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Hasso Plattner Institute

University of Potsdam

Content / Mask Style / Mask Global Transfer - Iterative Local Control - Iterative

N
eu

ra
l S

ty
le

 T
ra

ns
fe

r

Local Control - Feedforward

Fig. 1: Comparison of neural style transfer techniques implemented in MaeSTrO. Interactive location-based filtering is used
to stylize the content image, using extensions to global style transfer techniques to provide more expressive results. Content

image © karamysh on shutterstock.com, used with permission. The style image by Vincent van Gogh is in the public domain.

Abstract—Mobile expressive rendering gained increasing pop-
ularity among users seeking casual creativity by image stylization
and supports the development of mobile artists as a new user
group. In particular, neural style transfer has advanced as a core
technology to emulate characteristics of manifold artistic styles.
However, when it comes to creative expression, the technology
still faces inherent limitations in providing low-level controls for
localized image stylization. This work enhances state-of-the-art
neural style transfer techniques by a generalized user interface
with interactive tools to facilitate a creative and localized editing
process. Thereby, we first propose a problem characterization
representing trade-offs between visual quality, run-time perfor-
mance, and user control. We then present MaeSTrO, a mobile
app for orchestration of neural style transfer techniques using
iterative, multi-style generative and adaptive neural networks
that can be locally controlled by on-screen painting metaphors.
At this, first user tests indicate different levels of satisfaction for
the implemented techniques and interaction design.

Index Terms—non-photorealistic rendering, style transfer

I. INTRODUCTION

Mobile expressive rendering has become a core technology

amongst users that seek casual creativity by image styliza-

tion [1], [2] and is continuously supporting the development

of mobile artists as a new user group [3]. Image filtering,

in particular, takes an essential part of the mobile photo

sharing success [4], since filtered photos are more likely to be

viewed and commented on by consumers [5]. Image filters are

typically implemented by a feature-level engineering approach

that enables casual users and mobile artists high-level and low-

level interactive control over the stylization process [6], [7],

but also limiting it to prescribed stylization effects (e. g., [8]).

A more generalized approach has been introduced by the

architecture engineering approach of deep learning, which

activates layers of pre-trained deep convolutional neural net-

works (CNNs) [9] to match content and style statistics, and

thus perform a neural style transfer (NST) between arbitrary

images [10]. This way, it is able to emulate characteristics

of manifold artistic styles and media without deep prior

knowledge of photo processing or editing, which is practi-

cally demonstrated by mobile applications such as Prisma
and PicsArt. However, in the mobile domain, the technology
provided by software products still faces inherent limitations

in providing low-level controls for localized image styliza-

tion [11]—in contrast to image filtering—e. g., with respect to

image feature semantics for meaningful abstraction [12] and

support of visual interest [13].
The goal of this work is to implement and enhance state-

of-the-art adaptive NST techniques, thereby providing a gen-

eralized user interface with creativity tool support [14] for

lower-level local control to facilitate the demanding interactive

editing [6], [15] on mobile devices (Figure 1). At this, we make

the following contributions:

1) We provide a problem characterization with user re-

quirements that are mapped to five functional and non-

functional requirements for mobile NST.

2) We present MaeSTrO, a mobile app for orchestration of
three neural style transfer techniques that can be locally

controlled by on-screen painting using image masking.

3) We provide insights from initial user tests, where we

report on the levels of satisfaction reached for the

implemented techniques and interactive tools.

The remainder of this paper provides a background (Sec-

tion II), outlines related work (Section III), maps user re-

quirements to functional/non-functional requirements followed
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by technical details (Section IV), provides case studies (Sec-

tion V), and draws conclusions (Section VI).

II. BACKGROUND

The introduction of mobile expressive rendering had a

relevant share in the development of a new user group that

discovered the creation of art to be fascinating: mobile artists.
Their artistic expression is defined through a constant produc-

tion and discussion of creative imagery, without restriction to a

certain skill level or age. As serious hobbyists they are always
interested in new ways to express their creativity.

We differentiate mobile artists into different groups: Either

they start with a blank canvas and their own ideas using low-

level drawing or painting techniques, or they use a photograph

as input for image processing, e. g., by using the algorithmic

support of techniques such as image filtering or example-based

rendering via NSTs. We identified the second sub-group as

the main target group for MaeStrO since they are often early

adopters, i. e., they are eager to try new technologies and

concepts. To learn more about their requirements, secondary

market research, task analysis, user surveys and interviews

have been conducted to help design an interactive prototype

that fosters creativity, increases productivity and establishes

a high user satisfaction when using effects based on NST.

Current challenges include the limitation of styles offered in

a single app and missing global/local control over an output

image, making the usage of such styles unattractive for artists.

a) User requirements: Table I summarizes identified user
requirements, i. e., tasks that a system needs to support and the

functionalities that need to be provided to support them. Most

of these requirements ground on the need of interactive tools

required for art direction [16], [17], in particular to widen the

interaction spectrum as Isenberg [6] calls for. One of the most

important requirements of mobile artists is the easy exploration
of tools and effects. This includes a self-explanatory interface
that enables users to quickly evaluate features, but also a fast

image generation process that allows for interactive frame

rates (12 frames-per-second or more). Furthermore, versatile
effect presets as well as the possibility to combine different
styles facilitate the development of new ideas. As a limited

number of effects also limits creative expression and does

not necessarily match a user’s stylistic intentions, new ways

to explore styles are necessary, e. g., the possibility to define
own styles through means of experimentation. Beyond that,
artistic control of a style and its parameters allows for creative
expression by customizing and therefore personalizing results.

In order to generate unique results, users want to control the

stylistic rendering by modifying the configuration parameters

locally and globally, as well as by adjusting the visibility, e. g.,

through blending options. As further modifications with other

mobile apps are considered usual, a high resolution output is
essential for keeping up a high-quality photo editing pipeline.

b) Functional and Non-Functional Requirements: We

defined five functional and non-functional requirements of the

used NST techniques to meet the expectations of the target

group. The Style Generation Speed (SGS) defines the overall

TABLE I: Overview of user requirements mapped to func-

tional and non-functional requirements of NST techniques.

User Requirement SGS STS STQ UC GMS

Easy exploration of tools and effects × ×
Versatile effects or effect presets × × × ×
Possibility to define own styles × × × ×
Artistic control of a style/parameters × ×
High resolution output ×

time that is needed to configure a neural network based on

a style image—and a content image—in order to generate

an output image via style transfer. The Style Transfer Speed
(STS) defines the overall time to apply a pre-trained style to a
content image to generate a final output image. Style Transfer
Quality (STQ) refers to the role of filtering in semiotics, i. e.,
the visual quality with respect to color and features bound

to semantics. User Control (UC) defines the possibility to
alter the stylized output globally or locally by modifying how

the style image is used for processing. Finally, GPU-Memory
Consumption (GMS) describes the required memory of the
Graphics Processing Unit (GPU). A higher consumption may

technically hinder the application of a NST on mobile devices.

III. RELATED WORK

In the following, we give an overview on NST techniques,

approaches for their interactive control and their application

in the mobile domain. For comprehensive technical overviews

we refer to the work by Jing et al. [18] and Semmo et al. [11].

A. Neural Style Transfer

a) Technical Approaches.: Neural style transfer was first
proposed by Gatys et al. [10], who matched global feature

statistics in the layers of a deep CNN using Gram matrices,

but which is based on a slow and offline optimization process.

Several variations have been proposed to this method since

then. To enable interactive performance, [19] and [20] trained

feed-forward neural networks to directly minimize the same

loss as the optimization approach. These networks, however,

compromise in flexibility as they are pre-trained with respect

to a single style. This problem has been further addressed

by custom network layers to match multiple styles: [21] use

a conditional layer for instance normalization, [22] use a

network with style selection units and [23] embed a CoMatch

layer to match second order statistics. These networks can

match tens to several hundred styles. Recently, these ap-

proaches have then been further extended to arbitrary styles by

determining affine parameters for the instance normalization

layers at runtime. In particular, [24] compute these parameters

directly from the style image in an adaptive instance normal-

ization layer, while [25] use a secondary network to predict

them. For MaeSTrO we seeked to implement techniques with

complementary strengths and weaknesses, thus choosing the

optimization-based style transfer of [10], the multi-style feed-

forward network of [23] and the adaptive network of [24].

With respect to latter, the approach of [25] may produce results

of superior quality but is found to use networks that are too

large for a practical usage on mobile devices.
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Fig. 2: Subjective comparison of evaluated NST techniques regarding their functional and non-functional requirements (1: worst

performance, 5: best performance). Extending existing NST techniques (grey polygon) to facilitate user control over the output

leads to higher GPU-memory consumption and a slowed down performance (proposed enhancements: blue polygon).

b) Controllable Neural Style Transfer: Several works

proposed methods to improve global and local control over

NSTs. Champandard [26] demonstrates the feasibility of a

semantic style transfer by using image masks to spatially

direct the style application during patch-based transfer [27],

an approach that [28] and [29] similarly used for providing

style and content masks for Gram-matrix based optimization.

Gatys et al. [28] also explored controlling the scale of applied

styles, where fine details of a style are separated from coarse

structures. While all mentioned methods are developed for it-

erative NSTs, many are also applicable to feed-forward NSTs.

For instance, [23] demonstrate a brush size control for their

networks, [24] and [28] show localized stylization control, and

[30] use depth information while [31] style/content ratio for

control of their respective adaptive feed-forward networks. For

MaeSTrO we follow [29] for mask-based style guides using

iterative NSTs and the approach [24] using adaptive NSTs.

Further, we train multi-style feed-forward networks with brush

size control [24]. At this, we contribute a loss term for mask-

guided transfer in multi-style networks.

B. Mobile Applications

Several mobile apps that utilize NSTs have been created

and published on app stores (e. g., for iOS, Android). One of

the first apps was Dreamscope, which uses an iterative NST
approach in a client-server environment, i. e., where a server

performs the style transfer. A similar functionality has been

implemented by deepart.io as a web-based application. Both
applications allow to define custom styles via style images,

but may require multiple minutes/hours for processing.

Feed-forward NSTs were able to tremendously cut down

the processing time [19]. In particular, the photo filtering app

Prisma was one of the first that successfully used the approach,
attracting 30 million users in two months. In its first version,

Prisma also implemented a client-server-approach, but then
opted for an on-device solution for powerful mobile graphics

hardware. With the advent of publicly available GPU-based

frameworks for execution of neural networks (e. g., CoreML),

it is now even feasible to apply mobile feed-forward NSTs in

sub-seconds. Popular examples are Whisky16 and Pictory [32]
to interactively apply styles to content images, and DeepStyle-
Cam [33] to transfer multiple styles in real-time.

However, none of the mentioned apps enable localized

control over the style transfer. As a first global control,

image-based post processing has been used to define how the

stylized output is blended with the content image (e. g., used

in Painnt). We follow this idea using mask-based painting

as an additional constraint for style transfer. The approach

is generalized to enable to choose between a quality-based

or performance-oriented NST, which we exemplify for the

implemented iterative, feed-forward and adaptive techniques.

IV. MAESTRO

A. Problem Characterization and User Interface

To implement spatial control over the style transfer, the

training or configuration of the network can be limited to user-

defined regions of the style and content image, as proposed

by Luan et al. [29] or Gatys et al. [28]. For MaeSTrO
we adapted these approaches for all three network types

and re-evaluated the most flexible approaches by subjective

comparison (Figure 2). Compared to the inflexible approaches,

we were able to increase the style transfer quality (Figure 4 and

supplemental materials) while causing a higher consumption

of GPU memory (GM) through the increased user control to

synthesize images, which can be crucial due to the limited

memory of mobile devices. In addition, the performance

initially slowed down significantly (by factor 2-5, depending

on the number of sub-styles), hindering an interactive style

transfer. Thus, approaches for interactive modifications with a

deferred transfer using multi-style feed-forward and adaptive

NSTs are proposed, together with a server-sided iterative NST

approach to also synthesize high-quality artistic renditions.

Besides the described technical challenges, the increased

conceptual complexity has an extensive impact on usability

engineering aspects. Giving local control during style appli-

cation requires new interaction concepts to achieve a high

degree of usability within the system. For the first prototype

of MaeSTrO, we based our design choices on goals like a high
learnability of the system and the reduction of error sources,

without losing focus on the user requirements of Section II.

We considered three potential approaches to give artistic

control over the output image: (1) Enable users to define and

use style brushes, i. e., one style brush is defined through one

style image. This allows users to apply multiple styles locally
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Fig. 3: Overview of important screens in MaeSTrO. Left:
Selection of the NST technique.Middle: Editing color-encoded
sub-style masks for the adaptive NST. Right: Locally applying
(sub-)styles to a content image with mask preview. Content

image © Rick Barrett on Unsplash.com, used with permission.

to their content image; (2) The usage of detail-controlled style

brushes, i. e., applying a style brush with more or less style

details through different abstraction levels of the style image;

(3) The definition and usage of sub-style brushes.

In our first iOS prototype of MaeSTrO, we decided to
focus on (3), since this approach addresses the most complex

challenges that need to be solved to clearly communicate func-

tionalities to end-users. These include: (a) how to define sub-

style brushes as a user, (b) how to visualize pre-defined and

user-defined sub-style brushes of a style image and (c) how to

apply different sub-style brushes to a content image. Relevant

screens of our prototype are shown in Figure 3.

B. Iterative Neural Style Transfer

We adapt the iterative NST of Gatys et al. [10], which

defines style transfer as the optimization problem of finding a

stylized target image t, whose content is similar to a content
image c and whose style is similar to a style image s. At this,
a content loss Lc and a style loss Ls are minimized using

the Gram matrix over activations in a deep neural network.

We refer to [10] for formal definitions of the loss terms and

optimization. The used Gram matrix sums over the height

and width, thus the location of individual features in the style

image is lost in the result, and a global texture is transferred.

1) Spatial control and brush size control: Location-based
control over NSTs can be achieved by segmenting the style and

content image into different local control masks, as described

in [29]. The content image is commonly segmented along

semantic borders, while masks in the style image are typically

chosen to seperate different textures, colors or shapes. To this

end, the style loss term is adjusted to include masks

Ll
s+(t) =

C∑
m=1

‖ 1

Al,m(t)
Gl,m(t)− 1

Al,m(s)
Gl,m(s)‖2F (1)

Gl,m(t) = R
(
φl(t)M l

m(t)
)
R
(
φl(t)M l

m(t)
)T

(2)

where C is the number of style and content masks, Gl,m(t) is
the Gram matrix of the target for layer l and mask number m,
andM l

m(t) is the content mask m downsampled to the feature

map spatial size at layer l, whereas Gl,m(s) conversely yields
the Gram matrix for the respective style mask. The area of the

masks Al,m is used to normalize magnitude differences in the

Gram matrices and reduce intensity artifacts.

In MaeSTrO, content masks are either drawn by hand
or generated by a semantic segmentation network such as

FCN [34]. The generated masks are grouped by the labels

into several pre-defined groups based on textural and semantic

similarities. The same FCN network is then used as a feature

extractor φ(t) to improve matching between mask and image
and to reduce overall memory consumption. The style masks

are drawn by hand and brush size control is achieved by

varying the size of the style image with the NST [10].

C. Feed-forward Neural Style Transfer

The iterative, spatially controllable approach has a long

computation time even for low-resolution images. To speed

up the transfer procedure, a feed-forward convolutional neural

network, termed the style transfer network, can be trained

to learn a direct transformation from content to pastiche

[19]. To provide smoothly blended sub-styles, we propose

the use of networks capable of capturing multiple styles—

instead of training multiple networks—, such as the multi-

style generative network (MSG-Net) proposed by Zhang and
Dana [23], who reduce training time and storage space for

multiple styles and enable style blending in feature space.

1) Multi-Style NSTs: The MSG-Net [23] learns a generator
network G(c, s) that takes both the content and the style
targets as inputs, and computes the style Gram matrix at run-

time. The main difference to previous work is the introduction

of a “CoMatch” layer, which matches second order feature

statistics based on the given styles and is able to adapt the

output to a set of trainable styles. This layer consists of a

learnable weight matrix W , which tunes the content feature

map φl(c) based on the target style, where R is a feature

vectorization operation:

φ̂l(c) = R−1
[
R(φl(c))TWG(φl(s))

]T
. (3)

The weight matrix W learns to strike a balance between the

style and content loss for a particular style.

2) Feature-space mask merging: Similar to [35], we com-
bine different styles in the feature-space, rather than the image-

space to prevent artifacts at mask contours and speed up

model inference. The MSG network conceptually consists of

an encoder part, which is a siamese network used for feature
extraction of both content and style image, a transformer part,
which carries out the style transformation, and a decoder,
which is an upsampling convolutional layer to the output

image. Training the network in prior works is done without

requirements for spatial control, the network is thus optimized

towards producing global styles. Using input features with

spatially varying styles in the decoder can lead to local image

artifacts and certain style elements appearing in differently

labeled areas (Figure 4b). We add an additional reguralization

term to Ltotal(t) to diminish this effect (Figure 4c), by adding
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(a) Input and style mapping (b) Without Lmask(t) (c) With Lmask(t)

Fig. 4: Using the mask loss term Lmask(t) to regularize the decoder for spatially varying styles: (b) without masked loss,
where dominant style elements (e. g., black mosaic lines) are transferred to differently labeled regions, (c) with masked loss,
which strictly adheres to the painted style labeling. Content image © Joshua Earle on Unsplash.com, used with permission.

the mean squared error between outputs masked in the feature

space and outputs masked in the image space:

Lmask(t) =
∥∥D[∑

s∈S
T (t, s)Ms

]−
∑
s∈S

G(t, s)Ms

∥∥2

F
, (4)

where T is the generator network up to the decoder D,
G(t, s) = D(T (t, s)) is the complete generator network, and
Ms the mask for style s. The loss Lmask(t) is added in the
last epoch of training, as it is a fine-tuning operation on the

decoder network and is computationally more expensive than

the other loss terms. To prevent spatial mask-mapping from

affecting the encoding and transformation part of the network,

the rest of the network is kept fixed during training, except

when training with mask-matching (Section IV-C4).

3) Network learning: We follow the procedure and param-
eters described by Zhang and Dana [23]. In the final epoch,

the masked loss Lmask(t) is added to the total loss term Ltotal

and trained using batch size 1 on COCO-Stuff [36], a dataset
containing dense segmentation masks. We group these masks

to the predefined labels and match them according to strategies

described in Section IV-C4. We found the MSG-64 network
(64 generator channels) to be sufficient to handle a low number

of styles and prefer it because of its superior performance,

however it cannot capture a large number of brush sizes or

styles compared to MSG-128.
4) Learning semantic mappings: Different matching strate-

gies between style and content masks with Lmask(t) during
training can have a significant impact on the learned style

representations. Style masks are either matched to content

masks with a certain label, or to random masks of any class. In

the first case, sub-styles are given explicit semantic mappings

by manually assigning classes to sub-styles and only matching

them with the corresponding masks in the content images,

e. g., a sub-style labeled “sky” will only be learned on regions

labeled as sky in the training dataset. This method can have

superior results for styles with a clear semantic mapping and

can be used to enhance existing global NST methods by trans-

ferring segments of a style to a content image in a meaningful

way, as shown in Figure 5. Using a network trained this way

(a) content/style (b) no matching (c) mask matching

Fig. 5: Networks trained with Lmask(t) to learn a semantic
mapping between sub-styles and semantic regions. Content

image © karamysh on shutterstock.com, used with permission.

for local control has the drawback that differences between

trained semantic mappings and actual semantic content can

lead to image artifacts, making this method less flexible.

By contrast, randomly matching content masks with styles

makes no assumption about the semantic meaning of a style,

and is desirable for general-purpose stylization tooling, where

regions can be depicted with arbitrary styles.

D. Adaptive Neural Style Transfer

Although MSG-Net can learn a large amount of styles, the
computational burden for training new styles is still high and

therefore does not permit end-users to add custom styles. A

recent work by Huang and Belongie [24] introduces a method

to perform a NST on arbitrary, new styles by using an encoder-

decoder network containing an adaptive instance normalization

layer in the middle. The authors use the insight that instance

normalization performs a normalization of feature statistics to

a certain style using a small set of affine parameters (scale and

shift) [37]. They propose an adaptive instance normalization

layer, that directly computes these parameters from the first

order style feature statistics, i. e., the mean μ and standard

deviation σ:

AdaIN(c) = σ[φ(s)]
(φ(c)− μ[φ(c)]

σ[φ(c)]

)
+ μ[φ(s)] (5)

where φ(s) are the style features and φ(c) the content features.
After normalizing the feature maps to the selected style using

13



1 2 3 4 5
0.5

1
1.5

3
5

10

20

50

100
150
200
300

Number of applied sub-styles

T
im
e
in
se
c

adaIn

adaIn-reuse

msg-128

msg-64

iterative

(a) #sub-styles vs. run-time

512 720 1,024 1,200

0.5

1
1.5

3
5

10

50

100

300
500

Input edge size

T
im
e
in
se
c

adaIn

msg-128

msg-64

iterative

(b) image size vs. run-time

512 720 1,024 1,200
100

250

500

1,000

2,000

5,000

10,000

Input edge size

G
P
U
m
em
o
ry
(m
b
)

adaIn

msg-128

msg-64

iterative

(c) image size vs. memory consump.

Fig. 6: Performance of the implemented techniques (feed-forward NST tested on an iPad Pro 10.5”, iterative NST tested with a

NVidia® GTX-1080TI). The time for the adaptive method was measured with and without re-using content and style features.

AdaIn, the decoder transforms the features into the stylized
output image. The decoder is trained on a large number of

content/style image pairs and learns to reproduce images with

arbitrary styles from the style-normalized features.

1) Spatial control and brush size control: To adapt this
method to spatial style control, the AdaIn normalization of the
input to different styles is performed and then jointly decoded

[24]. The decoder, although learned on homogeneous inputs,

generalizes to inputs of regions with different styles. Both the

features of the style and the AdaIn feature statistics are com-
puted for each local-control mask at run-time. Normalization

to the masked area, similar to the iterative approach, is not

required because mean and variance are locally independent.

Brush size control can be achieved by varying the size of

the style image input to the encoder, similar to the MSG-Net
method, but without needing extra training.

E. Implementation

Our implementation consists of three components: (1) A

PyTorch implementation of the MSG model training and style

control operations, (2) an implementation targeted to mobile

Apple devices based on iOS and CoreML for on-device image
processing and (3) a server-based PyTorch implementation of
the iterative approach. We extended CoreML layers for the

CoMatch layer of the MSG network and the AdaIn layer of
the adaptive network, for which we provide a CPU-based

and a GPU-based implementation using Metal shaders. The
MSG CoMatch layer in the formulation of Equation 3 requires
the style features and their Gram matrices to be dynamically

computed, but which are compute-intensive operations. To

this end, we optimized the performance of the on-device

stylization by pre-computing Ŵ =
[
WG(φl(s))

]T
off-device

and then computing the CoMatch layer output on-device as
φ̂l(c) = R−1

[
ŴR(φ(c))

]
. The reshaping operation R only

reinterprets the memory layout, thus only one on-device matrix

multiplication is required for this layer. The performance of

the adaptive style transfer network is optimized by caching the

computed content and style features (labeled AdaIn-reuse in
Figure 6), and thus only requiring to re-compute feature means

and variances of selected image regions on mask changes.

Applying n brushes to one image requires n fast adaptive

InstanceNorm operations to tune the features to different

styles, and one compute-intensive decoder pass.

The performance results in Figure 6 show that increasing

the number of applied styles has an almost equal effect on

all implemented NST techniques. Increasing the image size is

strongly limited by the GPU memory, where sizes of 12002

pixels push the limits of available memory on modern mobile

devices (typically around 2-4GB) and, for the iterative method,

available memory on high-end desktop GPUs (typically 11-

16GB). Producing very high-resolution images is therefore not

possible with the given tools and would require either new,

smaller network architectures, or image tiling procedures.

V. CASE STUDIES AND USER TESTS

MaeSTrO combines three NST techniques in a single app,

thus enabling users to create cross-stylized outputs.

A. Case Studies

The comparisons in Figure 7 indicate that the NST tech-

niques yield visually different outputs. In particular, the it-

erative approach of [10] and the adaptive approach of [24]

largely fail to transfer color features. By contrast, our enhance-

ments enable local control over the NST, which facilitates the

implementation of a semantic mapping of a style image to

a content image, i. e., currently by explicit manual labeling

of image regions—as an enhancement this could also be

performed using GIST descriptors [38], [39]. This leads to

a more plausible transfer of texture and color features for

the iterative and feed-forward approach. Although the adaptive

approach generally lacks to produce a style-like result, a clear

separation between the different sub-styles could be achieved.

Our approaches have in common that sub-styles are mapped

to masked areas of the content image. This enables different

application scenarios ranging from a semantics-based, over a

separated fore- and background to a completely free styliza-

tion. Although the mask creation process can be automated, we

find that the manual approach yields better results (Figure 7).

This is especially true for regions with sparse color or texture

features, which may lead to miss-segmentations. Nevertheless,

an automatic segmentation can be useful as a starting point for

casual users, since it eases the refinement of the masks.
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Fig. 7: Outputs created with MaeSTrO. Local control enables semantically more plausible results and clearer separations
between image regions. Content images © Matthew Fournier and Henrique Ferreira on Unsplash.com, used with permission.

B. User Tests

A first usability study has been conducted with six par-

ticipants using the prototype on an Apple iPad Pro 12,9”

(1st generation). The participants are mainly casual users,

between 16 and 37 years old and have mixed experiences with

photo manipulation apps. We asked them to perform specific

tasks to test the design choices we made. As an example,

test users were asked to globally apply the style of “The

Starry Night” to a prepared content image using the multi-

style generative approach. As already shown in Figure 7, a

global stylization would create semantically incorrect results,

e. g., by not producing a starry sky, but instead colorizing the

foreground into yellow. Thus, users should make specific local

modifications with the pre-defined sub-style brushes.

All users were convinced that the local control improved

the overall style quality. However, we could observe several

challenges when learning the functionalities of the app and uti-

lizing them for their purposes. First, the global application of a

style onto a content image caused misleading expectations and

hindered the creation of content masks. Two users expected

that the app would automatically create content masks based

on the semantics used within the style masks. Other specula-

tions included that the app would give recommendations for

the application of defined sub-style brushes to sub-regions of

the content image. The majority of testers (five out of six)

also missed a direct comparison between the globally stylized

image and the image with their local changes. Four would

have preferred to work directly on the original content image.

Second, the mapping of sub-style brushes through colors

has been misleading when working with images, as it would

directly lead to the idea of “colorizing the picture”. We

experimented with two different approaches: Letting users

define a style and a style mask by themselves first, or let

them directly edit a content image locally by giving them

a style with pre-defined sub-styles. For the first approach,

none of the user testers could identify what they needed to

do within an acceptable amount of time (< 5 minutes). In the

second approach, an overlay with a small preview of the style

image and the style mask helped users to realize the purpose

of the colors. In general, after working on several content

images within the app, five out of six users wished not to

use colors for mapping purposes, but semantically meaningful

symbols or thumbnails with another kind of highlighting for

the corresponding regions.

The issue of mapping style and content masks overlaps with

a third challenge: the fast exploration of local changes in a

content image. This only applies to multi-style generative and

adaptive neural networks, as the iterative approach is server-
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based and does not allow a preview of the sub-style that should

be locally applied. When editing a content image, users were

able to view the content mask, showing the applied colors,

or the low-rendered preview with insights about the expected

results. Four out of six users prefer the preview, but switched

up to 8 times per minute to produce satisfying results. They

used the content mask to make sure they did not miss to mask

any parts of an edited region, and switched back to the preview

to make relevant changes on their artwork.

VI. CONCLUSIONS

In this work, we implement and extend three techniques for

neural style transfer with local control on mobile devices. We

show that iterative, multi-style feed-forward and adaptive style

transfers are complementary in terms of run-time, user control

and visual quality, and conclude that offering all three in a

single, end-user oriented mobile app achieves a high degree

of flexibility for creating expressive results. We introduce an

UI concept which mixes interactive brush-based stylizations

with deferred, high-quality stylizations. Evaluating the mobile

app on casual users shows that local control methods provide

tangible benefits to this user group over global transfer, such

as increased artistic freedom and superior stylization quality,

even with little to no training.
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User Experience Design of Image Filtering Apps,” in Proc. MGIA. New
York, NY, USA: ACM, 2017, pp. 22:1–22:6.

[9] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv.org report 1409.1556, Apr.
2015.

[10] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image Style Transfer Using
Convolutional Neural Networks,” in Proc. CVPR. Los Alamitos: IEEE
Computer Society, 2016, pp. 2414–2423.

[11] A. Semmo, T. Isenberg, and J. Döllner, “Neural Style Transfer: A
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