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Abstract. This article reiterates on the recently presented hierarchy
visualization service HiViSer and its API [51]. It illustrates its decom-
position into modular services for data processing and visualization of
tree-structured data. The decomposition is aligned to the common struc-
ture of visualization pipelines [48] and, in this way, facilitates attribution
of the services’ capabilities. Suitable base resource types are proposed and
their structure and relations as well as a subtyping concept for specifics
in hierarchy visualization implementations are detailed. Moreover, state-
of-the-art quality standards and techniques for self-documentation and
discovery of components are incorporated. As a result, a blueprint for Web
service design, architecture, modularization, and composition is presented,
targeting fundamental visualization tasks of tree-structured data, i.e.,
gathering, processing, rendering, and provisioning. Finally, the applicabil-
ity of the service components and the API is evaluated in the context of
exemplary applications.

Keywords: Visualization as a Service · Hierarchy Visualization · Tree
Visualization · RESTful API Design · Web-Based Visualization.

1 Introduction

Information visualization has become the prevalent way for interacting with
the growing complexity, volume, and ubiquity of data. It provides the means
for “bridging the two quite distinct fields of data science and human-computer
interaction to help scientists and domain experts handle, explore and make sense
of their data.”3 It allows users to absorb information, detect relationships and
patterns, identify trends, and interact and manipulate data directly. Visualization
facilitates accurate communication by aligning the mental image of and cultivat-
ing effective images to its consumers. At the same time, “web services [. . . ] are
becoming the backbone of Web, cloud, mobile, and machine learning applica-
tions” [66] in which visualization is playing a vital part. Hence, visualization
services – designed, implemented, and operated based on a Software-as-a-Service,

3L. Micallef: “AI Seminar: Towards an AI-Human Symbiosis Using Information
Visualization”, 2018. https://ai.ku.dk/events/ai-seminar-luana-micallef

https://ai.ku.dk/events/ai-seminar-luana-micallef/
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by means of a software delivery model – are becoming an indivisible part of said
web services, providing interactive, high-quality visualization techniques across all
domains [10]. To this end, we focus on hierarchy visualization: the visualization of
hierarchically-structured – strictly speaking tree-structured – multi-variate data.
Within the past three decades, over 300 hierarchy visualization techniques and
variations have been proposed [54]. One reason for this diversity seems to be that
tree-structured data is omnipresent in almost all application domains, e.g., demo-
graphics [29], business intelligence [47], health [14], and software development [69],
but no single technique suits all tasks and applications.

This article reiterates on the design of the recently presented hierarchy visual-
ization service HiViSer [51]. For its API specification, the Representational State
Transfer (REST) paradigm is employed. Structure-wise, a three-tier architecture
is be implemented, comprising “a client layer which provides the user interface;
a stateful web service middleware layer which provides a published interface
to the visualization system; and finally, a visualization component layer which
provides the core functionality of visualization techniques” [72]. To avoid a rather
monolithic service design and specification, we exert a separation of concerns
analogously to the well-known visualization pipeline [48] into data analysis, filter-
ing, mapping, and rendering components. With this decomposition we anticipate
various benefits, namely:

– elevated unambiguity of component interfaces and capabilities,

– simplified extensibility by means of integration of new components,

– increased re-usability of components through service composition,

– high degree of data privacy and protection [32], and

– reduced complexity and increased maintainability of components.

Supplementary, this article elaborates on relevant design decisions and incorpo-
rates technical details, eventually providing blueprints that can aid implemen-
tation of future visualization components. Finally, we ensure the visualization
service’s API quality by adopting the Richardson Maturity Model [70], i.e., in-
troduce the strict use of resources, remove unnecessary variation, and improve
discoverability of all resources maintained by the service.

The remainder of this article is structured as follows. Section 2 provides a
rough overview of related work concerned with the fundamental building blocks
required for the implementation of a modern web service. The targeted scope,
prevalent use cases, and applications for a hierarchy visualization service are
identified and requirements for its implementation are derived and itemized in
section 3. Subsequently, a concept for service orientation and service composition
is derived and detailed in section 4. On this basis, the actual routes specification for
a web-based hierarchy visualization API is presented in section 5 and evaluated
in the context of exemplary applications in section 6. Finally, this article is
concluded by a summary of its findings, an estimate of its impact, as well as an
outlook into future work in section 7.
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Fig. 1. Variations of hierarchy visualization techniques. From left to right and top to
bottom: (1) 2.5D icicle plot, (2) 2.5D sunburst view, (3) 2.5D treemap, (4) 2.5D Voronoi
treemap, (5) multiple 2.5D treemap arranged in a landscape, (5) 2.5D nested rings
visualization, and (6) 2.5D treemap using sketchiness as a visual variable. Image used
from “Design and Implementation of Web-Based Hierarchy Visualization Services” [51].

2 Related Work

This section references the fundamental building blocks and technical core in-
gredients that should be considered when designing and implementing modern
services. Even though, these ingredients are most often interchangeable, at any
time, there is only a small set of reliable, “industry-forged” options, so called
de-facto standards. We do not cover solutions for deployment and storage since
they should not interfere with the general design and implementation of any
service: we expect that any given service built on below mentioned ingredients
can most likely be ported to any technology stack and environment. Therefore,
we focus on a brief discussion of the following implementation aspects: (1) image
provisioning, (2) rendering frameworks, (3) visualization grammars and (4) Web
API idioms and specification approaches.

As we follow a three-tier architecture for our service design [72], we propose
data management and handling on a server, whereas a visualization client provides
the graphical output and handles interaction. Image synthesis itself, however, can
be executed either client-side or server-side, having the latter visualization pipeline
fully executed on the server, i.e., all data processing, visualization mapping, and
image synthesis.

Implementations of visualization services are usually not restricted by an
environment and, thus, a broad range of implementation approaches are possible.
However, since the hardware of the server is controllable and one server should
serve visualization for multiple clients, there is a need for efficient data processing
and image synthesis. The expectations towards rendering services are further
heightened as they are the only hardware reliable enough for sophisticated ren-
dering. This leaves visualization server implementations most likely to rely on
hardware-accelerated image synthesis [50] using graphics APIs such as OpenGL
or Vulkan (or other graphics library) for absolute control on the visual output [33],
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or specialized rendering engines such as game engines as well as real-time vi-
sualization engines. In highly specialized cases, intermediate resources of the
visualization service such as geometry artifacts or exchange formats might be
highly specialized for subsequent API or engine-dependent image synthesis (e.g.,
using GPU-friendly attributed vertex clouds [50]). However, such specializations
should be well-considered and should not lead to limitations of the visualization
services capabilities. Employing service composition, in contrast, allows for arbi-
trary customizability and specialization of resources for a multitude of clients
and visualization consumers.

On the client side, visualizations are usually displayed by Web browsers. With
our service design, we strive to support a variety of different output formats not
only for convenience, but also for the various application scenarios (interactive,
non-interactive, etc.). Browsers can display static images with built-in techniques,
e.g., the img tag supporting raster graphic as well as SVGs. SVGs can also
be used for interactive visualizations, e.g., when manipulating the DOM with
the D3 library [9]. Declarative 3D is an approach to apply the properties of
SVGs to 3D visualizations. So far, declarative 3D approaches like X3DOM [5]
or XML3D [62] are not supported natively by browsers and are implemented
by polyfill layers [62]. It remains to be seen if these approaches can attract
more popularity. Lately, the HTML5 canvas is the element of choice for the
creation of hardware-accelerated graphics at run-time. It allows for visual display
of 2D or 3D graphics using the Web Graphics Library (WebGL). Before the
canvas was introduced, interactive visualizations were usually displayed using
external plugins (Java applets, Java FX, or the Macromedia/Adobe Flash) – in
a way, similar to polyfill based approaches. The use of such plugins cannot be
recommended anymore, since they are widely considered to be legacy.

Taking advantage of aforementioned techniques, libraries facilitate the creation
of visualization in the browser. These libraries can be distinguished into two
different approaches: Imperative libraries, also called visualization toolkits, that
require a developer to program the resulting visualization, and declarative libraries
that allow the user to create visualizations by providing data and configuration
on how to display the data. Examples of visualization toolkits are Prefuse [27],
its successor Flare4 as well as Protovis [8] and its successor D35. Examples of
declarative libraries are charting libraries like the SVG-based Google Visualization
API6 or the canvas-based Chart.js library7. For the implementation of several of
our service components, we preferred more low-level, use-case agnostic rendering
frameworks such as webgl-operate8. This has the benefit of simplifying almost
always required, application-specific customizations in terms of specialized target
device, offscreen rendering, advanced interaction and rendering, 3D labeling, etc.

4http://flare.prefuse.org/
5https://d3js.org/
6https://developers.google.com/chart/
7https://chartjs.org/
8https://webgl-operate.org

http://flare.prefuse.org/
https://d3js.org/
https://developers.google.com/chart/
https://chartjs.org/
https://webgl-operate.org
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To ease the development of visualization techniques, there are multiple projects
that allow to create visualizations by means of configuration. This is usually done
using visualization grammars or domain specific languages. Examples for general
visualization grammars are Vega Lite [49] and ATOM [45]. A grammar specialized
for hierarchy visualization is the HiVE notation [60]. Providing a full server-
client setup, the Shiny9 project allows to deploy interactive visualization clients
written in the R statistics language. For service composition we incorporated
operations on data similar to HiVE operators, e.g., for preprocessing data or
creating topology. Furthermore, multiple components (e.g., full visualization
pipeline) can be invoked within a single query/request using nested objects.

The specification of possible interactions with a software component is called
an Application Programming Interface (API). Thereby, a Web API is an API
that is accessed using HTTP and related Web transmission technologies. Design
approaches for Web APIs are classified as either action-based or resource-based
APIs. The action-based approaches remote procedure call (RPC) protocols to
trigger an action on the server. Formerly, these protocols encode calls with XML,
e.g., the service-oriented architecture protocol (SOAP) [22] or XML-RPC10.
More recent ones started to use JSON as well, e.g., JSON-RPC11. Although not
as wide-spread, other notations are used as well by projects like gRPC12 for
example. The resource-based approaches mainly uses the architectural style of the
Representational State Transfer (REST) for distributed hypermedia systems [18].

The specification of an API is usually provided using an interface description
languages (IDL), describing the interfaces using a programming-language-agnostic
syntax and semantics. Thereby, SOAP interfaces are commonly described in
an XML-based IDL, the Web Service Description Language (WSDL) [15]. The
RESTful equivalent to WSDL is the Web Application Description Language
(WADL) [23]. A more recent RESTful API description language is OpenAPI 13,
which comes with tooling that supports multiple programming languages for
client libraries and IDE integration14.

For hierarchy visualization, the HiViSer API [51] provides an entry point
for hierarchy visualization as a service. However, the availability of APIs for
server-side data processing for visualization and images is prevalent in other
domains as well. For example, the OGC 3D Portrayal Service is a specification
for web-based 3D geo-data portayal [24]. Likewise, processing and provisioning
services are available for 3D point clouds [16] and image abstraction [46]. For this
work, however, we predominantly implemented and tested service components
that can be used for visualization of general business intelligence applications
and visual software analytics applications for software system data and software
engineering data.

9https://shiny.rstudio.com/
10http://xmlrpc.scripting.com/spec.html
11https://jsonrpc.org/specification
12https://grpc.io/
13https://www.openapis.org/
14http://openapi.tools/

https://shiny.rstudio.com/
http://xmlrpc.scripting.com/spec.html
https://jsonrpc.org/specification
https://grpc.io/
https://www.openapis.org/
http://openapi.tools/
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3 Requirements of Hierarchy Visualization Techniques

The design and implementation for hierarchy visualization as a service should
be aligned to prevalent usage scenarios. In order to increase flexibility, the
services should support a broad range of prevalent visualization techniques and
usage scenarios. These functional requirements are derived from available data
processing and hierarchy visualization techniques (algorithms) as well as prevalent
use cases (usage and integration scenarios of those algorithms). For the sake of
brevity, this article includes a shortened analysis of techniques and use cases.
However, we chose the subset to allow for generalization of the findings.

3.1 Scope of Processing and Hierarchy Visualization Techniques

We want the services to support a wide range of visualization techniques that
operates on hierarchically-structured and tree-structured data. As data processing
is highly domain-agnostic, usable algorithms are prelavent throughout the field
of visualization [19]. The selection of the visualization techniques includes both
implicit and explicit hierarchy visualization techniques [58]. In particular, we want
to support the family of implicit hierarchy visualization techniques with their
whole design space [57]. On the other hand, explicit hierarchy visualization should
be supported as well [20]. Summarizing, the service design should allow for the
techniques listed on treevis.net [54], i.e., over 300 tree visualization techniques.

Regarding the current state of this body of work, we want to limit the scope to
visualization techniques of hierarchically-structured and tree-structured data. It is
arguable if charts or unit visualizations [45] are a subset of hierarchy visualization
techniques. However, for those categories, visualization systems are more wide-
spread and visualization services are already available using sophisticated APIs.
Further, we want to limit the supported techniques to exclude processing and
depiction for additional relations among the data items (also known as compound
hierarchies). Additionally, geo-referenced data attributes are not considered with
their specific semantics but as plain data.

3.2 Use Cases of Hierarchy Visualizations

As exemplary use cases for hierarchy visualizations, we want to assess (1) the
visual analysis of source code and software systems, (2) federal budget manage-
ment, reporting, and controlling, (3) visual analysis on mobility data, and (4)
visualization as navigational tool.

Visual Analysis of Source Code and Software. The process of creating soft-
ware results in multiple sets of hierarchically-structured data. Examples are the
structure of the source code modules, the team structure of developers and the
association of commits to features and releases. Visualizations of these structures
can facilitate conversation with stakeholders by depicting structure, behavior
and evolution of the software system. As this use case is a whole field of research,
we want to highlight some of the techniques. The software map [7] uses treemap

https://treevis.net
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subdivision to derive its layout and has a range of extensions regarding visual
variables [34] and metaphors [37]. An alternative approach is the CodeCity [71]
that uses quantized node weights and a recursively packing layout algorithm. A
more street-focused approach is the Software City [63] that iterate on computed
layouts to handle data changes. All these approaches are 2.5D visualization
techniques and are provisioned using 3D scenes. As a rather exotic visualization
provisioning technique, we want to highlight the use of Minecraft worlds [2].

Federal Budget Management, Reporting, and Controlling. Government spend-
ing and income can be assigned to categories and subcategories – resulting
in hierarchically-structured data. Visualizing this data allows to gain a quick
overview of the categories and their impact on the federal budget and faciliates
a comparison throughout the years. As an example, Auber et al. visualized the
government spending of the USA using GosperMaps, squarified treemaps, and
icicle plots [1]. Further, a research fund dataset was visualized using treemaps
with a cascading layout postprocessing [41].

Mobility Data Visual Analysis. Slingsby et al. [59] use treemaps for a visual
analysis of GPS data from delivery vehicles in central London. The data contains
the vehicle position, the vehicle speed, the vehicle type and the collection time of
the data. For every vehicle data is collected multiple times per minute. A visual
analysis of this data can be used by the courier company to optimize the vehicle
allocation, scheduling and routing. It may also be used by transport authorities
to assess patterns of traffics to help set up policies to reduce congestion. Since
the data includes no inherent hierarchy, Slingsby et al. use categorical values to
superimpose a hierarchy; we call them variable-constrained subsets. The subsets
are used in different treemap visualizations to depict different aspects of the
dataset. Additionally, they derive a domain-specific language HiVE to describe
hierarchy visualizations [60].

Hierarchy Visualization as Navigational Tool. By providing an overview about
the structure of a data hierarchy, visualization can be used as a tool to facilitate
navigation through this data hierarchy. Lui et al. [41] use the nested treemaps to
navigate through 30 000 proposals for fellowships and education projects on the
website of the National Science Foundation. Likewise, Guerra-Gómez et al. [21]
use proportional photo treemaps as a tool to navigate through the online photo
service Flickr.

3.3 Derived Functional Requirements

From the scope of targeted visualization techniques and use cases, a comprehensive
list of requirements can be derived. Thereby, the main feature is the operation
on tree-structured or hierarchically-structured data. For flexible use from a client
perspective, the required results from the processing are (1) the processed data
itself, (2) mapped data by means of geometries, scenes, and 3D models, and (3)
synthesized images and videos. Following a generalized pipeline for hierarchy
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visualization (cf. Figure 2), specific requirements are assigned to (a) datasets,
(b) data preprocessing, (c) topology preprocessing, (d) layouting, (e) mapping
and visual variables, (f) image synthesis, and, subsequent, (g) provisioning. A
per-feature exposed parameterization allows for fine-grained control on the results.

Requirements on Datasets. The services should handle data from different ap-
plication domains. This includes (f1) spatio-temporal, (f2) multi-variate, (f3)
multi-modal, (f4) multi-run, and (f5) multi-model data [31]. Thus, a user should
be able to provide heterogeneous data and the service should provide support to
integrate the data. As part of dataset management, we want to support analysis
on pre-existing data, e.g. train machine learning models [6], as well.

Requirements on Data Preprocessing. The services should support basic data
preprocessing operations such as resampling, normalization, quantization [71], and
filtering of outlier. More specific to hierarchy visualization, up-propagation and
down-propagation of data is required, too. One particular metric for visualization
that is computed as part of preprocessing is the degree-of-interest of nodes [68].

Requirements on Topology Preprocessing. Services should support basic operations
on the topology – the relations between nodes – to specify the tree-structure
for subsequent visualization. This includes subtree selection, node filtering, and
subtree creation, e.g., through hierarchy operations [60]. More idiomatic, this
step includes the extraction of a coarse-grained view on a hierarchy by means of
aggregated views [17].

Requirements on Layouting. For tree layouting, all layout algorithms that operate
on a tree data structure should be supported, i.e., all implicit and explicit
tree layout algorithms. For explicit tree layouts, services should support node-
link diagrams [44] and point-based depictions [56]. For implicit tree layouts,
this includes rectangular treemap layout algorithms [69], as well as generalized
algorithms [3]. Thereby, algorithms should not be limited in layout complexity
and rather should allow for use of GosperMaps [1] and mixed polygonal layouts
as well [25]. There are algorithms that use a mixed representation of implicit
and explicit relations between nodes, but should be supported nevertheless.
Examples include general rooted tree drawings [55]. As additional feature, the
services should support for layout evolution, i.e., reusing previous layouts to
compute the current one. This should work for implicit tree layouts [53], mixed
representations [63], and general node-link diagrams [13].

Requirements on Visualization Mapping. Supported visual variables are target
to the used visualization technique. Services should support to expose them
to a client. As starting point, the standard set of visual variables has to be
supported [12]. More advanced – but still considered – visual variables are
sketchiness [73] and natural metaphors [74]. Next to specific visual variables,
the services should support to encode two [67] and multiple points in time [63].
Additionally, labeling and glyphs should be supported, too [61].
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Requirements on Geometries. The visualization service should support the geome-
tries of implicit and explicit tree visualizations [57]. Existing techniques mainly
use different types of primitive geometries (e.g., points, lines, rectangles, cuboids,
polygons, or general triangle meshes). However, there are visualization techniques
that use highly-specific types of scenes [2]. The type of geometry usually requires
the use of specific renderers to synthesize the visualization images.

Requirements on Rendering. As renderer are highly specific, a fine-grained param-
eterization should be supported. Typical parameters include camera specification,
enabling of rendering features (e.g., shadows, lighting, use of materials), visible
semantic layers [24], or the rendering quality (e.g., number of intermediate frames
for progressive rendering approaches [33]).

Requirements on Provisioning. For provisioning of results to a client, the service
should be flexible as well. This means, that the services should support to provide
final visualization images, but intermediate results as well (i.e., derived data [40],
layouts, geometries, and models [38]). To this end, sophisticated renderer should
not solely create the final image, but intermediate buffer with geometric semantics
– the g-buffers – as well [36]. Typically, the visualization images and additional
g-buffer can be thought of as intermediate results and can be used as input for
postprocessing [46] or video creation.

4 Concept for Service Orientation and Composition

Based on the requirement analysis, we propose a service composition of multiple
services to allow for the use cases and integration scenarios. Thereby, our focus
is on two services that are specific to tree-structured data and its visualization.
Further, an integration into a larger service landscape is outlined. The service
landscape is aligned to a visualization pipeline model for tree visualization
(cf. Figure 2). The internal data model of the services is separated into concepts
on the underlying visualization implementations (capabilities) and concepts for
user data (operational data).

4.1 Service Composition and Integration

Following the visualization pipeline model and the enclosing visualization process,
the three technical phases to derive the visualization image are preprocessing
and filtering of data, mapping the preprocessed data, and rendering the mapped
data [48]. We propose a service landscape focusing on this pipeline model. Thereby,
we introduce a separation between the data management and processing service
and the data visualization service (cf. Figure 2). A thorough service integration
has a service for problem data retrieval (data mining) as well. Services extending
on the visualization images are postprocessing services or video services. Alter-
nateively, external services may use intermediate results as subject of analysis
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Fig. 2. The proposed tree visualization pipeline and a proposed service association.
The specifics for tree visualization techniques are coined with the explicit model of
attribute data and tree topology as separate inputs for the explicit layouting phase
prior to geometry creation. In order to support a wide range of use cases and system
integrations, having access to the final result (the image) as well as all intermediate
results (attribute data, tree topologies, layouts, and geometries) is required as well.

(e.g., using layouts to derive layout metrics [69]). Although we propose a sepa-
ration of data processing service and visualization service, we can imagine that
an actual implementation can provide both functionalities and therefore exposes
interfaces for both (e.g., HiViSer is designed this way).

4.2 Derived Operational Data Model

The operational data model represents the user data and derived data throughout
visualization. For the data processing service, we propose the concepts Dataset,
Topology, Attribute, and Attribute Data. For the visualization service, we propose
the concepts Visualization, Layout, Model, and Image. For the concepts Dataset,
Attribute, Layout, Visualization, Model, and Image, we include explicit configu-
rations, each. The proposed concepts are the communication artifacts between
services and clients and can be actively managed by the user, i.e., create, read,
update, and delete (CRUD approach).

Dataset and Topology. A Dataset represents a set of nodes, their tree-structured
Topology (their parent-child relationship by means of edges), and a number of
Attributes with values – their Attribute Data. Although depending the Topology
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a) Data Processing Operational Model b) Visualization Operational Model

Fig. 3. The operational models for (a) the data processing service and (b) the visual-
ization service.

Format, we suggest that a topology contains information on all nodes, their ids
(identifier), and parent node. Additionally, node meta information as node labels
can be added, too. As the topology is a specific view on the Dataset and changes
to the Dataset are promoted through use of Dataset Processing Techniques,
a Topology cannot be created, updated, or deleted independently. When not
provided directly, e.g., through a data mining service or through direct upload,
a dataset can be derived from another dataset by use of a Dataset Processing
Technique. This is encoded using a Dataset Configuration that can be re-used
for multiple Datasets.

Attribute and Attribute Data. A measure that is associated with the nodes of a
Dataset is represented by an Attribute. The Attribute Data allows to query a
value for each node and Attribute. An Attribute Configuration allows to derive an
Attribute from another Attribute, including implementation-specific computation
and derivation of the per-node values.

Visualization and Layout. A Visualization represents the concept of a configured
mapping from data to a Layout and Visual Variables. Thereby, a Layout represents
a spatial position and possibly an extent for each node of a Topology. A Visual-
ization Configuration allows to re-use previously defined configurations across
datasets. Likewise, a Layout Configuration allows to re-apply layout techniques
to other datasets.

Model and Image. A Model represents the required graphical primitives, ge-
ometries, or the virtual scene to render depictions of a Visualization. An Image
thereby represents a server-rendered image of a Visualization. The Model Config-
uration and Image Configuration concepts allow to re-use a configuration across
datasets.

4.3 Derived Capabilities Model

The capabilities model represents the exposed implementation specifics of a
service. For the data processing service, we propose the concepts Dataset Type,
Dataset Processing Technique, Topology Format, Data Processing Technique, and
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Data Format. For the visualization service, we propose the concepts Visualization
Technique, Layout Technique, Layout Format, Visual Variable Mapping, Model
Format, Rendering Technique, and Image Format. The proposed concepts expose
the available operations, data formats, and parameterization to other services
and clients. These concepts are not meant to be actively managed by a user, i.e.,
they are designated to be read-only. As the content of these concepts is directly
derived from implementation specifics, only a change the implementation should
change the contents.

Dataset Capabilities. The Dataset Type encapsulates a set of implementation-
specific properties of a Dataset. This includes associated Dataset Processing
Techniques, Topology Formats, Data Processing Techniques, and Data Formats.
A Dataset Processing Technique represents an implementation of a mapping of
one Dataset to another, derived, Dataset. Likewise, a Data Processing Technique
represents an implementation to derive Attributes and their data from other
Attributes. For efficient transmission of results and intermediate results, a service
can provide data using different transmission formats. The proposed services
support this by use of Topology Formats for Topologies and Data Formats for
Attribute Data.

Visualization Capabilities. A Visualization Technique encapsulates a set of
implementation-specific properties of a Visualization. This includes associated
Layout Techniques, Layout Formats, Visual Variable Mappings, Model Formats,
Rendering Techniques, and Image Formats. Thereby, a Layout Technique is an
implementation that maps a node to a spatial position and possibly an extent. A
Layout Format represents a specific encoding of a Layout for provisioning. For
Visual Variable Mapping, this concept encapsulates an Attribute that is mapped
to a visual variable, i.e., a mapping to a spatial or otherwise visual encoding. A
Rendering Technique represents an implementation that processes a Visualization
and produces Images, i.e., color depictions and possibly with additional data
buffers that encode additional per-pixel information. For efficient transmission of
results and intermediate results, a visualization service can provide Models and
Images using different encodings. To support this, a Model Format represents an
implementation-specific encoding of a Model and an Image Format represents an
encoding for Images, respectively.

5 Hierarchy Visualization API

Derived from the service concept, we propose a RESTful API that allows to access
the services. This API is designed with an extended stakeholder model in mind as
well as additional non-functional requirements. Essentially, each model from the
service concept is mapped to a route, and thus a REST resource. These routes are
meant to be general extensions points for specific hierarchy visualization services
by specialization of requests and responses, rather than adding new resources
or routes to the API. Specifics of visualization implementations are expected to
extend on the base resources instead of adding new ones.



Visualization of Tree-structured Data using Web Service Composition 13

Product Consumer

Client Applications

W
eb

A
P

I

Visualization Service

API User API Designer Visualization Designer

uses uses provides

develops designs

extends

implements

Client Server

Fig. 4. There are four groups of stakeholders that interact with a hierarchy visualization
service directly or indirectly. Mainly, the service is shaped by the API designer and the
visualization designer. The API user develops client applications that use a hierarchy
visualization service to manage tree-structured data or display depictions of the data.
These client applications are used by the product consumer.

5.1 Stakeholder

Stylos and Myers describe three stakeholders that interact with an API directly or
indirectly: the API designer, the API user and the product consumer [64]. They
imply that an API is created to provide an interface for an existing implementation.
To this end, no stakeholder for implementation of a system using an existing
API Design as an interface is considered. We explicitly want to design a process
with such a visualization designer stakeholder and, thus, added this role to the
concept of API stakeholders (cf. Figure 4).

5.2 API Design Requirements

In contrast to provisioning of actual features, an efficient API should be further
constrained in how the features are provided. From an API design viewpoint – and
disregarding the domain of hierarchy visualizations –, a hierarchy visualization
service API should support the following general requirements for efficient usage:

Adaptability and Extensibility It must be possible to adapt the API to the
capabilities of the visualization service. This adaptation is characterized by
extending concepts of the abstract hierarchy visualization service – instead
of adding new ones – so all adapted hierarchy visualization service APIs keep
a consistent structure.

Documentation of General Specification A hierarchy visualization service
API must be specified unambiguously. A client application programmer who
uses a specific hierarchy visualization service via Web API must know how
to use and adapt it.
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Documentation of Adapted Specification Further, an API user should be
able to discover all routes and understand input parameters and their meaning
without looking at external documentation. A hierarchy visualization service
must specify a way to include comprehensive documentation as part of the
web service.

More specific to RESTful APIs, the REST standard architecture defines con-
straints on the API design [18]: Client-Server Architecture, Layered System,
Stateless, Cacheability, Code on Demand, and Uniform Interface. In order to
obtain a uniform interface, further architectural constraints are defined: Iden-
tification of Resources, Manipulation through Representations, Self-descriptive
Messages, and Hypermedia as the Engine of Application State. Thus, an additional
requirement is the reusability by means of re-usage of information and previously
submitted or computed results on a visualization service. This facilitates the
creation of visualizations with the same options for different data as the options
do not have to be recreated. Further, reusability of information allows to use
already processed information, instead of processing the same information twice.
To ensure an efficient process, the amount of requests and the request response
time should be as minimal as possible. The quality of a RESTful API can be
measured by assessing its maturity with respect to the Richardson Maturity
Model [70]. Our target is quality level 3 of the RMM, i.e., (1) using a different URL
for every different resource, (2) using at least two HTTP methods semantically
correct, and (3) using hypermedia in the response representation of resources.

5.3 Routes & Mapping

The design of a service composition with data processing service and visualization
service as well as the distinction between an operational data model and a
capabilities model results in four parts of our proposed API. There is (1) the
routes for the operational data of the data processing service (main route is
/datasets/, cf. Table 1), (2) the routes for the capabilities of the data processing
service (main route is /datasettypes/, cf. Table 2), (3) the routes for the
operational data of the visualization service (main route is /visualizations/,
cf. Table 3), and (4) the routes for the capabilities of the visualization service
(main route is /visualizationtechniques/, cf. Table 4). Thereby, each route
allows for query of single elements and whole collections of the associated resource.

Next to the domain-specific routes for the data processing service and the
visualization service, we define two additional routes to satisfy the requirements
of the documentation on the API specification and the Hypermedia as the Engine
of Application State:

/ The root route that lists all main resources, i.e., Datasets, Dataset Types,
Visualizations, and Visualization Techniques.

/api The route that provides the API specification.
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Table 1. The mapping from the operational data resources of the data processing
service to RESTful API routes.

Operational Data Route E
le
m

e
n
t

C
o
ll
e
c
t
io

n

Datasets /datasets/[id] 3 3
Topology /datasets/<id>/topology/[id] 3 3
Attribute /datasets/<id>/attributes/[id] 3 3
Attribute Data /datasets/<id>/attributes/<id>/data/[id] 3 3
Dataset Configurations /dataset-configurations/[id] 3 3
Attribute Configurations /attribute-configurations/[id] 3 3

Table 2. The mapping from the capabilities resources of the data processing service to
RESTful API routes.

Capability Route E
le
m

e
n
t

C
o
ll
e
c
t
io

n

Dataset Types /datasettypes/[id] 3 3
Dataset Processing Techniques /datasettypes/<id>/datasetprocessingtechniques/[id] 3 3
Topology Formats /datasettypes/<id>/topologyformats/[id] 3 3
Data Processing Techniques /datasettypes/<id>/dataprocessingtechniques/[id] 3 3
Data Formats /datasettypes/<id>/dataformats/[id] 3 3

Table 3. The mapping from the operational data resources of the visualization service
to RESTful API routes.

Operational Data Route E
le
m

e
n
t

C
o
ll
e
c
t
io

n

Visualizations /visualizations/[id] 3 3
Visualization Configurations /visualization-configurations/[id] 3 3
Layouts /visualizations/<id>/layouts/[id] 3 3
Layout Configurations /visualizations/<id>/layout-configurations/[id] 3 3
Models /visualizations/<id>/models/[id] 3 3
Model Configurations /visualizations/<id>/model-configurations/[id] 3 3
Images /visualizations/<id>/images/[id] 3 3
Image Configurations /visualizations/<id>/image-configurations/[id] 3 3

Table 4. The mapping from the capabilities resources of the visualization service to
RESTful API routes.

Capability Route E
le
m

e
n
t

C
o
ll
e
c
t
io

n

Visualization Techniques /visualizationtechniques/[id] 3 3
Layout Techniques /visualizationtechniques/<id>/layouttechniques/[id] 3 3
Layout Formats /visualizationtechniques/<id>/layoutformats/[id] 3 3
Visual Variable Mappings /visualizationtechniques/<id>/visualvariables/[id] 3 3
Model Formats /visualizationtechniques/<id>/modelformats/[id] 3 3
Rendering Techniques /visualizationtechniques/<id>/renderingtechniques/[id] 3 3
Image Formats /visualizationtechniques/<id>/imageformats/[id] 3 3
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5.4 Adaptation Process

The API is designed to support various hierarchy visualization techniques and
implementations. Therefore, the API designer should be able to adapt the API to
the capabilities of the visualization service – at best, without structural changes
to the API. This is accomplished as the API designer does not need to create
new base resource types, irregardless their relation to the creation of an image, a
model, or other results from the service. Instead, the base resource types have to
be extended, i.e., subtypes have to be created. Typically, this adaption is done
continuously within the development of the visualization service.

6 Evaluation

Our proposed service landscape and the API are evaluated by use of example
applications and assessment. Thereby, we want to introduce a treemap visual-
ization service, where we want to consider treemaps as a common example of
hierarchy visualization techniques. Next, we want to take up on the former use
cases and assess the use of the proposed API. Last, we describe the differences
between the reiterated, proposed API and the former HiViSer API.

6.1 Treemaps as a Service

To demonstrate the service landscape, we describe a treemap visualization ser-
vice. The service provides data management for tree-structured data as well as
configuration and provisioning of treemap-based data visualization. Thereby, the
service supports the proposed hierarchy visualization API while being restricted
to treemap visualization techniques. The available processing and visualization
techniques and the implementation specifics of the service are as follows:

Data Management and Preprocessing. Regarding source data, an end user can
create own datasets via Datasets and upload data as CSV, i.e., we do not utilize
a separate data mining service. The file should contain one row per leaf node
and one column per attribute. The first column is expected to contain the node
identifier with slashes as delimiters to encode the parent path of nodes (e.g., a file
path). The parts of the node identifier are used as a nominal attribute for node
labeling (for both inner and leaf nodes). The other columns of the CSV are used
as further numeric attributes that are registered within the service and exposed
via the API. The topology of the tree is extracted from the encoded path of the
CSV file. Derived data is provided by means of attribute value normalization,
transformations (e.g., quantization), and computation of a degree of interest [37].
The supported output formats are an edge list for the topology (pairs of parent
identifier and child identifier for each edge using a breadth-first order) and a
value buffer for attribute data (float-encoded values using breadth-first order).
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Fig. 5. A visualization result using a software dataset snapshot from ElasticSearch from
2014. The dataset is depicted using a 2D treemap, color mapping, and labeling.

Layouting and Mapping. The service provides rectangular treemap layouting
algorithms – namely Slice’n’Dice [30], Squarified [11], Strip [4], Hilbert, Moore [65],
Approximation [43], and EvoCells [53] – and additional layout margins for
hierarchical structure depiction. The supported visual variables are color with
ColorBrewer color schemes [26], height, sketchiness [34], and in-situ geometries [39]
– allowing the creation of 2.5D treemaps (cf. Figure 6). Labeling is supported
through use of OpenLL [35]. The supported output formats for the treemap
geometry are XML3D, X3DOM, glTF [38], VRML, and – as GPU-native format
– a buffer encoding with attributed vertex cloud encoding [50].

Rendering. The treemap images are rendered using progressive rendering [33],
allowing for both basic 2D depictions and sophisticated graphical effects for
virtual 3D environments. Next to the rendered image, the g-buffers for per-pixel
buffers using false-color-encoded ids and normal vectors are provided, too.
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Fig. 6. A visualization result of a software system dataset. The layout was created
using EvoCells layouting. The resulting visualization is a 2.5D treemap with color and
height mapping, in-situ diff visualization, and labeling.

Supported Client Approaches. With this set of features and interfaces, the service
allows for the following types of clients: (1) a thin client, that displays server-
rendered visualization images and maps user interaction to service requests and
updates to the displayed image, (2) a mixed approach where the client displays
a 3D model of a visualization in the web browser by use of a polyfill layer, and
(3) a rich client, that uses only preprocessed data and a topology to perform
layouting, geometry creation, and rendering on the client. The latter approach
provides the most flexibility with least requests to the service but imposes more
load to the client.

6.2 Use Case Evaluation

A use case assessment on the proposed API results in the following observations:

Visual Analysis of Source Code and Software. The API can represent software
datasets with multiple revisions – multiple Datasets – and multiple attributes.
Thereby, the model is flexible enough to allow different types of nodes (e.g.,
developers, source code modules, and commits). Further, the API allows to use
different data preprocessing, layout algorithms and visual variables to allow for
the targeted software visualization techniques. With the flexibility to provide
implementation-defined 3D model formats, even Minecraft worlds are within the
scope of the API.

Federal Budget Management, Reporting, and Controlling. As with software data,
budget data is representable using the API as well. The creation of the hierarchy
through use of categorical grouping is supported through dataset processing
techniques. The support of polygonal layouts, e.g., for GosperMaps, is assured



Visualization of Tree-structured Data using Web Service Composition 19

1 { "visualization": {
2 "type": "/visualizationtechniques/2.5dtreemap",
3 "options": {
4 "dataset": "/datasets/Tierbestand2014",
5 "layout": {
6 "type": "striptreemap",
7 "options": {
8 "weights": { "type": "normalization",
9 "options": { "source": "count", "min": 0, "max": "source" } },

10 "parentPadding": 0.01, "siblingMargin": 0.03 }
11 },
12 "visualVariables": [
13 { "type": "leaf-colors",
14 "options": { "attribute": "count", "gradient": "colorbrewer-3-OrRd" } },
15 { "type": "leaf-heights", "options": { "attribute": "count" } }
16 ],
17 "labeling": true
18 }
19 },
20 "options": {
21 "width": 1920, "height": 1080,
22 "eye": [ 0.0, 1.2, 0.8 ],
23 "center": [ 0.0, 0.0, 0.0 ],
24 "up": [ 0.0, 1.0, 0.0 ],
25 "quality": 100, "format": "png" } }

Listing 1.1. Example request JSON for a treemap image at the route
/visualizations/Tierpark2014/images. This request was issued after the dataset
Tierpark2014 was created and configured.

though an abstraction layer that places this responsibility on the implementation
of the service. The evolution of layouts is supported through re-usability of
precomputed layouts and specific operations that implement the evolution.

Mobility Data Visual Analysis. From an API perspective, this use case is similar
to the federal budget management. However, the use of the HiVE visualization
grammar is possible to be used with our API structure, e.g., by providing an
implementation of a dataset processing technique that parses the HiVE grammar.

Hierarchy Visualization as Navigational Tool. The use for a navigational tool
is more broad as it adds the navigation task to the display of images. With
the provisioning of both images and id-buffers, a user click into the image can
be converted into the clicked node id. This node id can be used to select the
original node and its metadata to extract the navigation target and, thus, allow
to navigate the user further.

6.3 Comparison to HiViSer API

A comparison of the proposed API to the HiViSer API can be described as a
mapping of pre-existing routes and the addition of routes to self-describe trans-
mission formats and available processing and visualization techniques. For us, the
concept of DataSources from HiViSer is conceptually located in the data mining
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Fig. 7. A 3D printed treemap from a model that was created using a treemap service,
embedded into a wooden frame.

service, and, thus, not focus of the API proposed in this article. The original
concept of Datasets and Nodes is adapted and mapped to routes in a similar
fashion. However, with this proposed API, the attributes are modeled as part of
a dataset and Buffers are represented as Attribute Data. BufferViewOptions and
BufferTransformations are remodeled to Data Processing Techniques and refer-
ences to Attribute Data. The concepts Layout, Images, and Models are now part
of Visualizations. The VisualVariable was moved to the self-description interface
of Visualization Techniques. Labeling is currently not part of the proposed API –
although we believe it can be specified by adding Labels to the data processing
service and Labeling to the visualization service (similar to the HiViSer API).

7 Conclusions

We decomposed the recently presented hierarchy visualization service HiViSer
analogously to the stages of the visualization pipeline model, with focus on data
processing and visualization. Thereby, we described a resource-based Web API for
tree-structured data management and visualization, provided instructions for the
specification of its base resources, and specified routes targeting OpenAPI. We
think this not only will facilitate the integration into a larger service landscape for
data mining, postprocessing, video generation but also ease the implementation
of future visualization APIs. Overall, we presented a proposal for Visualization-
as-a-Service for tree-structured data that strives to make the development of
visualization clients faster, more flexible, and less error-prone. At best, we hope
this to be a valuable step towards standardization of the API and associated
communication artifacts.
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For future work, several directions are designated for extending the API. For
example, we plan to formalize the labeling part of the API and add management
for and visualization of additional relations [28]. We also imagine configurations
of images, where multiple depictions are embedded within one. The latter would
allow for small multiples visualizations [52]. At large, we want to evaluate if
the API design is applicable to a broader class of data and corresponding
information visualization techniques, to support the “[i]ntegration and analysis
of heterogeneous data” and therefore tackle “one of the greatest challenges for
versatile applications” [42] in information visualization.
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16. Discher, S., Richter, R., Trapp, M., Döllner, J.: Service-oriented processing and
analysis of massive point clouds in geoinformation management. In: Service-Oriented
Mapping, pp. 43–61. Springer (2019). https://doi.org/10.1007/978-3-319-72434-8 2

17. Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information vi-
sualization: Overview, techniques, and design guidelines. IEEE Transac-
tions on Visualization and Computer Graphics 16(3), 439–454 (2010).
https://doi.org/10.1109/TVCG.2009.84

18. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. thesis, University of California, Irvine (2000)
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software maps using importance-based aggregation of nodes. In: Proc. SciTePress
International Joint Conference on Computer Vision, Imaging and Computer Graph-
ics Theory and Applications – Volume 3: IVAPP. pp. 176–185. VISIGRAPP/IVAPP
’17 (2017). https://doi.org/10.5220/0006267501760185

38. Limberger, D., Scheibel, W., Lemme, S., Döllner, J.: Dynamic 2.5d treemaps using
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51. Scheibel, W., Hartmann, J., Döllner, J.: Design and implementation of web-based
hierarchy visualization services. In: Proc. SciTePress International Joint Con-
ference on Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications – Volume 3: IVAPP. pp. 141–152. VISIGRAPP/IVAPP ’19 (2019).
https://doi.org/10.5220/0007693201410152

52. Scheibel, W., Trapp, M., Döllner, J.: Interactive revision exploration using small
multiples of software maps. In: Proc. SciTePress International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications – Volume 2: IVAPP. pp. 131–138. VISIGRAPP/IVAPP ’16 (2016).
https://doi.org/10.5220/0005694401310138
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