mapping process to facilitates their extension as well
as further evaluate the suitability of popular engines re-
spectively (Wiinsche et al., 2005). A similar approach
and comparison was conducted by Kot e al. targeting
the domain of information visualization (Kot et al.,
2005). In the domain of software visualization, Wiirfel

et al. extend the Unreal GE to prototypical implement
metaphors for visualization of trend data in interactive
software maps (Wiirfel et al., 2015).

More recently, Bille e al. present an approach to vi-
sualize Building Information Model (BIM) data using
a GE (Bille et al., 2014). Their case study demon-
strates the conversion from BIM to GEs from the
BIM tool Revit to the Unity game engine. Similar
thereto, Ratcliffe uses GEs to create photo-realistic
interactive architectural visualizations (Ratcliffe and
Simons, 2017). Specific to terrain visualization, Mat
et al. present a review of 3D terrain visualization tech-
niques using game engines (Mat et al., 2014).

In addition to real-time rendering capabilities, Ja-
cobson and Lewis emphasis the importance of GEs for
VR applications (Jacobson and Lewis, 2005). They use
the Unreal GE as a low cost alternative to construct
a CAVE installation. Similar thereto, the approach
of Lugrin et al. relies on a distributed architecture to
synchronize the user’s point-of-view and interactions
within a multi-screen installation in real-time (Lugrin
etal., 2012). An accompanying user study also demon-
strates the capacity of GE’s VR middleware toelicit
high spatial presence while maintaining low cyber-
sickness effects. There is also a number of recent
work that focus on other GE aspects besides render-
ing. For example, Juang et al. use GEs for physics-
based simulations (Juang et al., 2011) while Leahy
and Dulay present cyber-physical platform for crowd
simulation (Leahy and Dulay, 2017).

Education using Game Engines. Another applica-
tion field of GEs is education. For example, Marks
et al. evaluated GEs for simulated surgical training,
concluding that these represent a good foundation for
low cost virtual surgery applications and identified
limitations of physical simulation capabilities (Marks
et al., 2007). Targeting high-resolution displays, Sig-
itov et al. present an extension of Unity that allows
for the implementation of applications that are suitable
to run on both single-display and multi-display sys-
tems (Sigitov et al., 2015). This approach simplifies
software development, especially in educational con-
text where the time that students have for their projects
is limited.
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Figure 2: Class diagram of the static system architecture. Inside the UnityPackage resides classes that are available and
configurable inside the Unity GE and used together with engine hooks, e.g., OnRenderImage (). The classes CustomPlugin
are compiled to a native library. Only the C interface of UnityProcessor is visible to the engine. The other classes implement
typical used functions for the UnityPackage using an existing image processor framework.

3 GAME ENGINE INTEGRATION

This section describes different Application Levels
(AL) for GEs (Section 3.1), discussing possible Inte-
gration Approachs (IAs) (Section 3.2), and presents
the conceptual and technical aspects of an Unity inte-
gration approach (Section 3.3).

3.1 Application Levels

The integration of a real-time image processor into a
GE can be performed at the following AL:

Static Material-Processing (AL-1): This refers to
the preprocessing of material texture map (e.g.,
representing albedo, height, or normal maps) in
the design phase prior to entering the game loop.
Using this, game designer or technical artists can
test different parameters settings for filter opera-
tions prior to final processing or asset baking.

Dynamic Material-Processing (AL-2): To support
dynamic parameter changes for material texture
maps (e.g., masks controlled by animations or via
scripting) at runtime during game loop execution,
dynamic material-processing can be used. Using
this, the material appearance can be adapted in-
teractively and multiple objects with different ma-
terials can be displayed simultaneously, e.g., to
compare variations of an VCA.

Scene Post-Processing (AL-3): With respect to inte-
gration, this can be considered as a special case

of dynamic material processing. It applies image-
processing operations as a post-processing opera-
tions on a per-frame basis for virtual cameras.

Supporting these ALs facilitates interactive parameters
settings with respect to the virtual camera and the
texture material used (input image and videos).

3.2 Integration Approaches

Performing image and video processing in game en-
gines can be achieved by the following three different
Integration Approachs (IAs). For summarization, Ta-
ble 1 shows a comparison between these.

Native GE Tooling (IA-1): This integration ap-
proach uses native GE functionality and tools
for enabling image or video processing requires
the analysis, design, and implementation of the
frameworks core components. With respect to
Unity, this can be achieved using scripting and
the Unity Shader Graph component. However,
this would require to re-implement existing

Table 1: Overview of Integration Approach (IA) and covered
Application Levels (AL).

Approach AL-1 AL-2 AL-3

1A-1 o
IA-2
IA-3
1A-4

O O O O
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Figure 3: Initialization phase of the plug-in. Since the usage of graphic device functions are limited to special render
contexts inside the engine (GL.IssuePluginEvent), the initialization phase is divided into a data transfer phase and the real
initialization phase where the saved data is applied with the use of graphic device specific code.

functionality (e.g., , shader programs and control
flow logic), which impact reusablity as well as
increases development efforts.

GE Framebuffer Output (IA-2): This  approach
uses the GE rendering raster output as input
for the 3"-party library. This can cause heavy
drawbacks in terms of performance, due to the
copy of framebuffer data involved. However, often
only Red-Green-Blue (RGB) data is received, thus
no further Unity data can be used (e.g., normal or
material maps) without additional G-Buffer (Saito
and Takahashi, 1990) implementation support.

GE Patching (IA-3): If the source code of a GE is
available and licenses allow it, this integration ap-
proach extend the GE functionality by patching.
This enables the development of missing features
directly into the GE. However, this approach im-
pacts often software maintenance aspect.

GE Plug-In Development (IA-4): For GE that suffi-
ciently supports plug-in interfaces or Software De-
velopment Kits (SDKs), integration can be con-
ducted by using these to interface 3™-party soft-
ware components — given a respective Application
Binary Interface (ABI) compatibility. This inte-
gration approach combines flexibility and code
re-usability, as well as enables deployment to pos-
sibly different platform. This way, one can benefit
from multiple GE feature and components, such as
User Interfaces (Uls), prototype modes, tools for
performance measurements and optimizations. If
thoughtfully conducted, an additional performance
impact can be neglected. However, to implement
such an approach, an understanding of the GE in-

ternals is required and thus initial steps can be
cumbersome and error-prone.

In order to implement IA-4, this paper presents the
necessities and details in the following section. This
can serve as template for the integration of similar
software components into Unity.

3.3 Implementation Details

Native rendering plug-ins in Unity are written and
compiled platform-specific and need to provide a
C interface to communicate with components in-
side the GE. To support multiple platforms and
multiple graphic device interfaces, distinct imple-
mentations are required To reduce the implemen-
tation workload, a generic interface was created.
The classes CustomTextureDisplayer, as well
as CustomUnityParser and CustomUnityRenderer
(Figure 2) encapsulate functions, which are used inside
the engine. Every new image processing framework
or platform specific code can implement the interface
functions to achieve an integration into the plug-in.

As a proof-of-concept instantiation, we use the
Windows platform and OpenGL for evaluation, since
the existing image processor framework already
had support for this combination. Plug-in func-
tion are mainly called during initialization phase
(Section 3.3.1) and the actualy rendering loop (Sec-
tion 3.3.2).

3.3.1 Initialization Phase

During the initialization phase, all information re-
quired by the image and video processor are trans-
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Figure 4: Handling per-frame of the plug-in. If required data such as texture Identifiers (IDs) are updated and saved inside the
plug-in. Together with the render hook, the image processor applies the VCA directly onto the texture and blits it to the output

texture, which is determined inside the engine.

ferred to the native rendering plug-in. While this is
easily possible during the OnEnable () or Start ()
hook in Unity, the graphic device specific initialization
steps of the image processor (texture, vertex buffer
setup, etc.) require the same active context that is used
during the rendering. Due to this, all transferred in-
formation are only stored inside the plug-in, e.g., with
SetVCA () or PassRenderToTexturelInfos() (Fig-
ure 3), and then used during the first frame of the
rendering loop to load the VCA or to encapsulate the
native texture IDs.

3.3.2 Rendering Loop

To integrate into Unity’s rendering pipeline, mul-
tiple approaches (hooks) are possible. In case of
post-processing (AL-3), the image processor needs
to work with the final framebuffer content and thus is
called inside an OnRenderImage hook of a Unity post-
processing effect. For the material processing it is im-
portant to have the image and video processor finished
before any rendering starts. Hence it is called inside
the OnPreRender hook of the first used virtual camera.
Inside these hooks, Unity provides the possibility to
add a rendering callback (GL.IssuePluginEvent ())

which is always executed asynchronously, but always
prior to the next rendering step. This can lead to major
problems, when a synchronous behavior is required.
For example, when changing the VCA, the new con-
figuration should be directly queried to be visualized
inside the Unity UI, therefore an active render context
is required. Thus a combination of using rendering
callbacks and busy waiting was implemented to ensure
the rendering specific functions were finished.

During rendering, it is important to always handle
changes accordingly. Besides domain specific param-
eters, such as VCAs or presets, rendering-specific pa-
rameters might change too, which can result in graphic
device errors or even crashes if not handled properly.
Those rendering-specific parameters can be texture
sizes or even native ID switches, if the game engine
decides to cycle between framebuffers for optimizing
multiple post-processing effects. On the plug-in side,
these changes are effectively managed by using cache-
based structures to store the native ID encapsulations
and VCAs. Afterwards, the desired OpenGL State
needs to be established (SetOpenGLState ()) to get
the image processor to work and the selected VCA can
be applied onto the texture with the rendered Unity
content, which is directly done on GPU without trans-
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Figure 5: Screenshot of the scene post-processing case study
implementation as image effect in the Unity. A Kuwahara
filter is applied as last filter to the scene similar to other build-
in effects such as Bloom or Antialiasing. The parameters are
customized according to the lighting and atmosphere of the
scene.

ferring any framebuffer data (ApplyVCA (), Figure 4).
For the last step, the output texture of the image pro-
cessor is blit to the target texture determined inside of
Unity (next framebuffer or even the same texture in
case of material processing).

4 RESULTS & DISCUSSION

This section describes and discusses two exemplary
uses case that can be put into practice using the pre-
sented approach (Section 4.1 and Section 4.2). Based
on these case-studies, our approach is discussed with
respect to its usability (Section 4.4) and it run-time
performance overhead (Section 4.3).

4.1 Scene Post-processing

Post-processing VCAs for real-time rendering are fully
integrated into Unity and can be controlled from script
through the OnRenderImage rendering hook (AL-3).
Furthermore, already built-in effects such as Antialias-
ing or Bloom are exposing parameters to making VCA
customization easier.

The custom image processor for post-processing
is also implemented as camera script and gives users
the possibility to change their VCA, preset, or param-
eters (Figure 5). The image processor receives the
framebuffer content after the scene is completely ren-
dered, then manipulates it, and hands it over to the
next post-processing stage or to the output. Thus, it
can be freely combined with other custom image pro-
cessors or build-in post-processing. Applications can
be manifold, such as (1) compensating color blindness,
(2) highlighting interesting parts of the scene, or (3)
giving the application an unique artisitic style.

7 7

Figure 6: Screenshot of the material-map processing in the
Unity Editor. Effect and preset are selected for the render
texture in the bottom right. The material processing can be
combined with custom post-processing effects (as shown in
the right part of the image).

4.2 Material-Map Processing

In contrast to post-processing VCAs, material VCAs
are not an already integrated in Unity 3D ((AL-1 and
(AL-2)). Nevertheless they are a suitable to customize
scene objects in a more dynamic and advanced way.

The material processing is devided into two
parts (Figure 2): the CustomMaterial can be used
on materials, which then are applied on scene ob-
jects and allow users to select a effect and preset
(Figure 6). The CustomMaterialProcessor con-
tains all CustomMaterials, which are applied to ob-
jects in the scene. Depending on the render mode
of the CustomMaterial, the processor either applies
the effect once on start or every frame inside the
OnPreRender hook. Since the material processing
is implemented for render textures, it can be used in
various ways, such as static material enhancement or
dynamic material manipulation.

The presented approach also enables the combined
usage of both, material-map and scene post-processing.
This allows for further customization and is especially
applicable for applying post-processing effects on top
of stylized materials (Figure 6).

4.3 Performance Evaluation

We evaluated the run-time performance of the in-
tegration approach using different algorithms. Dif-
ferent image resolutions were tested to estimate the
run-time performance regarding the spatial resolution
of an input image. The following resolutions were
chosen: 1280 x 720 (HD), 1920 x 1080 (FHD), and
2560 x 1440 (QHD) pixels. We tested the rendering
performance of our preliminary implementation (cus-
tom processor) using a NVIDIA GeForce GTX 970
GPU with 4096 MB VRAM on a Intel Xeon CPU
with 2.8 GHz and 12 GB RAM. Rendering was per-
formed in windowed mode with vertical synchroniza-



Table 2: Results of run-time performance measurements for VCA of different implementation complexity in Frames-per-
Second (FPS) and milliseconds. It shows the timings obtained by rendering the 3D scene without any VCA (column 2) in
comparison with VCAs applied (column 3). Further, it shows the runtime of processing the VCAs only (column 4) with the
respective overhead resulting from the integration of our custom processor (column 5).

VCA Scene w/o VCA  Scene with VCA VCA Only Custom Processor
Water Color (Bousseau et al., 2007)  99.38 (10.06 ms)  65.47 (15.27 ms) 191.85 (5.21 ms) 595.20 (1.69 ms)
Toon (Winnemoller et al., 2006) 99.38 (10.06 ms)  69.35 (14.42 ms)  229.50 (4.36 ms) 714.30 (1.42 ms)

Color LUT (Selan, 2005) 99.38 (10.06 ms)

75.65 (13.22 ms)

316.82 (3.16 ms) 1408.00 (0.71 ms)

tion turned off.

The measurements in FPS are obtained by averag-
ing 500 consecutive frames. For all off-screen render-
ing passes, we use a fragment shader while rendering a
textured Screen-aligned Quad (SAQ) with a geometric
complexity of four vertices and two triangle primitives.
For rasterization, back-face culling (Akenine-Moller
et al., 2018) is enabled and depth test and writing to
depth buffer are disabled. Table 2 shows the obtained
run-time performance results. It shows, that the perfor-
mance is mostly fill-limited. However, the integration
overhead introduced by our custom processor is rel-
atively small. Thus, complex stylization effects are
not suitable for performance critical applications on
modest graphics hardware.

4.4 Usability Aspects

During the case studies, we perform informal experts
reviews, in order to evaluate the usability of our ap-
proach with respect to the stated goals. Participants
were (1) software developers and (2) undergraduate/-
graduate students in Computer Science with a focus
on computer graphics systems.

In general, users liked the ease-of-use of the post-
processing integration similar to other build-in effects
in Unity. This is mostly due to reusing the build-in
UI components of Unity. They further confirm that
the post-processing integration is applicable for Rapid
Prototyping (RP), and favor that material effects can
be simply applied similar to the standard Unity ap-
proach. Especially, the possibility of using additional
information such as scene depth, normal vectors, or
texture masks as input in the custom processor were
considered important.

However, some reviews also pointed out limita-
tions and drawbacks of the integration, which can be
approached in future work. Foremost, post-processing
in general does not allow for masked areas for UI or
text rendering, which makes compositing cumbersome.
Further, the current integration approach does not al-
low to animate VCA parameters using build-in Unity
animation functionality.

4.5 Future Research Directions

Based on the demonstrated results, there is are nu-
merous potential research directions to approach. To
extend material processing with parameter settings,
the Unity core can be adapted to extend the material
definition interfaces. Further, support for parameter
animations at runtime can be enabled by making use
of Unity’s animation functionality. Furthermore, the
described approach can be extended to adding Unity
plug-in support for other image processing frameworks
on Android or iOS devices.

S CONCLUSIONS

This paper documents the software components and
implementation details required for integrating a GPU-
based image processing framework into the Unity
game engine. We demonstrate the feasibility of the
presented approach using two use cases that can be ap-
plied in combination: scene-based post-processing and
dynamic material-processing. For it, we describe pos-
sible application levels and integration approaches and
a performance evaluation, respectively. The described
components and software architecture can serve as
model or blueprint to integrate similar 3"-party cus-
tom image or video processing components into the
Unity game engine.
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