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Abstract Mobile expressive rendering gained increas-
ing popularity among users seeking casual creativity by

image stylization and supports the development of mo-
bile artists as a new user group. In particular, neural
style transfer has advanced as a core technology to em-

ulate characteristics of manifold artistic styles. How-
ever, when it comes to creative expression, the technol-
ogy still faces inherent limitations in providing low-level
controls for localized image stylization. In this work, we

first propose a problem characterization of interactive
style transfer representing a trade-off between visual
quality, run-time performance, and user control. We

then present MaeSTrO, a mobile app for orchestration
of neural style transfer techniques using iterative, multi-
style generative and adaptive neural networks that can

be locally controlled by on-screen painting metaphors.
At this, we enhance state-of-the-art neural style trans-
fer techniques by mask-based loss-terms that can be
interactively parameterized by a generalized user inter-

face to facilitate a creative and localized editing process.
We report on two usability studies and one online sur-
vey that demonstrate the ability of our app to transfer
styles at improved semantic plausibility.
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1 Introduction

Mobile expressive rendering has become a core technol-
ogy amongst users that seek casual creativity by image
stylization [8,45] and is continuously supporting the de-

velopment of mobile artists as a new user group [18]. Im-
age filtering, in particular, takes an essential part of the
mobile photo sharing success [3], since filtered photos

are more likely to be viewed and commented on by con-
sumers [2]. Image filters are typically implemented by a
feature-level engineering approach that provide casual
users and mobile artists with high-level and low-level

interactive control over the stylization process [15, 35],
but also limiting it to prescribed stylization effects [19].

A more generalized approach has been introduced

by the architecture engineering approach of deep learn-
ing, which activates layers of deep convolutional neural
networks (CNNs) [39] to match content and style statis-

tics, and thus perform a neural style transfer (NST) be-
tween arbitrary images [10]. This way, it is able to em-
ulate characteristics of manifold artistic styles and me-

dia without deep prior knowledge of photo processing
or editing, which is practically demonstrated by mobile
applications such as Prisma and PicsArt. However, in
the mobile domain, the technology provided by software
products still faces inherent limitations in providing
low-level controls for localized image stylization [36]—
in contrast to image filtering—e. g., with respect to im-
age feature semantics for meaningful abstraction [7] and
support of visual interest [32].

The goal of this work is to enhance state-of-the-art
adaptive NST techniques, thereby providing a general-
ized user interface with creativity tool support [38] to
facilitate interactive editing [15, 33] on mobile devices
via lower-level local control (Figure 1). At this, we make
the following contributions:
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Fig. 1: Comparison of neural style transfer techniques implemented in our app MaeSTrO. Interactive location-
based filtering is used to stylize the content image, using extensions to global style transfer techniques to provide
more expressive results. Content image© karamysh on shutterstock.com, used with permission. The style image
by Vincent van Gogh is in the public domain.

1. We provide a problem characterization with user re-
quirements that are mapped to five functional and
non-functional requirements for mobile NST.

2. We present MaeSTrO, a mobile app for orchestra-
tion of three neural style transfer techniques that
can be locally controlled by on-screen painting us-

ing image masking.
3. We report on two usability studies that show lev-

els of satisfaction reached for the implemented tech-

niques and interactive tools.
4. We propose a mask-based loss-term for semantically-

plausible feed-forward style transfer and validate in
an online survey its ability to capture artistic styles.

This article is an extended version of our previ-

ous paper [29], published at Cyberworlds 2018. As in
the original paper, we first provide a background on
the problem domain and user requirements that are
mapped to functional/non-functional requirements (Sec-

tion 2). We then give an overview of related work on
mobile and controllable style transfer (Section 3). In
Section 4, we provide technical details on locally con-
trollable NSTs, with an extended section on direct sub-
style matching for semantic learning. We then substan-
tially extend this work by an evaluation section that

reports on two qualitative usability studies and one on-
line survey (Section 5). Finally, we conclude this paper
and outline opportunities for future work (Section 6).

2 Background

The introduction of mobile expressive rendering had a
relevant share in the development of a new user group
that discovered the creation of art to be fascinating: mo-

bile artists. Their artistic expression is defined through
a constant production and discussion of creative im-
agery, without restriction to a certain skill level or age.
As serious hobbyists they are always interested in new
ways to express their creativity.

We differentiate mobile artists into two groups: Ei-
ther they start with a blank canvas and their own ideas
using low-level drawing or painting techniques, or they
use a photograph as input for image processing, e. g.,
by using the algorithmic support of techniques such as
image filtering or example-based rendering via NSTs.

We identified the second sub-group as the main target
group for MaeStrO since they are often early adopters,
i. e., they are eager to try new technologies and con-
cepts. To learn more about their requirements, secondary

market research, task analysis, user surveys and inter-
views have been conducted to help design an interactive
prototype that fosters creativity, increases productiv-

ity and establishes a high user satisfaction when using
effects based on NST. Current challenges include the
limitation of styles offered in a single app and missing
global/local control over an output image, making the

usage of such styles unattractive for artists.

User requirements. Table 1 summarizes identified user
requirements, i. e., tasks that a system needs to sup-

port and the functionalities that need to be provided
to complete them. Most of these requirements ground
on the need of interactive tools required for art direction
[13,31], in particular to widen the interaction spectrum
as Isenberg [15] calls for. One of the most important
requirements of mobile artists is the easy exploration
of tools and effects. This includes a self-explanatory in-
terface that enables users to quickly evaluate features,
but also a fast image generation process that allows for
interactive frame rates (12 frames-per-second or more).
Furthermore, versatile effect presets as well as the pos-
sibility to combine different styles facilitate the devel-
opment of new ideas. As a limited number of effects
also limits creative expression and does not necessarily

match a user’s stylistic intentions, new ways to explore
styles are necessary, e. g., the possibility to define own
styles through means of experimentation. Beyond that,
artistic control of a style and its parameters allows for
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Table 1: Overview of user requirements mapped to func-
tional and non-functional requirements of NSTs.

User Requirement SGS STS STQ UC GMS
Easy exploration of tools and effects × ×
Versatile effects or effect presets × × × ×
Possibility to define own styles × × × ×
Artistic control of a style/parameters × ×
High resolution output ×

creative expression by customizing and therefore per-
sonalizing results. To also generate unique results, users
want to control the stylistic rendering by modifying the
configuration parameters locally and globally, and by
adjusting the visibility, e. g., through blending options.
Because post-processing the results with other mobile
apps is a common practice, a high resolution output is
essential for keeping up a high-quality photo editing
pipeline.

Functional and Non-Functional Requirements. We de-

fined five functional and non-functional requirements of
the used NST techniques to meet the expectations and
requirements of the target group. The Style Generation

Speed (SGS) defines the overall time that is needed to
configure a neural network based on a style image and a
content image in order to generate an output image via
style transfer. The Style Transfer Speed (STS) defines

the overall time to apply a pre-trained style to a content
image to generate a final output image. Style Transfer
Quality (STQ) relates to filtering that considers picto-

rial semiotics [30, 36], in particular the visual quality
with respect to color and features bound to semantics.
In the following, we refer to semantic plausibility as
the fidelity of a NST to stylize image feature classes

(e. g., vegetation, buildings, people) in the same spirit
as the original artwork. User Control (UC) defines the
possibility to alter the stylized output globally or locally
by modifying how the style image is used for processing.
Finally, GPU-Memory Consumption (GMS) describes
the required memory of the Graphics Processing Unit
(GPU). A higher consumption may technically hinder
the application of a NST on mobile devices.

3 Related Work

In the following, we give an overview on NST tech-
niques, approaches for their interactive control and their
application in the mobile domain. For comprehensive
technical overviews we refer to the work by Jing et
al. [16] and Semmo et al. [36].

3.1 Neural Style Transfer

Technical Approaches. Neural style transfer was first
proposed by Gatys et al. [10], who matched global fea-
ture statistics in the layers of a deep CNN using Gram
matrices, but which is based on a slow and offline opti-
mization process. Several improvements have been pro-
posed to this method since then, e. g., Li and Wand [20]
introduced a patch-based approach also operating on
CNN layer outputs to transfer the style more truthfully.
To enable interactive performance, Johnson et al. [17]
and Ulyanov et al. [43] trained feed-forward neural net-
works to directly minimize the same loss as the opti-
mization approach. These networks, however, compro-
mise in flexibility as they are pre-trained with respect
to a single style. This problem has been further ad-
dressed by custom network layers to match multiple
styles: Dumoulin et al. [9] use a conditional layer for in-
stance normalization, Li et al. [21] use a network with
style selection units, and Zhang and Dana [46] embed a

CoMatch layer to match second order statistics. These
networks can match tens to several hundred styles. Re-
cently, these approaches have then been further ex-

tended to arbitrary styles by determining affine param-
eters for the instance normalization layers at runtime.
In particular, Huang and Belongie [14] compute these
parameters directly from the style image in an adaptive

instance normalization layer, while Ghiasi et al. [12]
use a secondary network to predict them. For Mae-
STrO we seeked to implement techniques with com-

plementary strengths and weaknesses, thus choosing
an optimization-based style transfer [10], a multi-style
feed-forward network [46] and an adaptive network [14].
With respect to latter, the approach of Ghiasi et al. [12]

may produce results of superior quality but is found to
use networks that are too large for a practical usage on
mobile devices.

Controllable Neural Style Transfer. Several works pro-
posed methods to improve global and local control over
NSTs. Champandard [5] demonstrates the feasibility of
a semantic style transfer by using image masks to spa-
tially direct the style application during patch-based
transfer [20], an approach that Gatys et al. [11] and
Luan et al. [27] similarly used for providing style and
content masks for a Gram-matrix based optimization.
Gatys et al. [11] also explored controlling the scale of
applied styles, where fine details of a style are sepa-
rated from coarse structures. While all mentioned meth-

ods are developed for iterative NSTs, many are also
applicable to feed-forward NSTs. For instance, Zhang
and Dana [46] demonstrate a brush size control for
their networks, Huang and Belongie [14] and Gatys
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Fig. 2: Subjective comparison of evaluated NST techniques regarding their functional and non-functional require-
ments (1: worst performance, 5: best performance). Extending existing NST techniques (grey polygon) to facilitate
user control over the output leads to higher GPU-memory consumption and a slowed down performance (proposed
enhancements: blue polygon).

et al. [11] show localized stylization control, and Liu
et al. [25] use depth information while Li et al. [22]
use style/content ratio for control of their respective
adaptive feed-forward networks. For MaeSTrO we fol-
low Luan et al. [27] for mask-based style guides us-
ing iterative NSTs and the approach of Huang and

Belongie [14] using adaptive NSTs. Further, we train
multi-style feed-forward networks with brush size con-
trol [14]. At this, we contribute a loss term for mask-

guided transfer in multi-style networks and solve tran-
sitions between styles by feature-space blending.

3.2 Mobile Applications

Several mobile apps that utilize NSTs have been created
and published on app stores (e. g., for iOS, Android).
One of the first apps was Dreamscope, which uses an

iterative NST approach in a client-server environment,
i. e., where a server performs the style transfer. A simi-
lar functionality has been implemented by deepart. io

as a web-based application. Both applications allow to
define custom styles via style images, but may require
multiple minutes/hours for processing.

Feed-forward NSTs were able to tremendously cut
down the processing time [17]. In particular, the filter-
ing app Prisma was one of the first that successfully
used the approach, attracting 30 million users in two
months. In its first version, Prisma also implemented a
client-server-approach, but then opted for an on-device
solution for powerful mobile graphics hardware. With

the availability of public GPU-based frameworks for ex-
ecuting neural networks (e. g., CoreML), it is even feasi-
ble to apply mobile feed-forward NSTs in sub-seconds.
Popular examples are Whisky16 and Pictory [37] to
interactively apply styles to content images, and Deep-
StyleCam [40] to transfer multiple styles in real-time.

However, none of the mentioned apps enable local-
ized control over the style transfer. As a first global

control, image-based post processing has been used to
define how the stylized output is blended with the con-
tent image (e. g., used in Painnt). We follow this idea
using mask-based painting as an additional constraint
for style transfer. The approach is generalized to en-
able to choose between a quality-based or performance-

oriented NST, which we exemplify for the implemented
iterative, feed-forward and adaptive techniques.

4 MaeSTrO

In this section, we first outline a problem character-
ization with respect to providing interactive tools for
parameterizing NSTs, and then propose technical en-
hancements to state-of-the-art NST techniques that in-

clude mask-based loss terms to enable local control.

4.1 Problem Characterization and User Interface

To implement spatial control over the style transfer, the
training or configuration of the network can be limited
to user-defined regions of the style and content image,
as proposed by Luan et al. [27] or Gatys et al. [11]. For
MaeSTrO we adapted these approaches for all three
network types and re-evaluated the most flexible ap-
proaches by subjective comparison (Figure 2). Com-
pared to the inflexible approaches, we were able to in-

crease the style transfer quality (Figure 4 and supple-
mental materials) while causing a higher consumption
of GPU memory (GM), which can be crucial due to the
limited memory of mobile devices. In addition, the per-
formance initially slowed down significantly (by factor
2-5, depending on the number of sub-styles), hindering
an interactive style transfer. Thus, approaches for in-
teractive modifications with a deferred transfer using
multi-style feed-forward and adaptive NSTs are pro-
posed, together with a server-sided iterative NST to

also synthesize high-quality artistic renditions.
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Fig. 3: Overview of important screens in MaeSTrO.
Left : Selection of the NST technique. Middle: Locally
applying (sub-)styles to a content image with mask pre-
view. Right : Editing color-encoded sub-style masks for
the adaptive NST. Content image © Rick Barrett on
Unsplash.com, used with permission.

Besides the described technical challenges, the in-
creased conceptual complexity has an extensive impact
on usability engineering aspects. Giving local control

during style application requires new interaction con-
cepts to achieve a high degree of usability within the
system. For the first prototype of MaeSTrO, we based

our design choices on goals like a high learnability of
the system and the reduction of error sources, without
losing focus on the user requirements of Section 2.

While working on a content image, users gain artis-
tic control by applying multiple styles locally with their
finger. We considered three potential approaches to of-

fer them different kinds of styles: (1) Enable users to
define and use style brushes, i. e., one style brush is de-
fined through one style image; (2) The usage of detail-
controlled style brushes, i. e., applying a style brush

with more or less style details through different ab-
straction levels of the style image; (3) The definition
and usage of sub-style brushes. In contrast to (1), one

sub-style brush is defined only through a precisely de-
fined part of a style image.

In our first iOS prototype of MaeSTrO, we decided
to focus on (3), since this approach addresses the most
complex challenges that need to be solved to clearly
communicate functionalities to end users. These include:
(a) how to define sub-style brushes as a user, (b) how to
visualize pre-defined and user-defined sub-style brushes
of a style image and (c) how to apply different sub-style
brushes to a content image. Relevant screens of our pro-

totype are shown in Figure 3.

4.2 Iterative Neural Style Transfer

We adapt the iterative NST of Gatys et al. [10], which
defines style transfer as the optimization problem of

finding a stylized target image t, whose content is simi-
lar to a content image c and whose style is similar to a
style image s. At this, a content loss Lc and a style loss
Ls are minimized using the Gram matrix over activa-
tions in a deep neural network. We refer to [10] for for-
mal definitions of the loss terms and optimization. The
used Gram matrix sums over the height and width, thus
the location of individual features in the style image is
lost in the result, and a global texture is transferred.

4.2.1 Spatial control and brush size control

Location-based control over NSTs can be achieved by
segmenting the style and content image into different
local control masks, as described in [27]. The content
image is commonly segmented along semantic borders,
while masks in the style image are typically chosen to
seperate different textures, colors or shapes. To this
end, the style loss term is adjusted to include masks:

Ll
s+(t) =

C∑
m=1

‖ 1

Al,m(t)
Gl,m(t)− 1

Al,m(s)
Gl,m(s)‖2F (1)

Gl,m(t) = R
(
φl(t)M l

m(t)
)
R
(
φl(t)M l

m(t)
)T

(2)

where C is the number of style and content masks,

Gl,m(t) is the Gram matrix of the target for layer l and
mask number m, R is a feature vectorization operation
and M l

m(t) is the content mask m downsampled to the

feature map spatial size at layer l, whereas Gl,m(s) con-
versely yields the Gram matrix for the respective style
mask. The area of the masks Al,m is used to normalize

magnitude differences in the Gram matrices and reduce
intensity artifacts.

In MaeSTrO, content masks are either drawn by
hand or generated by fully convolutional networks for
semantic segmentation (FCN) [26]. The generated masks
are grouped by their labels into several pre-defined groups
based on textural and semantic similarities. The same
FCN is then used as a feature extractor φ(t) to im-

prove matching between mask and image and to reduce
overall memory consumption. The style masks are also
drawn by hand and brush size control is achieved by
varying the size of the style image with the NST [10].

4.3 Feed-forward Neural Style Transfer

The iterative, spatially controllable approach has a long
computation time even for low-resolution images. To

speed up the transfer procedure, a feed-forward con-
volutional neural network, termed the style transfer
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(a) Input and style mapping (b) Without Lmask(t) (c) With Lmask(t)

Fig. 4: Using the mask loss term Lmask(t) to regularize the decoder for spatially varying styles: (b) without masked
loss, where dominant style elements (e. g., black mosaic lines) are transferred to differently labeled regions, (c) with
masked loss, which strictly adheres to the painted style labeling. Content image© Joshua Earle on Unsplash.com,
used with permission.

network, can be trained to learn a direct transforma-
tion from content to pastiche [17]. To provide smoothly
blended sub-styles, we propose the use of networks ca-

pable of capturing multiple styles—instead of training
multiple networks—, such as the multi-style generative
network (MSG-Net) proposed by Zhang and Dana [46],
who reduce training time and storage space for multiple

styles and enable style blending in feature space.

4.3.1 Multi-Style NSTs

The MSG-Net [46] learns a generator network G(c, s)

that takes both the content and the style targets as in-
puts, and computes the style Gram matrix at run-time.
The main difference to previous work is the introduc-

tion of a “CoMatch” layer, which matches second order
feature statistics based on the given styles and is able to
adapt the output to a set of trainable styles. This layer
consists of a learnable weight matrix W , which tunes

the content feature map φl(c) based on the target style:

φ̂l(c) = R−1
[
R(φl(c))TWG(φl(s))

]T
(3)

The weight matrix W learns to strike a balance between
the style and content loss for a particular style.

4.3.2 Feature-space mask merging

Similar to [6], we combine different styles in the feature-
space, rather than the image-space to prevent artifacts
at mask contours and speed up model inference. The
MSG network conceptually consists of an encoder part,
which is a siamese network used for feature extraction
of both content and style image, a transformer part,

which carries out the style transformation, and a de-
coder, which is an upsampling convolutional layer to

the output image. Training the network in prior works is
done without requirements for spatial control, the net-
work is thus optimized towards producing global styles.
Using input features with spatially varying styles in

the decoder can lead to local image artifacts and cer-
tain style elements appearing in differently labeled ar-
eas (Figure 4b). We add an additional reguralization

term to Ltotal(t) to diminish this effect (Figure 4c), by
adding the mean squared error between outputs masked
in feature space and outputs masked in image space:

Lmask(t) =
∥∥D[∑

s∈S
T (t, s)Ms

]
−
∑
s∈S

G(t, s)Ms

∥∥2
F
, (4)

where T is the generator network up to the decoder D,
G(t, s) = D(T (t, s)) is the complete generator network,
and Ms the mask for style s. The loss Lmask(t) is added

in the last epoch of training, as it is a fine-tuning op-
eration on the decoder network and is computationally
more expensive than the other loss terms. To prevent
spatial mask-mapping from affecting the encoding and
transformation part of the network, the rest of the net-
work is kept fixed during training.

4.3.3 Network learning

We follow the procedure and parameters described by
Zhang and Dana [46] and train networks using either 64
or 128 generator channels on MS-Coco [24] (8 epochs,
batch size 4). The style is switched every three iter-
ations and the style size is cycled through the sizes
{256,512,768} for brush size learning. In the final epoch,

the masked loss Lmask(t) is added to the total loss term
Ltotal and trained using batch size 1 on COCO-Stuff [4],
a dataset containing dense segmentation masks, cate-
gorizing different “stuff” classes, for classification along
material boundaries instead of objects. We group these
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(a) content (b) sub-styles (c) no matching (d) mask matching

Fig. 5: Networks trained with Lmask(t) to learn a semantic mapping between sub-styles and semantic regions.
Content image© karamysh on shutterstock.com, used with permission.

masks to the predefined labels and match them accord-
ing to strategies described in Section 4.3.4.

4.3.4 Learning semantic mappings

Different matching strategies between style and con-
tent masks with Lmask(t) during training can have a
significant impact on the learned style representations.

Style masks are either matched to content masks with
a certain label, or to random masks of any class. In the
first case, sub-styles are given explicitly mapped to a se-
mantic by manually assigning classes to sub-styles and

only matching them with the corresponding masks in
the content images, e. g., a sub-style labeled “sky” will
only be learned on regions labeled as sky in the training

dataset. By contrast, randomly matching content masks
with styles makes no assumption about the semantic
meaning of a style, and is desirable for general-purpose
stylization tooling, where regions can be depicted with

arbitrary styles.

Semantically trained networks can have superior re-
sults for styles with a clear semantic mapping and can
be used to enhance existing global NST methods by
transferring segments of a style to a content image in

a meaningful way, as shown in Figure 5. Although the
same training losses are used for learning semantic map-
pings as for training with mask regularization for arti-
fact reduction (Section 4.3.2), there are several differ-
ences in the training routine. When training with se-
mantic mappings, Lmask(t) regularization is disabled
only in the first epoch, and then used in the follow-
ing epochs to learn the classification of different seman-
tic concepts. In contrast to random mask mapping, the
weights of encoder and stylization layers are not fixed
during weight updates, to learn semantic classification
in lower layers. The CoMatch-layer style Gram matrix
G(φl(s)) is fixed to the global style Gram matrix af-

ter learning the sub-styles in the first epoch, as user
control is replaced by an automatic classification. Com-

Fig. 6: Direct, class-based losses can improve structural

matching over globally pretrained sub-styles that are
matched using Lmask(t). Input and stylization results
are crops from larger images.

pared to other automatic semantic NSTs, e. g. [23, 47],
the transfer is performed in a single feed-forward pass
and therefore does not include any runtime overhead.

4.3.5 Direct sub-style matching for semantic learning

One drawback of using the mask regularization for se-
mantic training is that sub-styles are first trained glob-
ally, where the mask regularization spatially constrains
the learned sub-style to certain semantic concepts there-

after. However, the applied stylization is still derived
from the global representation. To this end, the learned
representation of the sub style globally matches the
sub-style’s Gram matrix, however it does not necessar-
ily create images in which the stylization of individ-
ual objects—corresponding to the learned semantics—
matches the Gram matrices of their sub-style counter-
parts. Put differently, a local sub-style Gram matrix
is learned on a global level and then applied to local
objects, thus a direct structural matching between in-

dividual content masks and sub-styles does not take
place during training.
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This does not pose a problem for sub styles that
are applied to rather large and diverse regions (e. g.sky,
ground, mountain; see Figure 5) and thus do not need
to establish a object-level structure matching. However,
for styles that require an exact structural correspon-
dence, such as matching the cypress tree in van Gogh’s
The Starry Night to trees in the content image, this
training approach can lead to less convincing transfer
results. In this case, the training losses can be aug-
mented by using the loss formulation for spatial control
of iterative style transfer (Equation 1), thereby estab-
lishing a direct mapping between sub styles and the
semantic concept (Figure 6). This approach is suitable
for styles with an unambiguous mapping of style image
features to content, such as when transferring a portrait
artwork to a portrait image with similar content. In Sec-
tion 5, we report on a survey which was conducted to
compare images generated using learned semantic map-
pings and images generated using a global stylization.

4.4 Adaptive Neural Style Transfer

Although MSG-Net can learn a large amount of styles,
the computational burden for training new styles is still
high and therefore does not permit end users to add cus-
tom styles. A recent work by Huang and Belongie [14]

introduces a method to perform a NST on arbitrary,
new styles by using an encoder-decoder network con-
taining an adaptive instance normalization layer in the

middle. The authors use the insight that instance nor-
malization performs a normalization of feature statis-
tics to a certain style using a small set of affine pa-
rameters (scale and shift) [44]. They propose an adap-

tive instance normalization layer, that directly com-
putes these parameters from the first order style feature
statistics, i. e., the mean µ and standard deviation σ:

AdaIN(c) = σ[φ(s)]
(φ(c)− µ[φ(c)]

σ[φ(c)]

)
+ µ[φ(s)] (5)

where φ(s) are the style features and φ(c) the content
features. After normalizing the feature maps to the se-
lected style using AdaIn, the decoder transforms the
features into the stylized output image. The decoder is
trained on a large number of content/style image pairs
and learns to reproduce images with arbitrary styles
from the style-normalized features.

4.4.1 Spatial control and brush size control

To adapt this method to spatial style control, the AdaIn
normalization of the input to different styles is per-
formed and then jointly decoded [14]. The decoder, al-
though learned on homogeneous inputs, generalizes to

inputs of regions with different styles. Both the features
of the style and the AdaIn feature statistics are com-
puted for each local-control mask at run-time. Normal-
ization to the masked area, similar to the iterative ap-
proach, is not required because mean and variance are
locally independent. Brush size control can be achieved
by varying the size of the style image input to the en-
coder, similar to the MSG-Net method, but without
needing extra training.

4.5 Implementation

Our implementation consists of three components: (1) A
PyTorch implementation of the MSG model training
and style control operations, (2) an implementation tar-
geted to mobile Apple devices based on iOS and CoreML
for on-device image processing and (3) a server-based
PyTorch implementation of the iterative approach. We
extended CoreML layers for the CoMatch layer of the

MSG network and the AdaIn layer of the adaptive net-
work, for which we provide a CPU-based and a GPU-
based implementation using Metal shaders. The MSG

CoMatch layer in the formulation of Equation 3 requires
the style features and their Gram matrices to be dynam-
ically computed, but which are compute-intensive op-

erations. We thus optimized the performance of the on-

device stylization by pre-computing Ŵ =
[
WG(φl(s))

]T
off-device and then computing the CoMatch layer out-
put on-device as φ̂l(c) = R−1

[
ŴR(φ(c))

]
. The reshape

operation R only reinterprets the memory layout, thus
only one on-device matrix multiplication is required
for this layer. The performance of the adaptive style
transfer network is optimized by caching the computed
content and style features (labeled AdaIn-reuse in Fig-
ure 7), thus only requiring to re-compute feature means
and variances of selected image regions on mask changes.
Applying n brushes to one image requires n fast adap-
tive InstanceNorm operations to tune the features to
different styles, and one compute-intensive decoder pass.

5 Evaluation

In this section, first outline case studies of the imple-
mented techniques and compare their performance with

respect to the requirements discussed in Section 2. Be-
cause MaeSTrO targets end users, we also report on
two usability studies with the aim to improve user in-
teraction, and one online survey that compares global
stylizations and learned semantic mappings.
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Fig. 7: Performance of the implemented techniques (feed-forward NST / iPad Pro 10.5”, iterative NST / NVidia®

GTX-1080TI). The time for the adaptive method was measured with and without re-using content/style features.

5.1 Case Studies

The comparisons in Figure 8 indicate that the NST
techniques yield visually different outputs. In particu-
lar, the approach of Gatys et al. [10] and the adaptive
approach of Huang et al. [14] largely fail to transfer

color features. By contrast, our enhancements enable
local control over the NST, which facilitates the imple-
mentation of a semantic mapping of a style image to a

content image, i. e., currently by explicit manual label-
ing of image regions—as an enhancement this could also
be performed using GIST descriptors [41,42]. This leads
to a more plausible transfer of texture and color features

for the iterative and feed-forward approach. Although
the adaptive approach generally lacks to produce re-
sults with a striking texture transfer, a clear separation

between the different sub-styles could be achieved.

Our approaches have in common that sub-styles are
mapped to masked areas of the content image. This
enables different application scenarios ranging from a

semantics-based, over a separated fore- and background
to a completely free stylization. Although the mask cre-
ation process can be automated, we find that the man-
ual approach yields better results (Figure 8). This is
especially true for regions with sparse color or texture
features, which may lead to miss-segmentations. Nev-
ertheless, an automatic segmentation can be useful as
a starting point for casual users, since it eases the re-
finement of the masks.

5.2 Performance

The performance results in Figure 7 show that increas-

ing the number of applied styles has an almost equal
effect on all implemented NST techniques. While AdaIn
is sligthly slower than MSG-64 when computed on new
content and style images, the extracted features and
style statistics are reused in both methods in Mae-

STrO. However, the AdaIn method has the encoder as
most compute-intensive component, which is applied
only once. By contrast, the MSG network spends most
of its run-time on the style transformation, which is
applied per sub-style. Subsequent AdaIn stylizations
of the same content/style combination (adaIn-reuse in

Figure 7) are thus considerably faster than the corre-
sponding MSG stylization. The MSG-128 network has
a significant performance degradation over the other

feed-forward methods, however it also offers, by empir-
ical analysis, the best image quality and can store vastly
more styles than MSG-64.

Increasing the image size is strongly limited by the
GPU memory, where sizes of 12002 pixels push the
limits of available memory on modern mobile devices

(typically around 2-4GB) and, for the iterative method,
available memory on high-end desktop GPUs (typically
8-16GB). Producing very high-resolution images is there-

fore not possible with the given tools and would re-
quire either new, smaller network architectures, or im-
age tiling procedures.

5.3 User Control

MaeSTrO gives users the possibility to define sub-styles
based on a style image. Sub-styles define specific ele-
ments within a style image, e.g. sky, buildings, or hair.

They are important to transfer the style to a content
image in a semantically correct manner. We argue that
users want to transfer a style semantically correct, i. e.,
they are interested to stylize a specific element of their
content image similar to a comparable element in the
style image. Therefore, users would also want to define
sub-styles with regards to content elements, e. g., define
one sub-style for the sky and one for buildings, instead
of a fixed, given definition. To this end, we conducted
two usability studies to evaluate and improve our app,
and gain qualitative feedback from users.
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separations between image regions. Content images© Matthew Fournier and Henrique Ferreira on Unsplash.com,

used with permission.

5.3.1 Initial User Study

Our first study aimed to get early insights about us-
ability flaws and was performed on a slightly modified
version of our internal research prototype (Figure 3).
Users could work with a given content image and apply
styles of different artworks, e. g., “The Starry Night”
by Vincent van Gogh. When selecting a piece of art,
its style is applied globally to the content image, while
allowing to edit the stylized content image locally with
sub-style brushes afterwards. In this version, we used
color masks to define sub-styles of a style image, and to
map a defined sub-style locally to a content image (as
shown in Figure 3).

When defining sub-styles, users would open a style
image and be able to select between five colors. As an
example, using blue, users would define the sub-style
for the sky by drawing with their finger, applying a
blue color to that region to compose a style mask. At
a later point, when applying sub-styles to a content

image, users would select the color blue and draw on
the sky of their content image to map the style, creating
the content mask.

Hypothesis. We hypothesized that there is no difference

in the time required to understand the concept of color
masking whether the user first defined a mask for sub-
styles of a style image or applied a predefined mask to
a given content image.

Participants. We exposed three participants to the def-
inition of sub-styles first (group 1), and three other par-
ticipants to the sub-style application first (group 2). All
six participants were using the research prototype on

an Apple iPad Pro 12.9” (1st generation). The partic-
ipants (5 male, 1 female) were mainly casual users of
photo apps, between 16 and 37 years old, had mixed
experiences with photo manipulation apps and no ex-
perience with MaeSTrO.
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Experimental design. We explained the main purpose
of the app and asked the participants to perform dif-
ferent tasks to reach a specific goal. Group 1 started
with the sub-style definition process right away, where
a style image was already selected. They were asked to
define at least two sub-styles (using adaptive NSTs).
Group 2 started with a given content image that was
not stylized yet. The style selection for multi-style feed-
forward NSTs had already been opened for them. They
received tasks to “stylize the image with van Gogh’s
Starry Night”, to “edit the stylized image”, and, looking
at a picture that was not transformed semantically cor-
rect, to “replace the yellow lawn with something more
adequate” using pre-defined sub-styles. All participants
filled out a short survey afterwards.

Results. We were not able to accept or reject the hy-
pothesis, since the user interface and the usability ex-
hibited several major flaws. Although, all six partici-
pants were convinced that the local control improved
the overall style quality, we could observe several chal-

lenges when learning the functionalities of the app and
utilizing them for their purposes. In the following, we
are outlining the major challenges. First, the global ap-
plication of a style onto a content image caused mislead-

ing expectations and hindered the creation of content
masks. Two users expected that the app would auto-
matically create content masks based on the seman-

tics used within the style masks. Other speculations
included that the app would give recommendations for
the application of pre-defined sub-styles to sub-regions

of the content image. The majority of testers (five out
of six) also missed a direct comparison between the
globally stylized image and the image with their local
changes. Four would have preferred to work directly on
the original content image. Second, the mapping of sub-
styles through colors has been misleading when working
with images, as it would directly lead to the idea of “col-

orizing the picture”. It was the main reason why none
of the test users, neither from group 1 or 2, were able
to complete all of their given tasks within a reasonable
amount of time i. e.within 10 minutes. As a potential
help for group 2, we integrated a small view with the
style image and the style mask into the edit screen. The
issue of mapping style and content masks overlaps with

a third challenge: the fast exploration of local changes
in a content image. When editing a content image, users
were able to view the content mask, showing the applied
colors, or a low-resolution preview with insights about
the expected results. Four out of six users preferred the
preview, but switched up to 8 times per minute between
the views to produce satisfying results. They used the
content mask to make sure they did not miss to mask

any parts of an edited region, and switched back to the
preview to make relevant changes on their artwork.

5.3.2 Follow-up User Study

The feedback we gained from the first user study was
used to redesign the app (as shown in Figure 9). We
identified the mapping of style and content masks through
colors as the main issue. Therefore we exchanged the
mapping with something more self-explanatory, while
keeping the colors to create a mask. For other observed
issues, the participants of the second usability study
should also represent a control group for our first tests.

For the definition of sub-styles, we added a table
as an overview that opens first (Figure 9). Each row
represents one sub-style, showing the style image and
the sub-style as highlighted part of this image. Users
would edit a sub-style by tapping on it, or create a new
one by tapping the plus. We kept the color to indicate
the mask area that has been drawn with a finger. Since
the color is not used for later mapping purposes and

to reduce the user’s workload, the system chooses the
color by itself.

For the sub-style application, we also separated the
sub-style selection from the editing view, forcing users
to actively open the sub-style overview to select another
one. If users want to edit their stylized content image,

the first available sub-style is already selected. Its name
and preview—globally applied to the content image—
are shown in the toolbox at the bottom of the screen.

A tap onto it is necessary to navigate to the overall
selection.

Hypothesis. We hypothesized that (1) the user interface
changes increase the learnability and, thus, (2) decrease
the task completion time.

Participants. We acquired six different participants (3
male, 3 female), grouped again by the experimental con-
ditions. Group 1 started with the sub-style definition,
group 2 with the sub-style application. The participants
were between 17 and 33 years old, casual users of photo
apps and did not have any experience with MaeSTrO
before.

Results. As it turned out, the new design significantly
increased the learnability of the system in general. Thus,
the hypotheses 1 could be accepted. In average, group
1 was able to understand the concept of sub-styles and
how to create them in under 4 minutes, and group 2
was able to understand how to apply sub-styles seman-
tically correct in under 10 minutes. Thus, hypothesis 2
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Fig. 9: Overview of important screens in MaeSTrO after a redesign. Left : Preview of a selected sub-style in the
toolbox at the bottom. Middle: (Sub-)style selection when editing a stylized content image. Right : Definition of

one sub-style mask per view for adaptive NST.

could also be accepted. Still, we observed a few chal-
lenges when completing the individual tasks that are
outlined in the following. First, the style that would

be globally applied to a content image was not listed
within the (sub-)style selection. Two users thought that
a random sub-style was used to globally stylize the im-
age, and therefore that they could select this style to

reverse their changes. Further, the global application
still hindered the creativity of the users, four out of six
would have liked it better to start working on a non-

stylized image. Second, editing a stylized content im-
age, users needed some time to figure out the meaning
of the thumbnail in their toolbox. It shows the selected
sub-style globally applied to the content image as a pre-

view. For further iterations, one participant suggested
to let users select a sub-style first before entering the
editing view. Third, creating a sub-style, two out of six

participants hesitated to save their first mask. Our UI
changes forced users to select a (sub-)style first or tap
“New”, and draw one mask for one sub-style then. To
create another sub-style, users needed to tap “Save”. It
wasn’t completely clear to users that they would just
save their mask and go back to the (sub-)style overview.

5.4 Semantic NST Survey

Training networks with semantic-aware mappings aims
at more closely matching an artwork’s style, given an
input image with similar content elements. Judging the

quality of a NST method remains an open question in
the research community, as qualitative assessment is

highly subjective and no established quantitative mea-
sures for NST methods exist.

Therefore, we conducted an online survey to eval-

uate if images generated by semantically trained net-
works are perceived to be closer to the style than the
global (semantics-unaware) method of Johnson et al. [17].

Participants complete several tasks, consisting of the
input image, the artwork and side-by-side a pair of
stylizations (A and B), generated by the globally- and
the semantically trained network (see Figure 11 and

Figure 12). The participants then answer three prefer-
ence questions (choosing stylization A or B) without
knowing which image corresponds to which method. In
each task, the participants are asked to choose “which
stylized image better reflects the artworks style” (Q1),
“which of the two stylized images is more aesthetic”
(Q2) and “which stylized image depicts specific content
elements more similar to those in the artwork” (Q3).
A total of 436 participants1 (211 female, 208 male, 17
other; aged 17-59) were surveyed, all of them completed

the same 10 tasks.

5.4.1 Style representation of semantic networks

The responses to Q1 (Figure 10) show that images gen-
erated by semantically trained networks represent the
artwork’s style significantly better than their global coun-
terparts on all tested images. Only in task 9 the seman-
tic rendition is not strongly preferred over the glob-
ally stylized image, which is likely to be caused by the

1 mainly recruited through volunteers on r/samplesize
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Fig. 10: Responses to Q1 and Q2, per task. The corre-
sponding images are shown in Figure 5 (task 1), Fig-
ure 11 (task 2-7) and Figure 12 (task 8-10).

depiction of foreground objects with a low contrast,
making different objects hard to distinguish (see Fig-
ure 12). Another interesting observation is that signif-
icantly more participants think the semantic rendition
in task 7 (see Figure 11) is closer to the style than they

do in task 6, although both input head portraits are
stylized with the same network. A possible explanation
is that the portrait in task 7 is very close in terms of
content to the artwork, therefore making it easier to
establish a one-to-one mapping between style and con-
tent (especially for the semantic NST) than for task 6,
which contains elements not found in the style image

(e.g., beard and short hair).

Q3 acts as a control question for Q1, as overall
style perception includes not only semantically plausi-
ble matching between style and content but also other
factors such as general texturing, brush-strokes, etc.
However, we hypothesize that given a direct compar-
ison between stylized image and artwork with similar
content, semantically plausible matching will be the
dominating factor in style perception. Analysis of re-
sponses reveals that Q1 and Q3 are highly dependent:

for every task, more than 90% of responses to Q1 and
Q3 match and the likelihoods of independence (using
χ2 tests) are p < 1 × 10−12 per task. Therefore, for
content-wise similar content/style pairs, the perception
of how well an image reflects a style is mostly influenced
by the semantic plausibility of the transfer.

5.4.2 Human and computational aesthetics.

For the aesthetic preference question (Q2) there is no
significant preference for any method when averaging
all task responses. On a per-task level, we define that
a >5% difference between both choices marks an un-
ambiguous preference for one method, as at that level
the margin of error does not allow a different major-
ity preference using a 95% confidence interval. There
is an unambiguous preference for the global method
in 4/10 of tasks and for the semantic method in 3/10
of tasks, while for the remaining three tasks, there is
only a slight preference for the global method. Portrait
style transfers are particularly challenging for semantics
based NSTs, as they require pixel-precise segmentation

of several facial features, which may not have exactly
defined boundaries. Previously, these have been tackled
by using hand-drawn masks [34].

Examining these images, there is a preference for
stylizations with higher global and local contrasts (acu-
tance) versus their low-contrast counterparts on all tasks,

comparing portrait stylizations (Figure 11), the transfer
of fine-grained structures also positively seems to influ-
ence the aesthetics preference compared to their coarser
counterparts. However, this kind of informal assessment

is subjective and needs to be formalized by measuring
correlations between the aesthetic preference responses
and image metrics for aesthetics scoring.

Several studies have been conducted into computa-
tional aesthetics judgment of images, however, many of
the methods are either black-box machine-learning ap-
proaches or rely on common photographic rules (e.g. for
image composition), which are mostly not applicable in
this case, as the content of the compared stylizations
is the same. We choose two image metrics for aesthet-
ics scoring, sharpness ψsh and tone ψto, as described by
Aydin et al. [1]. They deem image sharpness as the most
important metric for image aesthetics, and tone, which
is the difference of maximum and mininum gamma-
corrected luminance values, is used to describe local
and global contrast differences. Other metrics in [1] are

either related to image composition, camera focus or
colorfulness, and thus not directly relevant in measuring
quality of stylizations. The aesthetics score for a styl-
ization is computed as W = ψshψto,W ∈ [0, 1]. The dif-
ference between W (global) and W (semantic) shows the
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Fig. 11: Survey tasks with global and semantic portrait stylization. Semantic NSTs are trained by segmenting the
artwork into three sub-styles (hair, face, background) and matching to the corresponding content masks of the

mut1ny head segmentation dataset containing 18k faces with pixel-level segmentation masks2. Content images
© Adam Marcucci, Christopher Campbell on Unsplash.com, used with permission, or public domain.

aesthetics score “preference” for one of the two methods
and is compared to the human aesthetic preferences in
Figure 12. The comparison shows, that the aesthetics
score and human preference correspond in 80% cases
(in sign, not in magnitude), and show that a higher
sharpness and tone metric correlates with higher aes-

thetic preference for the stylization. The outlier in task
7 could be explained by the obstructive lines in the
woman’s face in the semantic stylization, which may
negatively affect its perceived aesthetics, as blemishless
faces are commonly found to be more attractive and
aesthetic.

2 http://www.mut1ny.com/face-headsegmentation-dataset

6 Conclusions

In this work, we implement and extend three techniques
for neural style transfer with local control on mobile de-
vices. We show that iterative, multi-style feed-forward
and adaptive style transfers are complementary in terms
of run-time, user control and visual quality, and con-
clude that offering all three in a single, end-user ori-
ented mobile app achieves a high degree of flexibility for
creating expressive results. We introduce an UI concept
which mixes interactive brush-based stylizations with
deferred, high-quality stylizations. Evaluating the mo-

bile app on casual users shows that local control meth-
ods provide tangible benefits to this user group over
global transfer, such as increased artistic freedom and
superior stylization quality, even with little to no train-
ing. We consider further user studies regarding other
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Content Images© Giuseppe (cicrico) on flickr.com and Debbie Molle and Sestrjevitovschii Ina on Unsplash.com.

identified challenges, e. g., to start with a non-stylized

content image. Another way to present the concept of
sub-styles to users would be to create two different apps,
one for the definition of (sub-)styles and one for the
application to a content image. We introduce a mask-

based training loss for feed-forward style transfer net-
works to map sub-styles to semantic image regions. A
survey comparing global and semantically trained net-
works shows that learned semantic mappings signifi-
cantly improve the semantic plausibility of the transfer,
but also show that the stylization’s aesthetics mostly
depend on photographic qualities such as sharpness and

contrast and less on semantic correspondences.
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