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Continuous Integration and Continuous Delivery are best practices used in the context of DevOps. By using
automated pipelines for building and testing small software changes, possible risks are intended to be detected
early. Those pipelines continuously generate log events that are collected in semi-structured log files. In prac-
tice, these log files can amass 100 000 events and more. However, the relevant sections in these log files must
be manually tagged by the user. This paper presents an online learning approach for detecting relevant log
events using Latent Dirichlet Allocation. After grouping a fixed number of log events in a document, our ap-
proach prunes the vocabulary to eliminate words without semantic meaning. A sequence of documents is then
described as a discrete sequence by applying Latent Dirichlet Allocation, which allows the detection of outliers
within the sequence. By integrating the latent variables of the model, our approach provides an explanation
of its prediction. Our experiments show that our approach is sensitive to the choice of its hyperparameters in

terms of the number and choice of detected anomalies.

1 INTRODUCTION

Continuous Integration (CI) is a set of best practices
in agile software development, in which developers
frequently push changes to the source code to the
project’s main branch, which is then built and tested
by an automated processing pipeline (Fitzgerald and
Stol, 2017). Continuous Delivery (CD) is built on
CI, i.e., “Continuous Delivery is a software develop-
ment discipline where you build software in such a
way that the software can be released to production at
any time”!, and therefore allows a user or customer to
interact with the software early. As a result, CD im-
proves the overall “execution efficiency, cross-team
communication, product-market fit, agility, and orga-
nizational transparency”? through iterative feedback
loops between the users and the engineering team. In
Continuous Deployment (CDE), an extension of CD,
the builds that successfully pass the tests are auto-
matically deployed in an actual production environ-
ment (Shahin et al., 2017).
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CI/CD pipelines rely on various coding, building,
testing, deployment, and monitoring tools. Each step
in the CI/CD pipeline provides a status message, a so-
called log event, to inform the developers about the
results of the step, e.g., whether a test was success-
ful or failed. The individual log events are collected
in a single log file in a semi-structured form during
the execution of the pipeline. In the case of com-
plex pipelines, which can take several days to exe-
cute, the log files can have a length of several 100 000
lines. In order to get relevant feedback faster, it would
be desirable to stop the pipeline execution early af-
ter the first anomaly and detect the relevant sections
in the log file that correlate with the problematic be-
havior. Rule-based methods that search for keywords
are not applicable in our use case because the vocab-
ulary depends heavily on the team and the tools they
use. Modern approaches relying on Machine Learn-
ing achieve good results but provide no explanation to
the user, thus complicating their use in practice (Zhao
etal., 2021).

We present an unsupervised approach that detects
anomalies in individual log events. For this purpose,
our algorithm groups a fixed number of log events,
i.e., lines in the log file, into single documents and
cleans them from words with no semantic meaning,
e.g., stopwords. The corpus generated in this way is
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used for training a Latent Dirichlet Allocation (LDA)
model, which results in a description of the log files
as a discrete sequence. By detecting anomalies in the
sequence, our algorithm detects suspicious entries.
It furthermore explains its result by taking the topic
word distributions into account. We showed that our
approach can detect relevant sections within large log
files through interviews with domain experts. Further-
more, we investigated the influence of the hyperpa-
rameters on the results.

Our work has the following structure: In Sec-
tion 2, we present existing approaches for detecting
anomalies in log files. In Section 3, we present de-
tails about LDA required for our approach, which is
presented in Section 4. Our conducted experiments,
their results, and threats to validity are presented in
Section 5. We conclude this work in Section 6.

2 RELATED WORK

Numerous approaches for detecting log anomalies,
i.e., relevant parts in semi-structured log files, have
been proposed (Wittkopp et al., 2022). Supervised
and unsupervised techniques have been developed,
both usually following the same four steps (Le and
Zhang, 2022): (1) log parsing, (2) log grouping,
(3) the formalization of log events by semantic vec-
tors, and (4) the application of a Deep Learning (DL)
model for detecting outliers in sequences of vectors
or discrete values. In our considerations, we present
modern supervised and unsupervised algorithms for
detecting log anomalies and ideas for explaining the
results. For a detailed survey on automated log anal-
ysis, we refer to (He et al., 2021).

Supervised Approaches. Zhang et al. proposed
a log anomaly detection algorithm that has shown
promising results in dealing with unstable log data,
i.e., changing logging statements and processing
noise (Zhang et al., 2019). Their approach LogRo-
bust derives a vector representation for a log event us-
ing pre-trained word embeddings and a subsequent tf-
idf aggregation scheme. Subsequently, log anomalies
are detected using an attention-based Bi-LSTM net-
work. Yang et al. applied a similar approach for cre-
ating a semantic vector embedding for log files (Yang
et al., 2021). Their approach PLELog further incor-
porates knowledge about historical log files that are
marked as normal to estimate the class label of a set
of historical log files. The labeled data is then used to
train an attention-based GRU neural network for de-
tecting outliers. The approach presented by Lu et al.
relies on sequences of so-called log keys, i.e., fre-

quently occurring constants in log files recognized by
a log parser, and specific vector embeddings trained
for such log keys (Lu et al., 2018). The authors devel-
oped two supervised DL methods, one relying on a
Convolutional Neural Network (CNN) and the other
on a Multi-layer Perceptron (MLP). The approach
LogBERT presented by Guo et al., also starts with a
description of logs derived from log keys (Guo et al.,
2021). Using Bidirectional Encoder Representation
from Transformers (BERT), their approach aims to
learn patterns of normal log sequences and detects
suspicious log sequences that deviate from normal
ones. Shao et al. further developed LogBERT by uti-
lizing a DL model. A comparison of different super-
vised DL approaches for log anomaly detection was
presented by Le et al. (Le and Zhang, 2022).

Unsupervised Approaches. Meng et al. proposed
LogAnomaly, an unsupervised approach for model-
ing a stream of log data, where each log event is de-
scribed using a vector space embedding derived from
Word2Vec (Meng et al., 2019). Their approach con-
sists of a DL component trained offline and an online
outlier detection algorithm. A similar concept was
proposed by Chen et al., whose approach also con-
sists of an offline training mode and an online out-
lier detection algorithm (Chen et al., 2020). Further-
more, their approach combines labels from a source
system and a target system using a transfer learning
algorithm to reduce the noise in log sequences. In
current work, Li et al. showed that the results of unsu-
pervised DL approaches can further be improved by
employing Part-of-Speech and Named Entity Recog-
nition into account (Li et al., 2022).

Explainability. In all the approaches presented so
far, the DL component was used as a black-box, i.e.,
the user cannot explain why a log snipped is marked
as an outlier. However, explaining anomalies is highly
desirable in practice (Zhao et al., 2021). Brown
et al. presented an unsupervised learning method for
anomaly detection that achieves the quality of a deep
learning model and further explains the decision-
making basis (Brown et al., 2018). Specifically, their
approach uses an Recurrent Neural Network (RNN)
based on the Long Short Term Memory (LSTM) units
to build a statistical model that learns vocabulary dis-
tribution within logs. At the same time, an attention
score is computed to indicate the presence of an out-
lier. Our method takes up the idea of explainability
and allows the user to conclude on the level of words
within a log. To the best of our knowledge, we are the
first to present a log anomaly detection algorithm that
provides explainability in this detail.
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Figure 1: Graphical model underlying LDA in plate nota-
tion. The shaded circles denote observed variables.
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LDA is a probabilistic topic model proposed by Blei
et al., which is often used for capturing the seman-
tic structure within a collection of documents, a so-
called corpus (Blei et al., 2003). Given a corpus C,
i.e., a set of documents {dj,...,dy,} that share a vo-
cabulary ¥ = {wy,...,w,}, LDA extracts semantic
clusters in its vocabulary, so-called ropics ¢y,... 0k,
as multinomial distributions over the vocabulary 7.
Additionally, each document is described as a mix-
ture of the extracted topics, describing its semantic
composition. Given the number of topics K speci-
fied as a hyperparameter together with Dirichlet pri-
ors o = (0y,...,0k), where o; > O forall 1 <i<K
and B = (B1,...,Bn), where B; >0 forall 1 < j <N
that capture the document-topic-distributions and the
topic-term-distribution respectively, LDA defines a
fully generative model for the creation of a corpus.
The plate notation of the generative process is shown
in Figure 1. The generative process operates as fol-
lows:

1. For each document d;, 1 <i < m, choose a distri-
bution over topics 6; ~ Dirichlet(ct)
2. Foreachword wj, 1 <j<N,ind;, 1 <i<m,
(a) Choose a topic z; ~ Multinomial(6;)
(b) Choose the word w; according to the probabil-
ity p(wjlz;,B)

During the training phase LDA infers the top-
ics 01,...,0x and the document-topic-distributions
01,...,0,, for the given corpus. As exact inference
is intractable, approximation techniques must be ap-
plied, e.g., Variational Bayes (Blei et al., 2003), its
online version (Hoffman et al., 2010), or (collapsed)
Gibbs Sampling (Griffiths and Steyvers, 2004). A sur-
vey of different approaches for utilizing LDA for min-

ing software repositories can be found in (Chen et al.,
2016).

4 APPROACH

Our approach aims to detect relevant sections within a
log file by utilizing LDA for describing a log file as a
discrete sequence. Log anomalies are detected using
an outlier detection algorithm by associating relevant
log sections with conspicuous subsequences. Further-
more, our approach supports the user in explaining
the results by viewing the latent variables of the LDA
model. Figure 2 shows the concept of our approach.

4.1 Corpus Creation

Log events are preprocessed immediately after they
are created to remove words that do not carry seman-
tic meaning. For this purpose, the following steps are
performed:

1. Removal of general log-data specific phrases, e.g.,
ERROR_ON_WARNING,

2. Removal of symbols, e.g., parentheses, time
stamps, file paths, and number literals,

3. Lower-casing all words,
4. Removal of stop words, and

5. Lemmatization of the vocabulary to reduce the
size of the vocabulary.

A fixed number of preprocessed log events are merged
into a document and stored in the Bag of Words
(BOW) form. The documents generated in this way
form the corpus for subsequent analysis by LDA.
During the execution of the pipeline, the corpus is per-
manently extended by new documents.

4.2 Sequence Modelling

Since not the entire corpus is available at the begin-
ning, we apply the online version of Variational Bayes
for training the LDA model. As a result, each docu-
ment is described by a K-dimensional vector whose
components represent the expression in the respec-
tive topic. By choosing a symmetric Dirichlet prior o
with o1, ...,0x = I/k, the inference algorithm favors
topic distributions with strong expressions in a few
topics. We, therefore, identify each document with
the number 1,...,K of its dominant topic as proposed
by Panichela et al. (Panichella et al., 2013). This way,
we obtain a discrete sequence with values in 1,... K,
created during the pipeline execution.

Our implementation is based on the gensim li-
brary?, which is actively maintained and widely used

3https://radimrehurek.com/gensim/
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Figure 2: Process Overview of our approach. The log events from a CI/CD pipeline are pruned and grouped into documents.
A discrete sequence is generated using LDA, and outliers are detected. The resulting topics and the topic-term assignments in

the conspicuous document are presented to the developer.

in the industry. We further apply the NLTK* for pre-
processing the data.

4.3 Outlier Detection

A discrete sequence S is an ordered list (sq,...,8y)
of elements from a finite set. Different definitions
for anomalies in the context of discrete sequences ex-
ist (Chandola et al., 2012):

1. An entire sequence S = (sy,...,sy) is anomalous
if it is significantly different from a set of other
sequences.

2. A subsequence S; = (s, ..., Si+k—1) Within the se-
quence .S is anomalous if it is significantly dif-
ferent from the other subsequences within § of
length k. Here the window size k is a hyperpa-
rameter of the model and needs to be set by the
user.

3. Anelement s;, 1 <i <N, within § is anomalous
if it significantly differs from an element expected
at position i.
Our application scenario relates to the second case.
The first case is not applicable in our scenario as our
approach is intended to detect anomalies as they occur
and not after the entire pipeline has finished. The third
definition does not consider the sequence structure,
which has shown relevant information during our ex-
periments.

“https://www.nltk.org/

Numerous online outlier detection algorithms for
subsequences were proposed (Chandola et al., 2012).
They all involve the same two steps: (1) the calcu-
lation of an anomaly score for the respective subse-
quence and (2) the comparison of the anomaly score
with a specified threshold A. The subsequence is
marked as an outlier if the anomaly score exceeds
the threshold. To ensure the explainability of our ap-
proach, we decided to use a trivial anomaly score.
The inverse frequency of the subsequence in the set of
previous subsequences gives our anomaly score. By
choosing the threshold 0.5 < A < 1, a subsequence is
marked as an outlier if and only if it occurs for the first
time. In our experiments, we always look at windows
comprising four documents. To avoid too many out-
liers at the beginning of a new run, we assume a min-
imum number of 1,000 documents before first com-
paring the anomaly score with the threshold.

4.4 Explaining Results

After the detection of an outlier, the corresponding
log sections, i.e., the k elements of the subsequence,
are displayed to the user to derive the root cause for a
conspicuous pipeline. Thereby, the reason behind this
needs to be explained to the user by two additional
outputs.

On the one hand, the underlying concept can usu-
ally be derived from the most probable words of a
topic. Table 1 shows the top 10 words of three exem-
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Table 1: Three extracted topics from our dataset. For each
topic, the ten most probable terms are displayed.

Topic #1 | Topic #2 |  Topic #3
state data external
change directory storage
stage local label
warning input cache
event class load
equal search click
mask missing path
road member warn
result interface error
archive dependency result

plary topics extracted from the dataset used in our ex-
periments. The first topic concerns the abstract topic
Status Reporting, the second Data Inclusion, and the
third one Removed External Storage. A topic’s inter-
pretability can be further increased using a weighting
function (Sievert and Shirley, 2014).

The generative process underlying LDA makes it
clear that each word is derived from precisely one
topic. The latent variable z describes this assignment.
Our method marks all words derived from the domi-
nant topic in the given section to assist users further.

S EVALUATION

Our dataset comprises log events originating from two
CI/CD pipelines. The dataset from project one con-
sists of approximately 3.6 million log events, and the
dataset from project two consists of approximately
9.9 million. Usually, anomaly detection methods are
evaluated on labeled log files. In our case, such data
was unavailable; only individual examples could be
discussed with domain experts. Therefore, we fo-
cus our considerations on two questions that inves-
tigate the influence of the two hyperparameters of the
method, i.e., the number of topics K and the number
s of log events grouped in one document.

5.1 Impact of the Hyperparameters on
the Number of Anomalies

Our first experiment investigates the influence of the
choice of K and s on the number of anomalies de-
tected. For this purpose, we record the propor-
tion of documents marked as anomalies in the to-
tal number of documents for each combination of
s,K € {10,20,30,40,50,60,70,80,90,100}. We re-
fer to this metric as 1) in the following. The results for
project one are shown in Table 2, and the results for
project two are shown in Table 3.
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Figure 3: Results of our second experiment on the first
project.
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Figure 4: Results of our second experiment on the second
project.

Both projects show that when the parameter s is
fixed, the metric M tends to grow with increasing K,
especially for small values of s. This observation can
be explained by the fact that the logs are described
as a discrete sequence with values in {1,...,K}, and
as K grows, there are more possibilities for different
subsequences.

With fixed topic number K, the metric 1 tends
to increase with increasing window size s, but not
strictly monotonically. For example, 1 reaches its
maximum at K = 70 in the first project at s = 70. Both
projects also show that 1 seems to reach its maximum
in the investigated parameter range. It is striking that
1M runs through a significantly larger range of values
in project one than in project two, which leads to the
assumption that 1 shows a strong dependence on the
data set in addition to the hyperparameters.



Table 2: Experiment 1: Results for the first project.
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Table 3: Experiment 1: Results for the second project.

10 20 30 40 50

1.6
1.8
1.8
1.9
2.6
3.0
25
3.0
34
3.0

1.9
24
2.8
3.1
2.9
3.5
3.6
3.6
3.6
3.5

2.0
2.5
2.4
33
3.5
3.1
3.5
4.0
4.4
4.4

60 70 80 90 100

23 6%

29
32
3.4
3.6
3.8
4.0
4.1
4.4
4.9

22
2.6
3.1
32
4.0
4.9
4.2
4.4

2.6
34
3.1
4.0
3.4
3.9
4.5
4.6
5.0

2.2
3.0
3.0
3.4
4.4
4.5
4.3
4.9

2.7
35
32
44 [
4.6

4%

2%

5.2 TImpact of the Hyperparameters on
the Detected Anomalies

Our second experiment investigates whether differ-
ent parameter configurations also lead to different de-
tected anomalies. For this purpose, we count for each
log event of both projects the frequency of how of-
ten it was marked as an outlier. With 100 possible
combinations for s and K and a fixed subsequence
length of 4, a log event can be maximally marked as
an anomaly 400 times. From the count, we then derive
for 1 <1 <400 how many log events were marked as
outliers exactly / times. The normalized frequencies
are shown in Figure 3 and Figure 4.

In both projects, the observation that lower occur-
rences are associated with higher probabilities holds.
In both projects, the maximum probability occurs at

I =1 with 2,1 % in project one and 13,2 % in project
two. Overall, different parameter configurations thus
lead to enormously different results. However, this
fact also depends strongly on the dataset. The maxi-
mum value of  is 362 in project one and 353 in project
two.

5.3 Threats to Validity

The main threat to internal validity lies in the imple-
mentation of our approach. Our LDA model relies
on the implementation provided by gensim, and it is
still being determined to what extent different infer-
ence algorithms would affect the results. Previous
experiments for bug triaging tasks have shown that
the chosen LDA implementation and its hyperparam-
eters can significantly impact the results (Atzberger



et al., 2022). The main threat to generalization is
that we reported our observations only from the con-
ducted experiments on two datasets. However, it can
already be seen from the two experiments that the re-
sults strongly depend on the respective characteris-
tics of the data sets. Furthermore, it can be discussed
whether the assumption that anomalies in discrete se-
quences accompany relevant sections is justified. For
example, if only a few words occur within a docu-
ment, they will have little influence on the dominant
topic and, therefore will not be considered in the out-
lier detection.

6 Conclusions and Future Work

The localization of anomalies in large log files is a
question that developers often confront. However,
this is enormously time-consuming and hardly pos-
sible with high volumes. Furthermore, an entire
pipeline run can take several hours to days, so it would
be desirable to detect relevant locations early on. Our
work presents an approach for the processing and
modeling of log events by LDA. Our approach de-
tects anomalies in the resulting discrete sequence and
localizes relevant log events. In addition, our method
provides explanations through the topics and topic-
word mappings, thereby concretely supporting the de-
veloper in root-cause analysis. The approach does
not require domain knowledge about the individual
specifics of the configurations of the pipelines. This is
essential because pipeline configurations are volatile
and can be changed by developers at any time. If the
approach were based on knowledge about the tools
being triggered during pipeline execution, the log an-
alytics approach would have to be adapted. The ap-
proach detects outlier characteristics in real data logs
while the log is consumed as a stream. Hence, the
outlier detection takes place early and could serve as
early feedback to the developers who have triggered
the pipeline execution. Our experiments show that our
method is susceptible to the chosen hyperparameters.
Besides the frequency of occurring anomalies, the de-
tected log events are also affected.

In future work, we plan to develop modifications
to our approach that are more stable under changes
in parameters. Furthermore, an evaluation on labeled
data and a comparison withDL methods are highly
relevant. In addition to the hit rate, a user study will
be conducted to investigate the extent to which the re-
sults’ explainability supports the root cause analysis.
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