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ABSTRACT
This work investigates the extent to which animated procedural tex-
ture patterns can be used to support the representation of changes
in 2.5D treemaps. Changes in height, color, and area of individual
nodes can easily be visualized using animated transitions. Espe-
cially for changes in the color attribute, plain animated transitions
are not able to directly communicate the direction of change itself.
We show how procedural texture patterns can be superimposed to
the color mapping and support transitions. To this end, we discuss
qualitative properties of each pattern, demonstrate their ability to
communicate change direction both with and without animation,
and conclude which of the patterns are more likely to increase effec-
tiveness and correctness of the change mapping in 2.5D treemaps.

CCS CONCEPTS
• Human-centered computing→ Treemaps; Information visu-
alization.
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1 INTRODUCTION
Treemaps have become a highly expressive tool for visualizing
hierarchical, multi-variate data in a variety of domains, including
software data [7]. Typically, the data represented has a timestamp
and changes over time. Software maps, for example, can repre-
sent aspects of a software system for a specific revision or time.
We want to enable users to interactively explore correlations in
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Figure 1: Tiny hierarchical test data set depicted using a 2.5D
treemap that allows to transition between subsequent val-
ues in time-series data mapped to area, height, and color. A
combination of two of our procedural patterns is used to an-
imate changes in subsequent values mapped to color.

time-varying software system engineering data, i.e., metrics per
revision, development budgets, status and progress of defects and
issues, team composition, development activity, etc.. An explicit
mapping of the difference between two subsequent states to color
or height would be the first choice. For 2D treemaps, color patterns
such as two corners—resulting in a diagonal color gradient—or con-
trast modifications like ratio shading can be used [12]. The time
dimension can further be incorporated by distributing multiple
maps spatially using small multiples [2, 9]. Provided the evolution
(over more that just two states) is already analyzed and available
by means of trend data, natural metaphors such as physical-based
material degradation, shininess, or glyphs can be an effective tool
for communication [15].

We want to assist height and color mappings already in use
(map themes) and intrinsically emphasize temporal changes, but
rely on the user’s existing understanding of treemaps. Thereby, the
representation of change should visually correspond to the change
in data (visual-data-correspondence) [4], i.e., the actual difference
between two values and the direction of change (or sign of the
difference). For this, basic variants of of data vases [10], glyphs [3],
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Figure 2: Basic approach for communicating the delta be-
tween subsequent values mapped to height: colors (left) and
arrows (right) mapped to the delta in height.

or in-situ templates [6] can be used. The latter allow for change
encoding of up to three visual variables simultaneously, though,
ample training is required and issues with reading direction must
be considered. A simple but effective use of in-situ templates for
display of changes in height is given in Figure 2, one using ex-
plicit color mapping (thereby partially occluding the actual color
mapping) the other a procedural patterns for direction encoding
(using an arrow pattern). Alternatively, animation by means of an
interpolation of height and color attributes [1, 5] could be used.

In this work, we combine these two approaches: we utilize proce-
dural texture patterns for more effective animated transitions (Fig-
ure 1). Our main contributions are

• the introduction of procedural texture patterns that are suit-
able for mapping change in color in 2.5D treemaps,

• the idea of primary and secondary patterns for accurate
display of change direction when the animation is paused,

• and the evaluation of said patterns w.r.t. their applicability
under various constraints and circumstances.

2 PATTERNS FOR ANIMATED TRANSITIONS
We propose seven patterns that can encode the transition between
two colors. As these patterns share approaches but also differ in
their visual display and characteristics to encode additional state
or ensure certain invariants regarding the encoding, we introduce
the alternatives and compare them (section 3).

2.1 Procedural Texture Patterns
A pattern describes a mapping of a transition progress for a frag-
ment on a cuboid’s surface resulting in a binary per-fragment choice
of color. This is done using signed-distance-functions [14] and frag-
ment shaders. The patterns differ mainly in their appearance, gran-
ularity, and the surfaces they are intended for.

Pillar (vertical). The pillar pattern dissect the surface vertically
and assigns the former color and next color to a top share and a
bottom share of the pillar, respectively (Figure 3). A transition using
this pattern starts with a full pillar using the former color. Then, the
next color grows from the top and overlays the former color step
by step. Thus, after a brief training period, a user should be able
to determine the former color and the next color, even for a static
display. However, this pattern does not show partial progress on the

Figure 3: Procedural patterns for changes in color attribute,
from top to bottom: pillar, pyramid, dithering, squares, and
noise. All of the above are not capable to encode the direc-
tion of change (ΔDirChange) when animation is paused.

top faces. Instead, the color of the top face changes instantaneously
with the completion of the transition.

Pyramid (vertical). The pyramid pattern is an extension to the
pillar pattern w.r.t. explicit handling of the top faces. The lateral
faces use the same encoding. However, the pattern name pyramid
describes the metaphorical process that is used to derive the pattern:
a virtual pyramid is embedded in the cuboid and slowly pushed
towards and through the top of it (Figure 3). All cuboid fragments
that intersect with the pyramid are assigned the upcoming color.
This intersection surface corresponds to the progress of the pillar
template for lateral faces and results in a growing rectangle for
top faces. As a result, this pattern encodes the current progress of
transition on both the lateral faces and the top face.

Noise. The noise pattern uses a 3D noise function [8] and a
threshold to discriminate the surface for the two colors. Using
such a pattern results in organic-looking surfaces and transition
behavior (Figure 3). However, a sensible parameterization of the
noise w.r.t. the scaling is challenging. As one approach we propose
to approximate the scale factor by the number of nodes in the tree.

Dithering. The dithering pattern encodes the transition using a
per-pixel dithering pattern (Figure 3). The dithering is applied in
screen space and from a perceptional point of view, this results in
a visual blending of the two colors [13]. However, using dithering
we assert that only actual colors from a color scheme will be used.

Squares. The squares pattern extend the dithering by using areas
larger that one pixel for the dithering raster (Figure 3). As another
difference, the pattern is applied in the world space of the treemap
and not the raster on the screen. This reduces the visual blurring
of colors while providing a transition nonetheless.
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Figure 4: Arrow pattern filling up the color display for in-
creasing (top) or decreasing (bottom) values. The arrows en-
code value increase or decrease resp., even when paused.

Figure 5: Temporal variants of the arrow-pattern transition
for increasing values: lateral face first, then top face (top), or
lateral and top faces simultaneously (center and bottom).

Arrows. This pattern is a modulated, two-dimensional abs func-
tion applied to every lateral face individually. The top faces behaves
similar to the pillar pattern. In contrast to the pillar and pyramid pat-
terns, the arrow direction can encode the direction of value change,
as the arrows can point upwards or downwards (Figure 4). This,
however, prevents effective encoding of direction of animation.

Arrows (full). This pattern extends the arrow pattern by addi-
tional arrows on the top. Their direction allows for multiple variants
(Figure 5): For one, they can be appended to the transition of the
lateral faces. This allows an encoding of direction on top only for a
short duration of the transition. Alternatively, the arrows can be
animated on the top faces for the whole duration of the transition,
whereby two variants with opposite directions are available.

2.2 Pattern Composition and Contours
Invariant to all patterns is that not both the direction of animation
and the direction of value change can be encoded at the same time.
As further indicator for the direction of animation, we propose a
combination of patterns. Thereby, one of the two distinctly colored
areas is superimpose by an additional pattern (Figure 6). This al-
lows for direct unambiguous display of change direction, both when
paused and animated, as only one state has a second pattern su-
perimposed. This shape of the pattern remains unchanged (𝑡 = 0.5)
during the transition. However, as the overall transition changes
the surfaces encoding former and next color, the application of the
secondary pattern will vary during the transition.

Figure 6: Combination of two procedural patterns. The dom-
inant pattern is supported by a secondary pattern placed
only on the parts representing either the former (as can be
seen here) or the upcoming value.

Candidates for Secondary Use. Technically, the secondary pat-
tern is not limited by the choice of the main pattern. However, we
suggest using a different, distinct pattern w.r.t. to the main one, ide-
ally one that has a uniform distribution of colors. Both approaches
ensure that the pattern is (1) distinguishable from the main pattern
and (2) visible without regard to the current transition state.

Parameterization of Secondary Pattern. The secondary pattern
itself is derived for a static transition value of 𝑡 = 0.5 and applied
using blending of the base color and a slightly darker variant. This
way, the pattern occupies half the area of the applied surface. Re-
garding the choice of the applied surface, we propose to use the
surface that encodes the former color to superimpose the second
pattern. When using the former color, the advantage is that the
secondary pattern can be used until the end of the transition, as
the surface of former color will vanish during the transition. In
addition, the secondary pattern must not be faded in completely
directly at the beginning of the transition. Otherwise, if an anima-
tion consists of several transitions, the secondary pattern would
appear abruptly when two transitions are changed. Therefore, the
secondary pattern is faded in gradually with the help of an easing.

2.3 Transitions and Animations
So far, we considered isolated transitions from one color to another
for a single node. In order to display multiple changes over multiple
snapshots of data, we consider the use of animations.

Transition. A transition describes a change from a nodes state or
mapped value to another one. Thereby, a transition will not encode
time or duration but only progress. The required parameter for
such a transition is its progress control 𝑡 ∈ [0, 1] where 0 is used at
the start and 1 at the end of a transition.

Animation. Animation is the continuous progression over mul-
tiple states by means of transitions. More important, it is linked
to the concept of time and duration. Note that the transitions can
be enhanced by easing functions which is not discussed in this
context [11]. The animation between two points in time, e.g., two
subsequent revisions for software system data, can range from
running all transitions for every node and every visual variable in
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Figure 7: Example of an extreme case with all color transi-
tions of all nodes beeing shown at once with 𝑡 = 0.5.

parallel as well as in strict sequence. The former approach is strictly
limited by the number of concurrent changes (Figure 7).

3 DISCUSSION
Our prototype extends an existing, WebGL-based rendering system
for large-scale 2D and 2.5D treemaps. The implementation of the
patterns itself was straightforward and imposed no significant im-
pact on rendering performance (runs on mobile devices for large
treemaps). For the animation in general, we had to redesign large
parts of our visualization and rendering implementation though.
In the remainder of this section we briefly discuss some animation
aspects and assess the applicability of our patterns.

3.1 Animation Controller
We composed the handling of animations and transitions to a sys-
tem that manages all temporal animations, controlling the time-
dependent transition values as well as the individual, per-node
transitions states (Figure 1). Thereby, our prototype allows for inde-
pendent, simultaneous transitions per-node, for every mapped data
attribute. The procedural patterns are implemented as temporal
visual variables, mapping a 3-tuple (a value per state and transition
progress) to color instead of single value. An animation of weight
and height mappings are implemented similarly. The latter allows
for ordering and masking of transitions based on (1) transition type,
(2) arbitrary node associated values, (3) meta data, or (4) enumera-
tion and more. With this starting point, we have begun to identify
meaningful applications with this design space.

3.2 Qualitative Assessment
We assessed the temporal visual variables, using every pattern indi-
vidually and in combination, and applied them for weight, height,
and color change emphasis on small and large real-world data sets.
For the scope of this work, we derive the following characteristics:

Figure 8: Example of two patterns used for a transition of si-
multaneous increase in color and decrease in height values.

Table 1: Overview of the patterns and their characteristics.
Notation: • supported | ◦ partial support | – unsupported.
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Pillar • – ◦ – – • •
Pyramid • – • • – ◦ •
Dithering – – • • • • •
Arrows – • ◦ – • • •
Arrows (full) – • • • • • •
Noise – – – • • • –
Squares – – • • • • –

ΔDirAnim The direction of animation can be read unambiguously
while the animation is paused in a transition.

ΔDirChange The direction of change in value can be read unam-
biguously while the animation is paused.

ΔRatioLat The ratio of different colors on the lateral facesmatches
a transition’s progress.

ΔRatioTop The ratio of different colors on the top face matches a
transition’s progress (top view or 2D treemap).

ΔIndHeight The mapping of change difference and change direc-
tion does not compromise the height mapping.

ΔIndWeight The mapping of change difference and change direc-
tion does not compromise the weight mapping.

ΔTreeSize The pattern can be easily adjusted for large or very
large treemaps.

We assessed all proposed patterns on real data sets by their degree
to satisfy the characteristics (Table 1). We conclude that no pattern
satisfies all desired characteristics. However, we want to highlight
the arrows (full) pattern that supports most of the characteristics.

4 CONCLUSIONS
The proposed system supports display of changes in all of treemap
item areas, heights using geometry displacement, and colors using
animated procedural textures. This is relevant for the exploration
of time-varying data such as software data. As a special require-
ment we introduced the readability for both a static image and
a dynamic animated transition. For specific templates on how to
transition color values in 3D we proposed the seven variants (1)
pillar, (2) pyramid, (3) arrows, (4) arrows (full), (5) noise, (6) dithering,
and (7) squares. We discussed the different characteristics, espe-
cially direction of change and direction of animation, strengths,
and weaknesses of each template but cannot draw a conclusion on
a default template at this point. However, we found that using the
time control helps to understand the changes of individual nodes.

For future work, we plan to perform quantitative evaluations by
means of comprehensive user studies and extended case studies on
large software systems and long time spans.
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