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Abstract Artificial Intelligence (AI) is changing fundamen-
tally the way how IT solutions are built and operated across
all application domains, including the geospatial domain. In
this article, we briefly reflect on the term “AI” and outline
the factors such as Machine Learning (ML) and Deep Learn-
ing (DL) that contribute to applying AI successfully for IT
solutions. In the main part we discuss AI for the geospatial
domain (GeoAI) focussing on 3D point clouds as a key cat-
egory of geodata, describe their properties and discuss its
suitability for ML and DL. In particular, we conclude that
3D point clouds constitute a corpus with similar properties
than natural language corpora and formulate a naturalness
hypothesis for 3D point clouds. We then outline concepts
and examples of ML-based interpretation approaches that
compute domain-specific and application-specific semantics
for 3D point clouds without having to create explicit spatial
models or explicit rule sets. Finally, we will show how ML
enables us to efficiently build and maintain base data for dig-
ital twins of our environment such as virtual 3D city models,
indoor models, or building information models.

Keywords Artificial Intelligence ·Machine Learning · 3D
Point Clouds · Digital Twins · 3D City Models

1 Introduction

Artificial Intelligence (AI) is changing the way IT solutions
are designed, built and operated, whereby AI is not being
limited to specific application areas—it is currently finding
its way into all industries [PD19]. In particular, for geospatial
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domains, a fundamental question is how geospatial artificial
intelligence (GeoAI) [Vop+18] can improve existing and
invent new technology for geospatial information systems
(GIS).

1.1 The Term “Artificial Intelligence”

The notion “AI” implies a number of well-known concep-
tual difficulties, such as the definition of “natural”, “human”
or “general-purpose” intelligence; Kelly [Kel17] discusses
these ideas and misunderstandings found in AI. In the gen-
eral public, AI is often associated with expectations such as
simulating or overcoming human intelligence. If AI is prag-
matically seen as technological progress, then “AI is going
to amplify human intelligence not replace it, the same way
any tool amplifies our abilities” as recently argued by LeCun
[LeC17].

One of the first AI applications that exemplified these
controversies was ELIZA, the famous first chatbot in com-
puter science built by Josef Weizenbaum in 1966. It is a
speech-based simulation of a psychologist’s interaction with
a patient [Pal14]; Weizenbaum, notably, later became one
of AI’s leading critics. Although ELIZA was intended to
demonstrate the limitations of AI, it was considered a seri-
ous application by the general public at the time, contrary
to the original intention of Weizenbaum. This topic is dis-
cussed further by Copeland [Cop93], who analyzes which
challenges and obstacles AI needs to solve before “thinking”
machines could be constructed. The key to AI is the ability to
think rationally, to discover meaning, to generalize and learn
from past experiences, and to be intelligent by using learning,
thinking, problem solving, perception and languages.

If we look back to IT progress, there was generally never
a sharp border between AI and Non-AI technology. In a sense,
the term “AI” is frequently used to label such technology that
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Fig. 1 Main software engineering contributions to AI.

goes beyond current technology boundaries. Consider, for
example, an autopilot steering an aircraft: In its beginning, it
was perceived as AI, while today it has become a common
operating technical component.

1.2 AI from a Software Engineering Perspective

A software engineering perspective allows us to take a more
specific look at AI. Here, the coincidence of several indepen-
dent developments (Fig. 1) is accelerating the implementation
and use of AI for new IT solutions:

• Big Data: AI and ML require big data to be applied
effectively. For example, ML needs training data, which
is typically distilled from big data. Big data generally is
characterized by a number of criteria, including:
– large data amounts (volume)
– rapid data capturing or generation (velocity)
– different data types and structures (variety)
– manifold relations among data sets (complexity)
– high inherent data uncertainty (veracity).

Big data has turned out to be a key driver for digital
transformation processes as summarized in the famous
but also controversial [Mar18] statement: “Data is the
new oil. Data is just like crude. It’s valuable, but if unre-
fined it cannot really be used.” [Hum06] In that respect,
geospatial data is big data and the “oil” for the geospatial
digital economy. A range of approaches exist to capture
and simulate data about our geospatial reality.

• Analytics: Analytics is the science of analytical reason-
ing that aims at providing concepts, methods, techniques,

and tools to efficiently collect, organize, and analyze big
data. Its objectives include to examine data, to draw con-
clusions, to get insights, to acquire knowledge, and to
support decision making. For all variants such as descrip-
tive, predictive, and prescriptive analytics, ML plays a
key role to process, understand, and classify data.
• Hardware: The growth of AI comes along with com-

modity graphics processing units (GPUs) that are evolv-
ing to become high performance accelerators for data-
parallel computing. Further, there is a growing number
of purpose-built systems for DL with fully integrated
hardware and software (e.g., NVidia DGX/HGX).
• Machine Learning: ML acquires knowledge by build-

ing mathematical models based on training data, which
are used to predict labels for input data. The underlying
model “may be predictive to make predictions in the fu-
ture, or descriptive to gain knowledge from data, or both”
[Alp14].
• Deep Learning: DL, a specific form of representation

learning, which in turn is a specific form of ML, is based
on Artificial Neural Networks (ANNs) such as Convo-
lutional Neural Networks (CNNs) [GBC16]. It builds
representations expressed in terms of simpler representa-
tions, i.e., we can build complex concepts out of simpler
concepts. “It has turned out to be very good at discovering
intricate structures in high-dimensional data and is there-
fore applicable to many domains of science, business and
government” [LBH15].

1.3 Machine Learning

If ML is applied, we do not explicitly program the solution,
i.e., ML does not rely on explicit or procedural problem
solving strategies but is based on processing and analyzing
patterns and inference. Techniques can be classified into su-
pervised ML, unsupervised ML, and reinforcement learning.
Supervised ML provides labels for a given set of data based
on a previously acquired knowledge by means of labeled
training data, while unsupervised ML builds models only on
input data without any corresponding output data [Alp14].

Frequently, ML-based solutions describe the input data
by means of feature vectors, i.e., by n-dimensional vectors
whose numerical components describe selected aspects of
a phenomenon to be observed. The feature space builds a
corresponding high-dimensional vector space; techniques for
dimensionality reduction allow us to manage, process, and
visualize that space.

These concepts can be best understood by a simple, ab-
stract example. For data analysis, consider a data labeling
that generally takes place as a one-step mapping of an input
datset I by an explicitly programmed function f :
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• f : Input→ Label
L← f (I)

Supervised ML, conceptually, uses a two-step approach
that requires and depends on the training that defines what the
mapping is about. For example, it can be based on training
data T I with known labels T L by a (general-purpose) training
function ft :

• ft : TestInput × TestLabels→Model
M← ft(T I,T L)

A corresponding predictive or descriptive function fML
can then process any data set:

• fML: Model × Input→ Label
L← fML(M, I)

“The promise and power of machine learning rest on
its ability to generalize from examples and to handle noise”
[All+18]. For it, ML offers a high degree of robustness re-
garding the input data set. A fundamental risk, however, lies
in “overtraining” the model. If overtrained, it will be able to
identify all the relevant information in the training data, but
will fail miserably when presented with the new data. The
model becomes incapable of generalizing, i.e., it is overfitting
the training data. For that reason, “properly controlling or reg-
ularizing the training is key to out-of-sample generalization”
[Zha+18].

2 3D Point Clouds

2.1 Applications

3D point clouds are becoming ubiquitous data sources for
geospatial solutions such as for environmental monitoring,
disaster management, urban planning, indoor scanning, or
self-driving vehicles. To acquire 3D point clouds, various
technologies can be applied including airborne or terrestrial
laser scanning, mobile mapping, RGB-D cameras [Zol+18],
image matching, or multi-beam echo sounding. As universal
3D representations, 3D point clouds “can represent almost
any type of physical object, site, landscape, geographic re-
gion, or infrastructure âĂŞ at all scales and with any pre-
cision” as Richter states [Ric18], who discusses algorithms
and data structures for out-of-core processing, analyzing, and
classifying of 3D point clouds as well. Generally, 3D point
clouds allow for creating and maintaining geospatial “digital
twins”. In that respect, 3D point clouds are commonly used
as base data for reconstructing 3D models (e.g., digital ter-
rain models, virtual 3D city models, Building Information
Models), but can also be understood as 3D model, e.g., if 3D
point clouds are dense (Fig. 2).

Fig. 2 High-density 3D point cloud as digital twin of an indoor envi-
ronment.

2.2 Characteristics

A 3D point cloud represents a set of three-dimensional points
in a given coordinate system and can be characterized by:

• Uniform Representation – unstructured, unordered set
of 3D points (e.g., in an Euclidian space);
• Discrete Representation – discrete samples of shapes

without restrictions regarding topology or geometry;
• Irregularity – expose irregular spatial distribution and

varying spatial density;
• Incompleteness – due to the discrete sampling, represen-

tations are incomplete by nature.
• Ambiguity – the semantics (e.g., surface type, object

type) of a single point generally cannot be determined
without considering its neighborhood;
• Per-Point Attributes – each point can be attributed by

additional per-point data such as color or surface normal;
• Massiveness – depending on the density of the capturing

technology, 3D point clouds may consist of millions or
billions of points.

2.3 3D Point Cloud Time Series

For a growing number of applications, 3D point clouds are
taken and processed with high frequency. For example, if
a surveillance system captures its target environment every
second, a stream of 3D point clouds results.

If 3D point clouds are captured or generated at different
points in time having overlapping geospatial regions, these
sets are inherently related. By 3D point cloud time series,
we refer to a collection of 3D point clouds taken at different
points in time for a common geospatial region. The collection
of 3D point clouds represents, in a sense, a 4D point cloud.

3D point cloud time series have a high degree of re-
dundancy, which needs to be exploited to achieve efficient
management, processing, compression and storage, e.g., sep-
arating static from dynamic structures. Redundancy can also
be used to improve accuracy and robustness of 3D point
cloud interpretations and related predictions.
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2.4 Feasibility of ML-Based Approaches

The complete absence of structure, order and semantics as
well as the inherent irregularity, incompleteness, and ambigu-
ity commonly make 3D point clouds difficult candidates for
procedural and algorithmic programming. Their characteris-
tics, however, allow us to effectively apply ML to 3D point
clouds:

• Big Data – 3D point clouds are spatial big data that can
be cost-efficiently generated for almost all types of spatial
environments—big data is a prerequisite for ML-based
approaches;

• Fuzziness – 3D point clouds show inherent fuzziness and
noise as they are sampling shapes by means of discrete
representations— ML is particularly handling well fuzzy
and noise data;

• Semantics – Depending on the concrete application do-
main, semantic concepts can be defined and correspond-
ing training data can be configured.

Historically, ML and DL applications have focused on ob-
ject, text, and speech recognition, but today they are applied
for data analytics in all domains. ML-based and DL-based ap-
proaches offer enormous potential for disruptive innovations
in GIS technology. In particular, ML supports computing
domain-specific and application-specific information, typi-
cally by point classification, point cloud segmentation, object
identification, and shape reconstruction. Compared to tradi-
tional procedural-like, heuristic, or empiric-based algorithms,
ML-based techniques generally have significantly less imple-
mentation complexity and higher stability and robustness.

2.5 Naturalness Hypothesis

To understand further, why ML and DL approaches provide
effective instruments for analyzing and interpreting 3D point
clouds, we take into account the ”Naturalness Hypothesis”
known and investigated in many fields such as natural lan-
guage recognition.

In general, one key approach to ML and DL is to find
out whether a given (different) problem domain corresponds
to or has similar statistical properties as large natural lan-
guage corpora [JM00]. ML-based approaches have shown
extraordinary success in natural language recognition, nat-
ural language translation, question-answering, text mining,
text comprehension, etc. The most important finding in these
areas is that objects (e.g., spoken or written texts) are less
diverse than they initially seem: Most human expressions
(”utterances”) are much simpler, much more repetitive, and
much more predictable than the expressiveness of the lan-
guage body suggests. This phenomenon can be understood
with measures of perplexity and cross-entropy [de +05].

For example, for the domain of software engineering a
recent key finding is related to this naturalness hypothesis. It
states that the implementation of software “is a form of hu-
man communication; software corpora have similar statistical
properties to natural language corpora” [All+18], whereby
“these utterances can be very usefully modeled using modern
statistical methods” [Hin+12]. In other words: Programming
languages, in theory, are complex and expressive, but the pro-
grams that developers actually write are far less expressive,
far less complex and strongly repetitive. For that reason, the
programs show predictable statistical properties, which can
be captured in statistical language models.

3D point clouds correspond to such a form of natural
communication as all geospatial environments are ultimately
repetitive regardless of the endless variations they may ex-
hibit. In a sense, 3D point clouds are just “spatial utterances”
that can be modeled using statistical methods. 3D point
clouds, thereby, constitute 3D point cloud corpora to which
ML technology can be applied taking advantage of the statis-
tical distributional properties estimated over representative
point cloud corpora.

Following the schema for an argumentation stated for
software engineering [Hin+12], an ML-centric natural hy-
pothesis for 3D point clouds could be formulated as follows:

3D point clouds, in theory, are complex, expressive
and powerful, but the 3D point clouds actually gen-
erated are far less complex, far less expressive and
strongly repetitive. Their predictable statistical prop-
erties can be captured in statistical language models
and leveraged for geospatial data analysis.

General ML and DL approaches, however need to be
adapted to the characteristics of 3D point clouds. “Most criti-
cally, standard deep neural network models require input data
with regular structure, while point clouds are fundamentally
irregular: Point positions are continuously distributed in the
space, and any permutation of their ordering does not change
the spatial distribution.” [Wan+18]

3 ML-Based Point Cloud Interpretation

3D point clouds provide cost-efficient raw data for building
digital twins at all scales but they are purely geometric data
without any structural or semantics information about the
objects they represent. Motivated by the Naturalness Hypoth-
esis, ML can be applied to understand and recognize that
information: ML turns into a powerful technique if it comes
to discrete irregular, incomplete, and ambiguous data of a
given corpus—exactly what characterizes 3D point clouds.
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Fig. 3 3D point cloud processing: classical workflow (a) based on 3D reconstruction, 3D modeling, and object derivation; (b) ML/DL workflow
based on 3D point cloud interpretation.

3.1 Interpretation Concept

The ML-based processing of 3D point clouds is based on
the concept of interpretation known from programming lan-
guages. Analytics and semantics parsing do not require steps
that “compile” raw data into higher level representations.
To process data, for example, the PointNet neural network
“directly consumes point clouds and well respects the per-
mutation invariance of points in the input” and provides a
“unified architecture for applications ranging from object
classification, part segmentation, to scene semantic parsing”
[Qi+16a].

Applications or services that require spatial information
encoded in 3D point clouds specify the exact set of features to
be extracted and the spatial extent to be searched. The avail-
able feature types depend on how the ML and DL subsystems
have been trained before. The analysis processes the request
by triggering the evaluation to obtain the results. At no point
in time, 3D point clouds are pre-processed or pre-evaluated
nor do they require any intermediate representations, i.e., the
interpretation works on-demand on the raw point cloud data.

In Fig. 3 the classical geoprocessing workflow (a) is com-
pared to the workflow enabled by 3D point cloud interpre-
tation (b). While (a) is based on generating more and more
detailed and semantically well-defined representations, the
workflow (b) operates on raw data, extracting the demanded
features using corresponding training data. The ML/DL en-
gine supports core features such as:

• Point Classification: According to defined point cate-
gories (e.g., vegetation, built structures, water, streets)

labels are computed and attached as per-point attributes
together with the probability for this category assignment.
For example, Roveri et al. “automatically transform the
3D unordered input data into a set of useful 2D depth
images, and classify them by exploiting well-performing
image classification CNNs” [Rov+18].
• Point Cloud Segmentation: Segmentation as a core op-

eration for 3D point clouds helps removing clustering and
subdividing large point clouds. Typically it is based on
identifying 3D geometry features such as edges, planar
facets, or corners. ML and DL, in contrast, allow us to
take advantage of semantic cues and affordances found in
3D point clouds. For example, we can segment “local ge-
ometric structures by constructing a local neighborhood
graph and applying convolution-like operations on the
edges connecting neighboring pairs of points, in the spirit
of graph neural networks” [Wan+18].
• Shape Recognition: Shapes are essential for understand-

ing 3D environments. To recognize them, a combined
2D-3D approach [Sto+19a] consists of generating 2D
renderings from 3D point clouds that are evaluated by
image analysis. For this purpose, CNNs can combine “in-
formation from multiple views of a 3D shape into a single
and compact shape descriptor offering even better recog-
nition performance” [Su+15] compared to approaches
that operate directly on a 3D point cloud representation.
Large, general-purpose repositories of 3D objects, in ad-
dition, provide a solid training data base.
• Object Classification: Applications generally require

object-based information to be extracted from 3D point
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clouds, e.g., signs and poles of the street space. Based on
classified and segmented 3D point clouds, CNNs based
upon volumetric representations or CNNs based upon
multi-view representations are commonly applied to this
end; [Qi+16b] give an overview of the space of methods
available.

The non-uniform sampling density typically found in
3D point clouds represents a key challenge for ML and DL
feature learning. “Features learned in dense data may not gen-
eralize to sparsely sampled regions. Consequently, models
trained for sparse point cloud may not recognize fine-grained
local structures” [Qi+17]; Qi et al., therefore, propose a hier-
archical CNN that operates on nested partitions of an input
point set.

ML-based interpretation enables us to implement generic
analysis components for 3D point clouds. As no intermediate
representations are required, analysis results are only created
once they are requested, and they are only computed for
the specific region the application has defined. Among the
advantages of this approach are:

• Configurability: The ML/DL training data together with
feature vector definitions allow for many label types to
be predicted. For it, the generic, domain-independent
mechanism offers a high degree of configurability.

• On-Demand Computation: Downstream services allow
for on-demand computation. For many classifications,
the intepretation can be executed even in real-time (e.g.,
object detection out of point clouds for surveillance pur-
poses).

• Service-Based Computing: The approach is scalable as it
can be fully mapped to a service-oriented architecture and
scalable hardware (e.g., GPU clusters), built by lower-
level and higher-level services and mashups.

• Raw-Data Processing: Storage and handling of massive
3D point clouds, including time-variant ones, can be op-
timized independently as the interpretation only requires
fast spatial access to point cloud contents.

• Storage Efficiency: There are no pre-selected or pre-built
models or intermediate representations. The approach
therefore works well for massive or time-varying 3D
point clouds. In particular, the original precision of the
raw data is never reduced as raw data is feed directly into
the ML/DL processes.

3.2 Examples

In a joint research project, we are developing a robust, high-
performance engine for experimental ML-based geospatial
analytics. It provides features to store, manage, and visualize
massive 4D point clouds.

In Fig. 4, 3D point cloud interpretation has been used to
extract the underground infrastructure entities in the street

Fig. 4 Example of an analysis of underground structures based on
3D point clouds captured by radar combined with four trajectories of
ground penetrating radar data. The point cloud is colored with a height
gradient. Dataset from the city of Essen, Germany.

Fig. 5 Example of point classification for a typical street space scenario.
Ground, buildings, vehicles, pedestrians, and different street furniture
objects are classified with a PointNet-based approach and are visualized
by different colors.

Fig. 6 Example of object classification (based on PointNet) within a
dynamic scenario given by a time series of 3D point clouds.

space based on mobile mapping [WRD19]. The visualization
shows the extracted tubes and also detects street elements
such as manhole covers. In Fig. 5, 3D point cloud interpreta-
tion has identified and classified points according to different
categories of street space furniture.

Fig. 6 shows how time series of 3D point clouds, for
example taken during a mobile scan, can be interpreted to ex-
tract relevant objects such as street signs, vehicles, vegetation
etc.
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Fig. 7 Example of a composite classification (data by courtesy of Stadt
Hamburg). Bicycle and cyclist are segregated by DL-based classifica-
tion.

In Fig. 7, a composite classification is illustrated: The
bike and the person riding the bike are identified and then
can be combined as ’person-riding-a-bike’. High-level ab-
stractions can be built in a post-processing step or as part of
the ML/DL processes.

4 AI for Digital Spatial Twins

A key demand in digital transformation processes represent
digital twins, i.e., digital representations that reflect form,
structure, relations, and state of real-world objects [El 18].
3D point clouds represent raw data of geospatial entities in a
well-defined, consistent, and simple way, in particular, for spa-
tial environments such as indoor spaces [Sto+19b], building
information models, and cities. The reconstruction of digital
twins based on explicitly defined 3D model schemata is a no-
toriously cumbersome and error-prone process (e.g., virtual
3D city models with high level of detail such as CityGML
LOD3 or LOD4 [Löw+16]) as the 3D models have a strict
scope of expressiveness. Whether we apply strong mathemat-
ics or fine-tuned heuristics, a reconstructed 3D model almost
always lacks details and it can hardly mirror weakly sampled,
unusual, or fuzzy entities.

ML-based interpretation can both efficiently and effec-
tively, analyze and organize 3D point clouds without being
restricted by explicitly defined modeling schemata. Above
all, it flexibly generates semantics on-demand and on-the-fly,
that is, it helps “healing” one of the biggest weaknesses of
3D point clouds—the lack of structure and semantics. There
is virtually no limitation for the specific types of 3D objects,

Fig. 8 The higher the degree of modeling, the less of the original
raw data is preserved as more and more assumptions and abstraction
are introduced. Hence, data details disappear and less general-purpose
models result.

structures, or phenomena that can be identified and extracted
by ML-based 3D point cloud interpretation.

In addition, ML-based interpretation operates on the raw
geospatial data, i.e., it retains a high degree of originality,
while using only a moderate degree of explicit modeling for
extracted features (Fig. 8). This, on the one hand, simplifies
management and storage, in particular, if it comes to time
series. On the other hand, it helps identifying and classifying
ambiguous or fuzzy entities as need, for example, to robustly
and automatically build spatial digital twins.

5 Conclusions

AI is radically changing programming paradigms and soft-
ware solutions in all application domains. In the geospatial
domain, the data characteristics are particularly suitable for
ML and DL approaches as geodata fits into the concept of
a “linguistic corpus” as sketched in the context of the nat-
uralness hypothesis. ML-based analysis and extraction of
features out of 3D point clouds, for example, can be used to
supply application-specific, domain-specific and task-specific
semantics.

Above all, ML-based interpretation of 3D point clouds
enables us to transcend explicit geospatial modeling and,
therefore, to overcome complex, heuristics-based reconstruc-
tions and model-based abstractions. Insofar, AI technology
can be used to simplify and accelerate workflows for geodata
processing and geoinformation systems. Of course, crucial
ML-related challenges result from the demand for effective
training data and efficient feature representations.

Last but not least, AI-based solutions offer drastic sim-
plifications in the dimension of software engineering. Large
parts of today’s implementations (often historically grown
with large amounts of so called technical debts) will be re-
placed by ML and DL “black box” subsystems, which have
far less management and software development complexity.
In particular, most heuristics-based, explicitly programmed
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analysis routines, which tend to be difficult to parameterize,
can be migrated this way. ML-based approaches, in the long
run, will “eat up” most of today’s explicitly programmed GIS
implementations.
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