

Open Geospatial Consortium

Approval Date: 2012-06-23

Publication Date: 2012-08-27

External identifier of this OGC
®
 docu ment: http://www.opengis.net/doc/ie/3dpie

Reference number of this document: OGC 12-075

Category: Public Engineering Report

Editors : Arne Schilling, Benjamin Hagedorn, Volker Coors

OGC 3D Portrayal Interoperability Experiment

FINAL REPORT

Copyright © 2012 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document is an OGC Public
Engineering Report created as a deliverable in an OGC Interoperability Initiative
and is not an official position of the OGC membership. It is distributed for review

and comment. It is subject to change without notice and may not be referred to as
an OGC Standard. Further, any OGC Engineering Report should not be referenced
as required or mandatory technology in procurements.

Document type: OGC
®

Engineering Report

Document subtype: Interoperability Experiment Report
Document st age: Approved for public release

Document language: English

http://www.opengeospatial.org/legal/

OGC 12-075

ii Copyright © 2012 Open Geospati al Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consort ium, Inc. ("Licensor"), free of charge and subject to the terms se t forth
below, to any person obtain ing a copy of this Intel lectual Property and any associated documentation, to deal in the Intel lec tual

Property without restriction (except as set forth below), includ ing w ithou t limitat ion the rights to implement, use, copy , modify ,
merge, publish, dis tribute, and /or sub license copies of the Intel lectual Property , and to permit persons to whom the Intel lec tual

Property is furnished to do so, provided that all copy right no tices on the intel lectual property are retained intac t and that each person to
whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property , all copies of the modified Intellectual Property must include, in addition to the above
copy right notice, a notice that the Intellectual Property includes modifications that have no t been approved or adopted by LICEN SOR.

THIS LICEN SE IS A COPYRIGHT LI CENSE ONLY, AND DOE S NOT CONVEY ANY RIGHT S UNDE R ANY PATENT S

THAT MAY BE IN FO RCE ANYWHE RE IN THE WO RLD.

THE INTELLECTUAL P ROPERTY IS P ROVIDED "A S IS", WITHOUT WARRANTY O F ANY KIND, EXPRE SS O R IMPLIED,
INCLUDING BUT NOT LI MITED TO THE WARRANTIE S OF MERCHANTA BILITY, FITNE SS FO R A PARTI CULAR

PURPOSE, AND NONINFRINGEMENT O F THI RD PARTY RIGHTS. TH E COPYRIGHT HOLD ER O R HOLDE RS IN CLUDED

IN THIS NOTICE DO NOT WA RRANT THAT THE FUNCTION S CONTAINED IN THE INTELLE CTUAL PROPERTY WILL
MEET YOUR REQUIREMENT S OR THAT THE OPERATION O F THE INTELL ECTUAL P ROPERTY WILL BE

UNINTERRUPTED O R ERROR FREE. ANY U SE O F THE INTELLE CTUAL PROPE RTY SHAL L BE MADE ENTIRELY AT
THE USE R’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HO LDER O R ANY CONTRI BUTOR O F

INTELLECTUAL PROPE RTY RIGHT S TO THE INTELL ECTUAL P ROPERTY BE LIABLE FO R ANY CLAIM, OR ANY

DIRECT, SPECIAL, INDIRE CT O R CON SEQUENTIAL DA MAGES, OR ANY DA MAGE S WHATSOEVE R RESUL TING
FRO M ANY ALLEGED IN FRINGE MENT OR A NY LOSS O F USE, DATA OR PROFIT S, WHETHE R IN AN ACTION O F

CONTRA CT, NEGLIGEN CE OR UNDER ANY O THER LEGA L THEORY, ARI SING OUT OF O R IN CONN ECTION WITH
THE IMPLEMENTATION, U SE, CO MME RCIALIZATION O R PERFORMANCE O F THI S INTELLECTUAL PROPERTY.

This l icense is effective until terminated. You may terminate it at any time by destroy ing the Intellectual Property together with all

copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as

provided in the follow ing sentence, no such termination of this l icense shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the da te of notice of such termination. In add ition, should the Intellectual

Property , or the operation of the Intellectual Property , infringe, or in LICEN SOR’s sole opinion be likely to infringe, any patent,
copy right, trademark or other right of a th ird party , you agree that LICENSO R, in its sole discretion, may terminate this license

without any compensation or liabili ty to you, your licensees or any other party . You agree upon termination of any kind to de stroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party .

Except as contained in this notice, the name of LICENSO R or of any other holder of a copy right in all or part of the Intellec tual
Property shall not be used in advertising or o therwise to promote the sale, use or other dealings in this In tellectual Property without

prior written author izat ion of LICEN SO R or such copy right ho lder. LICEN SOR is and shall at all times be the sole ent ity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any

LICENSO R standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this A greement of the United

Nations Convention on Con tracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to ma ke it val id a nd enforceable,

and as so modified the ent ire Agreement shall remain in full force and effect. No decision, action or inaction by LICEN SOR sh all be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underly ing information or technology may be downloaded or otherwise exported or reexported in

violation of U.S. export laws and regu lations . In addit ion, you are responsible for comply ing with any local laws in your jur isdiction

which may impact your right to import, export or use the Intellectual Property , and you represent that you have complied with any
regulations or regis tration procedures required by applicable law to make this l icense enforceable.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium iii

Preface

This report describes the setup, experiments, results and issues generated by the 3D
Portrayal Interoperability Experiment (3DPIE), carried out as an activity of the 3D

Information Management Domain Working Group (3DIM). The 3DPIE is designed to
test and demonstrate different approaches for service-based 3D portrayal based on the
drafts for the candidate standards for 3D portrayal, Web 3D Service (W3DS) and Web
View Service (WVS).

Suggested additions, changes, and comments on this draft report are welcome and
encouraged. Such suggestions may be submitted by email message or by making
suggested changes in an edited copy of this document.

The changes made in this document version, relative to the previous version, are tracked

by Microsoft Word, and can be viewed if desired. If you choose to submit suggested
changes by editing this document, please first accept all the current changes, and then
make your suggested changes with change tracking on.

Submitting organizations

This Interoperability Experiment Report was submitted to the OGC Interoperability Program

by the following organizations:

 Hasso-Plattner-Institut at the University of Potsdam (HPI)

 GIScience at the University of Heidelberg (GIScience)
 Fraunhofer Institute for Computer Graphics Research (IGD)
 Bitmanagement Software GmbH

 CACI
 Institute for Geodesy and Geoinformation Science at Technical University Berlin

(IGG)
 Institut Geographique National (IGN)
 Laboratoire des Sciences de l’Information et des Systémes (LSIS)

 Monterey Bay Aquarium Research Institute (MBARI)
 Naval Postgraduate School (NPS)
 Virginia Tech (VT)

OGC 12-075

iv Copyright © 2012 Open Geospati al Consortium

Contents Page

1 Introduction .. 1

1.1 Scope.. 1

1.2 Document contributor contact points... 1

1.3 Revision history... 2

1.4 Forward .. 2

2 References .. 2

3 Terms and definitions .. 3

4 Conventions.. 3

4.1 Abbreviated terms ... 3

4.2 Example URLs .. 4

5 3D Portrayal overview... 4

6 Data models, formats, services, and standards... 5

6.1 Service components .. 5

6.1.1 Web 3D Service (W3DS)... 5

6.1.2 Web View Service (WVS)... 6

6.1.3 Tile Caches.. 6

6.1.4 Coordinate Transformation Service .. 6

6.1.5 Google Elevation Service... 6

6.2 Data encodings and bindings.. 7

6.2.1 CityGML ... 7

6.2.2 KML/COLLADA ... 7

6.2.3 X3D ... 8

6.2.4 X3DOM... 8

6.2.5 HTML5/WebGL ... 8

6.2.6 OpenStreetMap data format ... 8

7 Experiment design and architecture.. 9

7.1 Data sets ... 9

7.1.1 Paris city model .. 9

7.1.2 Berlin city model .. 10

7.1.3 Mainz city model .. 11

7.1.4 Blacksburg city model.. 11

7.1.5 OpenStreetMap data ... 11

7.2 Software ... 12

7.2.1 CityServer3D .. 13

7.2.2 3DCityDB ... 14

7.2.3 IGG Web 3D Service ... 14

7.2.4 OSM-3D Web 3D Service ... 15

7.2.5 HPI 3D Server and Web View Service ... 15

7.2.6 XNavigator.. 15

7.2.7 InstantReality Player .. 16

7.2.8 BSContact Geo ... 16

OGC 12-075

Copyright © 2012 Open Geospati al Consortium v

7.2.9 HPI 3D WVS Clients ... 16

7.2.10 Google Earth ... 17

7.3 Experiment setup... 17

7.3.1 Experiment phases.. 17

7.3.2 Experiments overview.. 17

7.4 Use Cases... 19

8 Experiment activities ... 20

8.1 Importing Paris data into IGG Web 3D Service ... 20

8.1.1 General approach .. 20

8.1.2 Paris data import and W3DS configuration .. 22

8.2 Importing Berlin data into IGG Web 3D Service ... 23

8.3 Importing Mainz data into CityServer3D .. 23

8.4 Importing Paris data into CityServer3D .. 24

8.5 Importing Paris data into HPI Web View Service .. 24

8.5.1 Workflow .. 24

8.5.2 Results ... 25

8.5.3 Problems and solutions .. 26

8.6 Importing OpenStreetMap data into OSM-3D Web 3D Service 27

8.7 Displaying KML from W3DS in Google Earth .. 28

8.7.1 Connect CityServer3D and Google Earth ... 28

8.7.2 Connect IGG W3DS with Google Earth ... 29

8.7.3 Connect OSM-3D W3DS with Google Earth... 30

8.8 Accessing X3D.. 31

8.8.1 Web-based portrayal through W3DS using Instant Reality Player 31

8.8.2 Portrayal through W3DS using BS Contact Geo.. 34

8.9 Merging data from multiple Web 3D Services in XNavigator 35

8.9.1 Workflow .. 35

8.9.2 Results ... 36

8.9.3 Problems and solutions .. 37

8.10 Merging 3D models from W3DS and imagery from WVS in XNavigator....... 38

8.10.1 Workflow .. 38

8.10.2 Results ... 40

8.10.3 Problems and solutions .. 40

8.11 Sharing and displaying WVS imagery in web browsers 40

8.11.1 Sharing static 3D views.. 40

8.11.2 JavaScript-based interactive client .. 41

8.12 Displaying WVS imagery on mobile clients ... 42

8.12.1 Workflow .. 42

8.12.2 Results ... 44

8.12.3 Problems and solutions .. 44

8.13 Rendering CityGML data in the web browser .. 44

8.13.1 Overview of the approach .. 44

8.13.2 Tests... 45

8.14 Rendering W3DS data in the web browser ... 47

8.15 Rendering W3DS data on mobile devices ... 48

8.16 Extended LOD concept for X3D.. 50

9 Results .. 53

OGC 12-075

vi Copyright © 2012 Open Geospati al Consortium

9.1 Testing of service-based 3D portrayal approaches ... 53

9.2 Extending the implementation basis for W3DS .. 54

9.2.1 New implementation of IGG W3DS ... 54

9.2.2 CityServer3D was adapted to latest W3DS specification 54

9.2.3 Improvements of OSM-3D W3DS .. 54

9.2.4 Extension of the XNavigator client to consume different W3DS 54

9.3 Increasing conformance of service implementations.. 54

9.3.1 W3DS conformance of CityServer3D... 54

9.3.2 Conformance tests for 3D portrayal services.. 57

9.4 Increasing conformance of data format implementations 57

9.4.1 Impact on IGN’s CityGML implementation .. 57

9.4.2 X3D conformance in CityServer3D .. 57

10 Discussions... 57

10.1 Precision issues in interactive 3D display of geo data .. 57

10.2 Serving Large City Models... 58

10.2.1 Suitable encodings for the delivery of large city models............................... 58

10.2.2 Challenges of WVS-based 3D portrayal of large city models....................... 58

10.2.3 Managing texture data in large urban data sets .. 60

10.3 Dealing with tiled data .. 61

10.3.1 W3DS tiling approach .. 61

10.3.2 GetTileDefinition in CityServer3D ... 63

10.3.3 Tiling for WVS ... 64

10.4 Dealing with height references... 64

10.5 Potential changes in W3DS and WVS interface definitions 65

10.5.1 W3DS GetTile operation ... 65

10.5.2 W3DS custom extensions .. 65

10.5.3 Rethinking the concept of data layers ... 65

10.5.4 Styling data layers .. 65

10.5.5 Semantics of data layers... 65

11 Future Work / Next steps... 66

11.1 Navigation in the 3D scene... 66

11.2 Feature data access .. 66

11.3 Data analysis.. 66

11.4 WVS/W3DS standardization.. 66

Figures Page

Figure 1: Approaches and context of service -based 3D portrayal. ..5

Figure 2: Data flows of all experiments in the 3D Portrayal Interoperability Experiment. . 18

Figure 3: Examples of using 3D portrayal capabilities within the urban planning process.. 20

Figure 4: Scheme of the GIScience W3DS.. 21

Figure 5: Integration of massive CityGML data into HPI 3D Se rver includes three stages:

data extraction, geometry optimization, and texture optimization................................. 25

OGC 12-075

Copyright © 2012 Open Geospati al Consortium vii

Figure 6: Mainz in Google Earth, made available over GetTileDefinition. 29

Figure 7: Network-Link defined in Google Earth. ... 30

Figure 8: OSM-3D buildings in Chicago integrated in Google Earth as Network Links. 31

Figure 9: Scene in InstantPlayer... 32

Figure 10: Scene in InstantPlayer. .. 33

Figure 11: Blacksburg 3D scene in InstantPlayer on Linux... 34

Figure 12: Sequence diagram showing XNavigator startup phase. 36

Figure 13: 3D Data from two W3DS instances merged together: 1) terrain model (textured

with O penStreetMap) and PO Is from GIScience’s server, 2) buildings from

CityServer3D. Location: Mainz, Germany.. 37

Figure 14: Extraction of GetView perspective parameters from the camera definition in

XNavigator and creating a virtual canvas for image display. ... 39

Figure 15: Perspective imagery from a WVS displayed in the 3D viewer XNavigator. The

montage shows 3D content from W3DS (left) and WVS (right) for the same camera

position. .. 40

Figure 16: HPI 3D Web Display Client running in a web browser allowing to explore the 3D

Paris data set. ... 42

Figure 17: iOS App running on the iPad and iPhone providing WVS-based access to and

interactive visualization of the 3D Paris city model. ... 43

Figure 18: O bject id images retrieved from the HPI WVS for the Paris data set. They show

that currently different terrain tiles (left) and parts of the same bridge (right) have

assigned different object ids. .. 44

Figure 19: Screenshot of the LSIS CityGML thick Client. .. 45

Figure 20: Architecture of the LSIS server. ... 46

Figure 21: Data Exchange between LSIS client and server. .. 47

Figure 22: X3DO M City Viewer. .. 48

Figure 23: X3DO M City Viewer on Android 2.3 (Samsung Galaxy S II).............................. 49

Figure 24: X3DO M City Viewer on B&N NOO K color with Firefox and Android 2.3. 49

Figure 25: Proposed proxy shape for X3D LO D extension between LO D3 and LO D4. 50

Figure 26: Screenshots of the X3D building model used for LO D1, LO D2, LO D3, and

LO D4. ... 51

Figure 27: Server-client connections that we re newly established and tested by 3DPIE

experiments. ... 53

Figure 28: Scene objects covered by the view frustums of two different GetView requests.

Two consecutive requests could require totally different data to be loa ded to the

graphics card and rendered. .. 59

Figure 29: A tile level in the TileSet definition can be described as grid with origin at

LowerCorner. ... 62

OGC 12-075

viii Copyright © 2012 Open Geospati al Consortium

Tables Page

Ta ble 1: X3D model attributes used in the X3D LO D extension experiment. 52

Ta ble 2: Basic statistics for the FPS performance result over all trials. 52

Ta ble 3: Implementation of the W3DS GetScene requests parameters in CityServer3D. 55

Ta ble 4: Implementation of additional W3DS GetScene request parameters in

CityServer3D. ... 56

O GC
®
 Engineering Report O GC 12-075

Copyright © 2012 Open Geospati al Consortium 1

OGC
®
 3D Portrayal Interoperability Experiment Final Report

1 Introduction

1.1 Scope

This document describes the results of an OGC Interoperability Experiment (IE) on the

portrayal of 3D geospatial information. It contains technical details on processing 3D
information in an OGC service environment as well as best practices on how to portray
large data sets in urban planning scenarios, taking into account architectures and

capabilities of interactive 3D graphics. Especially Web 3D Service and Web View
Service, two draft standards (published as OGC discussions paper), have been in the
focus of 3DPIE.

1.2 Document contributor contact points

All questions regarding this document should be directed to the editors or the
contributors:

Name Organization

Volker Coors Fraunhofer Institute for Computer Graphics Research (IGD)

Jens Dambruch Fraunhofer Institute for Computer Graphics Research (IGD)

Gilles Gesquire LSIS at Aix-Marseill e University

Benjamin Hagedorn Hasso-Plattner-Institut (HPI) at the University of Potsdam

Javier Herreruel a Institute for Geodesy and Geoinformation Science (IGG) at

the Technical University of Berlin

Jan Klimke Hasso-Plattner-Institut (HPI) at the University of Potsdam

Thomas Kolbe Institute for Geodesy and Geoinformation Science (IGG) at

the Technical University of Berlin

Nicola F. Polys Virgini a Tech (VT), Advanced Research Computing (ARC)

Peter Schickel Bitmanagement

Arne Schilling GIScience at the University of Heidelberg

Peter S forza Virgini a Tech (VT), Center for Geospatial Information

Technology (CGIT)

Ankit Singh Virgini a Tech (VT), Center for Geospatial Information

Technology (CGIT)

Simon Thum Fraunhofer Institute for Computer Graphics Research (IGD)

Matthias Uden GIScience at the University of Heidelberg

Mari e-Lise Vauti er Institute Geographic Nationale (IGN), France

OGC 12-075

2 Copyright © 2012 Open Geospati al Consortium

1.3 Revision history

Date Release Editor Primary
clauses

modified

Descrip tion

2011-10-12 0.1.0 Arne Schilling All First version from templat e

2012-05-31 0.3.0 Benjamin
Hagedorn

Many Draft for the Exeter TC and 3DIM motion
as Public Engineering R eport. Input
from all Partners.

2012-08-22 0.4.0 Carl Reed Final edits to align with OGC Public
Engineering Report

2012-08-24 0.5.0 Benjamin
Hagedorn

Many Final pending edits and corrections

1.4 Forward

Attention is drawn to the possibility that some of the elements of this document may be

the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be

aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

2 References

The following documents are referenced in this document. For dated references,

subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

OGC 06-121r3, OpenGIS
®
 Web Services Common Standard

NOTE This OWS Common Speci fication contains a list of normative references that are also
applicable to this Implementation Speci fication.

[1] OpenStreetMap Wiki. The PBF format.
http://wiki.openstreetmap.org/wiki/PBF_Format, accessed on 09/12/11

[2] Goodchild, M. (2007). Citizens as sensors: the world of volunteered geography.
GeoJournal 69: 211-221.

[3] Hagedorn, B. (Ed.) (2010). Web View Service Discussion Paper, Version 0.3.0,
OGC 09-166r2. Open Geospatial Consortium Inc., 2010.

[4] OpenStreetMap Statistics. http://wiki.openstreetmap.org/wiki/Statistics , accessed
on 25/11/11.

[5] TIGER data import in the OSM Wiki. http://wiki.openstreetmap.org/wiki/TIGER,
accessed on 25/11/11.

http://wiki.openstreetmap.org/wiki/Statistics
http://wiki.openstreetmap.org/wiki/TIGER

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 3

[6] Zielstra, D. and A. Zipf (2010). A Comparative Study of Proprietary Geodata and
Volunteered Geographic Information for Germany. AGILE 2010. The 13th

AGILE International Conference on Geographic Information Science. Guimaraes,
Portugal.

[7] Haklay, M. and C. Ellul (2011). Completeness in volunteered geographical
information - the evolution of OpenStreetMap coverage in England (2008-2009).
In revision for the Journal of Spatial Information Science.

[8] Mooney, P., P. Corcoran and A.C. Winstanley (2010). Towards Quality Metrics
for OpenStreetMap. 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems. San Jose, CA.

[9] OpenStreetMap Taginfo. http://taginfo.openstreetmap.org, accessed on 30/11/11.

[10] Schilling, A. and Kolbe, T. H. (Eds.) (2009). Draft for OpenGIS Web 3D Service
Implementation Standard, Version 0.4.0, OGC 09-104r1. Open Geospatial
Consortium.

[11] Statistisches Bundesamt. GENESIS Online Datenbank, accessed on 25/11/11.

[12] Over, M., A. Schilling, et al. (2010). "Generating web-based 3D City Models
from OpenStreetMap: The current situation in Germany." Computers,
Environments and Urban Systems 34(6): 496-507.

[13] OpenStreetMap-3D project homepage. http://www.osm-3d.org/home.en.htm,
accessed on 25/11/11.

3 Terms and definitions

For the purposes of this report, the definitions specified in Clause 4 of the OWS Common

Implementation Specification [OGC 06-121r3] and in OpenGIS
®
 Abstract Specification

shall apply. In addition, the following terms and definitions apply.

3.1
portrayal
presentation of information to humans [ISO 19117]

4 Conventions

4.1 Abbreviated terms

API Application Program Interface

AR Augmented Reality

CityGML City Geography Markup Language

CRS Coordinate Reference System

http://www.osm-3d.org/home.en.htm

OGC 12-075

4 Copyright © 2012 Open Geospati al Consortium

DTM Digital Terrain Model

HTTP Hypertext Transfer Protocol

IE Interoperability Experiment

KML Keyhole Markup Language

MR Mixed Reality

LOD Level of Detail

OpenLS OpenGIS Open Location Services

URI Uniform Resource Identifier

URL Uniform Resource Locator

VR Virtual Reality

VRML Virtual Reality Modeling Language

W3DS Web 3D Service

WFS Web Feature Service

WMS Web Map Service

WMTS Web Map Tile Service

WVS Web View Service

XML Extensible Markup Language

X3D Extensible 3D

4.2 Example URLs

The sample URLs given in this document are only meant for demonstration. No server
instances are available at these URLs.

5 3D Portrayal overview

The 3D Portrayal IE addresses the testing and demonstration of different mechanisms for
the portrayal, delivery, and exploitation of 3D geo data based on open standards -based

formats and services. The IE intended to identify, test, and further develop technologies
and workflows that may be the foundation of spatial data infrastructures with a
requirement for rapid visualization of very large and complex 3D geo data. Main focus of

the IE was on the proposed Web 3D Service (W3DS) [10] and Web View Service (WVS)
[3] interfaces, which represent two different approaches to service-based 3D portrayal:

 The Web 3D Service (W3DS) follows a 3D graphics-based approach: 3D data is
hosted and managed at a W3DS server; a W3DS client is requesting 3D graphics

data (including geometry and texture data, e.g., in X3D or KML/COLLADA
format) and renders this data at the client side.

 The Web View Service (WVS) follows an image-based approach: A WVS client
request finally rendered images of a 3D view on a 3D scene from a WVS server.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 5

The IE included digital landscape models, city models, and interior models, e.g., in the
CityGML data format, as well as different client configurations. The IE intended to

clarify the specifics of 3D portrayal services and provide best practices and guidelines for
their implementation, integration, and usage. Additionally, the activities and findings of
the IE participants were intended to directly support and influence current standardization
efforts in service-based 3D portrayal.

Figure 1 shows the general data flow of a service oriented architecture focusing on 3D
geo data. The components of this multi-tier architecture can be categorized into metadata
management, data access, data processing, image-based portrayal, graphics-based 3D

portrayal, and clients. Not all of the components depicted here have been implemented or
used in 3DPIE. A detailed description of which services were used how they were linked
together follows in the remaining sections.

Figure 1: Approach es and context of service-based 3D portrayal.

6 Data models, formats, services, and standards

The following subsections list and describe some of the data encodings and service
components that are most relevant for this experiment.

6.1 Service components

6.1.1 Web 3D Service (W3DS)

A Web 3D Service (W3DS) is a portrayal service for three-dimensional geodata such as

landscape models, city models, textured building models, vegetation objects, and street
furniture. Geodata is delivered as scenes that are comprised of display elements,

optimized for efficient real time rendering at high frame rates. 3D Scenes can be

OGC 12-075

6 Copyright © 2012 Open Geospati al Consortium

interactively displayed and explored by internet browsers with 3D plug-ins, or loaded
into virtual globe applications.

6.1.2 Web View Service (WVS)

The Web View Service (WVS) is a portrayal service for three-dimensional geodata such

as landscape models, city models, vegetation models, or transportation infrastructure
models. A WVS server mainly provides 2D image representing a 3D view on a scene

constructed from 3D geodata that is integrated and visualized by the WVS server. In
addition to these color images of a 3D scene, a WVS server can advertise and deliver
complementary image layers that include geometrical or thematic information: e.g., depth
layers, surface normal data, or object id information.

6.1.3 Tile Caches

Map tiling represents a technology that can help to reduce work load and round trip time
for service-based map provision. So, e.g., the WMS Tiling Client Recommendation1

(WMS-C for short) suggests constraining an OGC WMS to strictly define fixed tiles for
its map delivery with fixed extent and resolutions. It then becomes possible to render and
cache those "standardized" tiles a priori or on-the-fly. Such cached map imagery leads to
reduced loading times at the client side.

TileCache2 is an implementation of a WMS-C compliant server, which has been
developed by MetaCartaLabs and is available under BSD license. It provides a dedicated
caching and rendering backend and allows users to set up an own local disk-based cache

of any WMS server and use it in any WMS-C supporting client. Its usage speeds up client
WMS applications by factors of 10-100.

6.1.4 Coordinate Transformation Service

The Coordinate Transformation Service (CTS) used for 3DPIE is a specific service set up
and hosted by the University of Heidelberg. It is based on the proj.4 Cartographic
Projections Library3 and can be used to transform coordinates from and to various
Coordinate Reference Systems (CRS) in a service-oriented way.

6.1.5 Google Elevation Service

The Google Elevation Service4 is a specific Web Service which is part of the Google
Maps API and provides height information for arbitrary locations all over the planet, both

specified in the WGS84 reference system. For a given coordinate pair, it returns the
ellipsoidal height value above (or below) the reference ellipsoid. Supported output

formats are JSON and XML. While this service can generally be used for free, the

1 http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation

2 http://tilecache.org/

3 http://trac.osgeo.org/proj/

4 http://code.google.com/intl/en/apis/maps/documentation/elevation/

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 7

number of requests is currently limited to a maximum of 25,000 requests per day. Up to
512 locations can be passed to the service within one single request. Apart from
individual point locations, also coordinates of a path can be used and processed.

For instance, the following URL requests an XML document which contains the
ellipsoidal height of a square in Central Heidelberg, which is approx. 122 (meter above
WGS84 ellipsoid):

http://maps.googleapis.com/maps/api/elevation/xml?locations=49.409605,8.693183&sen
sor=false

In 3DPIE, the height information retrieved from the Google Elevation Service was used
to align building positions to the Google Earth terrain model.

6.2 Data encodings and bindings

A variety of data formats have been standardized for describing, exchanging, and

visualizing 3D (geographic) data. In the following subsections, the 3D data models and
formats that have been in focus of 3DPIE are described more detailed.

6.2.1 CityGML

The City Geography Markup Language (CityGML) is an open data model and XML-

based format for the representation and exchange of virtual 3D city models. It is based on
the Geography Markup Language version 3.1.1 (GML3). CityGML represents four
different aspects of virtual 3D city models: semantics, geometry, topology, and

appearance: CityGML not only represents the shape and graphical appearance of city
models but specifically addresses the object semantics and the representation of the

thematic properties, taxonomies and aggregations. CityGML objects can be represented
in up to five different, well-defined levels-of-detail, LOD0 to LOD4 with increasing
accuracy and structural complexity.

Most of the geographic data used in 3DPIE has been provided in the CityGML format,
including data from Paris, Berlin, and Mainz.

6.2.2 KML/CO LLADA

The Keyhole Markup Language (KML), developed by Google, is an XML-based 3D
graphics format used to visualize geographic data in 3D virtual globes and 2D web

browser or mobile mapping applications. Google Earth includes KML viewing and
editing capabilities. KML 2.2 became an OGC Standard in 2008.

COLLADA is an XML-based exchange format for 2D and 3D graphics data, maintained
by the Khronos Group. The format supports object texturing and animation but has only a

limited support for semantics information. KML files can reference COLLADA-encoded
3D objects in their own coordinate systems; for example, Google Earth uses COLLADA
for the description of 3D objects .

http://maps.googleapis.com/maps/api/elevation/xml?locations=49.409605,8.693183&sensor=false
http://maps.googleapis.com/maps/api/elevation/xml?locations=49.409605,8.693183&sensor=false

OGC 12-075

8 Copyright © 2012 Open Geospati al Consortium

6.2.3 X3D

X3D is the successor of VRML and is standardized as ISO/IEC 19775 (architecture and

abstract capabilities), 19776 (encodings), and 19777 (API). It features four increasingly
complex baseline profiles and several additional profiles, which define the features that a
compliant X3D system must support. Most notably, the “Full” profile supports a

“Geospatial” component which provides , e.g., for high-precision geo-referencing,
appropriate geometric primitives and dynamic level-of-detail. Besides this, the “Full”
profile encompasses all of the 33 standard components. However, as only a small subset

of X3D is needed for the purpose of geodata portrayal, the “Geospatial” component is
also available in some implementations which do not otherwise conform to the “Full”
profile.

Furthermore, X3D defines a document object model called SAI (scene access interface),

events and scripting, sound, numerous sensors, programmable shaders, and more. It is
therefore suitable to build interactive virtual environments.

6.2.4 X3DO M

X3DOM is an adaption of the X3D standard to (X)HTML, ensuring declarative 3D can

be used inside standards-compliant browser. It aims to support a large browser base and
decent X3D feature coverage, while working towards a common declarative 3D standard

in the Declarative 3D community WG at the W3C. The reference implementation is
maintained by Fraunhofer IGD and available under the open-source license MIT.

6.2.5 H TML5/WebGL

HTML 5, the next revision of the Hypertext Markup Language (HTML), will allow a

web browser to become a development platform. A primary goal for HTML 5 is to ensure
interoperability among browsers so that web applications and documents behave the
same way no matter which HTML 5-compliant browser is used to access them. HTML 5

offers numerous improvements over HTML 4 such as WebSockets, embedded parsing
and accelerated 3D visualization.

HTML5 is used in 3DPIE, e.g., to provide a UI for accessing the W3DS and portraying
over X3DOM. Technically, the XML-based XHTML would also be a possible encoding.

WebGL is a standard for programming in 3D with the browser as platform. The final

specification of the standard was published in 2010 and is defined by the Khronos Group,
a consortium which is also in charge of Open GL, Open CL and OpenGL ES (embedded
systems). WebGL provide a context into HTML5 canvas that is 3D Computer Graphics
capable without plug-in.

6.2.6 O penStreetMap data format

OpenStreetMap uses the XML format to define and convey models. There are only a few

simple data primitives in OSM, namely nodes, ways and relations, each can have an
arbitrary number of properties (tags) as key-value pairs.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 9

A node is the most basic element of the OSM schema. Apart from the id, nodes also use
geographic latitude and longitude to uniquely define their spatial position. An altitude

value is also welcome for extending the map to the third dimension, but not compulsory
yet. Nodes can be either a standalone point representing something like points of interest
(POI) or a connected one acting as part of a way. Standalone nodes must have at least one
tag while those forming part of a way need not.

A way is an ordered interconnection of 2 to 2,000 nodes that describe a linear feature
such as a street, footpath, river, area etc. Attributes such as ids, nodes and tags are
normally used to define a way. There is a distinctive kind of way in which the first and

last nodes are identical: closed way or area. Areas do not exist as another data primitive;
they are simply closed ways that are tagged to represent an area (for example: area=yes,
landuse=*, building=yes), thus not all closed ways are areas.

A relation is a group of zero or more primitives that are geographically related or with

associated roles. The attributes of id, tags and members (a list of primitives with
associated role attributes) are normally required to describe a relation. Relations can be

used to specify the relationships between objects, for instance, several segment ways may
belong to an identical building. With the use of relations, information can be applied to
the whole relation rather than repeated on each node/way, for instance, multiple ways that

are grouped to a relation tagged with highway. If the limit speed changes, the tag needs to
be changed only in one place instead of every way.

Besides the original XML encoding, there exists the PBF Format ("Protocolbuffer Binary
Format"), which was designed to support future extensibility and flexibility and is

intended to replace the XML format. Data size is about 50% smaller, write access is 5x
faster and read access is 6x faster compared to XML [1]. A lot of software used in the
OSM project already supports PBF in addition to the original XML format, plus there are
several tools to convert OSM data from PBF to XML format and vice versa.

7 Experiment design and architecture

7.1 Data sets

Several partners contributed real world data sets for 3DPIE, which could be integrated
into different 3D portrayal servers and/or could be accessed from different 3D clients.

7.1.1 Paris city model

IGN provided a textured 3D dataset of Paris from BATI-3D®. BATI-3D is a 3D city
models database from IGN, which can be used for visualization purposes. The database

contains 3D buildings with real roof shapes ; buildings are textured with the best images
of the true orthophotos. The city model is associated with a high resolution DTM. The 3D

data is available in several formats: 3DS, CityGML, KMZ, and DirectX. BATI3D is
currently developed on a per-contract basis, and licensed accordingly. Data has been
produced, e.g., for the following cities: Paris, Montbéliard, Annemasse, Marseille
(partial), Lyon (partial), Nantes (partial), Dijon (partial).

http://wiki.openstreetmap.org/wiki/OSM_XML

OGC 12-075

10 Copyright © 2012 Open Geospati al Consortium

The Paris data set provided for 3DPIE contained a terrain model and buildings models in
the CityGML 1.0 format, including semantics and appearance data; building models are
modeled in LOD2; textures are provided as texture atlases . The data set covered a total

area of about 100 km2, provided in 446 tiles (500*500 m2 each), and had a total size of
about 62 GB zipped data. Access to this dataset required signature of a Non-Disclosure
Agreement.

Integration of the Paris data set into the 3D portrayal servers revealed several issues that

IGN was able to correct. Those were an incorrect structuring of CityGML ‘interior’
elements, a lack of CRS information, and an incorrect MIME type value.

The following issues were identified but could not be solved within the timeline of the
project:

 Invalid polygon elements (less than 3 points): This is a defect of the production
chain that will be corrected in the future.

 Missing ground surfaces, which make the product improper for analysis

purposes: The product is currently for visualization purposes only, other uses will
be investigated in the future.

 Chopping buildings at tile borders, using the same id for each part: This design
decision taken by IGN turned out to be an issue in the generation of the

COLLADA models of these buildings in the 3DCityDB tool, as the building ‘id’
no longer was a unique building identifier across tiles. Another option would be
to encode complete buildings in one tile only (e.g. using the centroid of the
building to determine which tile it belongs to).

Additionally, texture atlases used as texturing mechanism in the Paris dataset were not
supported by all the tools used for 3DPIE: For example, the 3DCityDB at their current
stage of development did not support texture atlases; individual texture images had to be

generated using an external tool. The CityServer3D actually was capable to transparently
handle and load the texture atlases.

7.1.2 Berlin city model

Before the start of this IE, IGG had already administered a complete 3D city model of

Berlin which was commissioned by The Berlin Senate and Berlin Partner GmbH and was
developed within a pilot project funded by the European Union in the period from

November 2003 to December 2005. The data is managed in a 3D City Database
(3DCityDB) and is accessible only to IGG staff. However, this running 3DCityDB
instance was used for 3DPIE as the basis for the CityGML to KML/COLLADA portrayal

process and is also dynamically queried by IGG’s W3DS when requested to serve any
area of the city of Berlin.

Also, two small subsets of this Berlin city model, which are also publicly available, have
been used for 3DPIE. They include building models in LOD2 with appearance data
(textures). The data has also been hosted in a 3DCityDB at IGG.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 11

7.1.3 Mainz city model

The Mainz city model was created on behalf of the city of Mainz (located in Southwest

Germany). It is based on airborne first- and last echo laser scan, which was corrected
using fixed reference points on the ground. Cadastral data was used to help determine

building and rooftop geometries. The elevation model was stored in PCI Geomatics
RAW format. From this data an LOD1 model was generated automatically and finally
converted to files in standard formats, amongst them CityGML. The Mainz data set is

available in the Gauss-Krüger Zone 3 CRS (EPSG:31467). It encompasses approximately
138,000 Buildings and covers around 285 km2 (including several suburbs).

Also, more detailed planning data was available for the Mainz city model. This includes
building data of the Münsterplatz in Mainz with quite detailed textures and also partial

sewage ducts together with manholes. These data sets were provided as separate layers
through a CityServer3D instance. The W3DS, as an integral component of CityServer3D,
reflects this choice by offering several layers.

7.1.4 Blacksburg city model

The Blacksburg city model is a product of the 3D Blacksburg Collaborative – an open
community effort launched by the Center for Geospatial Information Technology (CGIT)

and the Visual Computing Group at Virginia Tech (VT). The project targets the
development of a spatial data infrastructure for the campus and the town that enables
interactive 3D visualization in a variety of real-world applications and display venues.

With both private and public models, the 3D Blacksburg project addresses domains such
as community resilience and emergency management, town planning, social networking,
crowd sourcing, and economic development. Publishing to X3D is a key piece of the

project strategy in terms of IP and data control as well as providing the same assets that
can be shared in open source multi-user systems like DeepMatrix and also experienced
on a mobile device or a fully immersive VR room.

3D Blacksburg is published from an ESRI ARC-GIS backend to a set of file directories

for KML/COLLADA and X3D clients. For X3D, this includes the latest public terrain
and imagery data sets from the town and the state. There are a little over 3,500 LOD1

buildings in the database, 69 at LOD2 and 23 at LOD3; most features are referenced in
VA State Plane coordinates. Additionally, layers for the regional watershed and stream
center-lines have been published to the X3D platform. The 3DBlacksburg.org public

distribution is Creative Commons with Attribution and demonstrates how geospatially-
referenced 3D can be valuable to diverse stakeholders. Rather than as a versioned
archive, W3DS and WVS promise to deliver these resources in a more dynamic and
service-oriented way.

7.1.5 O penStreetMap data

The data from the OpenStreetMap5 (OSM) project is fundamentally different from the
other data sets described above. Firstly, it is not a local 3D city model but contains world-

5 http://www.openstreetmap.org

OGC 12-075

12 Copyright © 2012 Open Geospati al Consortium

wide 2D geometries along with a number of attributes (tags), which only partly imply 3D
information (such as building:height). A description on how this data can be transformed
into 3D geometries and hence be used for 3D portrayal is given in Section 8.6. Secondly,

the data has not been acquired by some reliable, high-quality public administration
authority but rather has been created by voluntary mappers all over the world. This

crowd-sourced approach is also referred to as "Volunteered Geographic Information”
(VGI) [2]. Promising and popular as VGI is, it raises questions about the completeness
and quality of OSM data. Recent work on these issues is reviewed briefly in the
following.

As of November 2011, about 250 GB OSM data has been collected by more than 500,000
users all over the world, who have created approximately 1.2 billion nodes and over 110
million ways [4]. The main data source for the volunteers are individually measured .gpx

tracks or the digitization of aerial imagery which has been released to the public domain
for that purpose e.g. from Bing or Yahoo. However, huge parts of the data have not been
captured by the users directly, but result from public domain data imports. For instance,

the TIGER data of the US Census Bureau has been entirely imported into OSM and
makes up a big part of the available map data in the US [5]. The completeness of OSM is

generally very heterogeneous. It depends on several factors like, e.g., the population
density, the widespread access to broadband internet, and the popularity of the OSM
project. It can be observed that most mappers are active in Central Europe and hence the

most complete maps can be found there. Also, there is a huge discrepancy between urban
and rural areas. For example, the OSM data collected for Germany and the UK is richer
than authoritative data in urban areas, however, it is less complete in rural areas (see

Zielstra and Zipf [6] and Haklay and Ellul [7]). At the bottom line and without going into
too much detail, it can be said that the most complete and highest quality OSM data is
currently available for metropolitan areas of big cities in Central Europe.

In recent months, the mapping of building ground plans in OSM has become more and

more popular. As of November 2011, there is a total number of about 46 million
buildings (and counting) mapped world-wide, of which 5 million are located in Germany

[9]. This is nearly 30% of the entire German building stock [11]. Together with the
detailed street and path network and other mapped features apparent in OSM, it becomes
possible to use this data for creating 3D city or landscape models. 3D-related tags that

can be used for this purpose include the building height (currently over 620,000 tags), the
number of levels (ca. 440,000 tags) or the roof type (ca. 60,000 tags). This 2D to 3D
transformation is being done within the OSM-3D project (cf. [12], [13], Section 7.2.4 and
Section 8.6).

7.2 Software

Based on various software systems, servers and client implementations, several

approaches for setting up a 3D portrayal pipelines have been tested and demonstrated.
These different software systems and how they were used for the 3DPIE are described in
the following.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 13

7.2.1 CityServer3D

The CityServer3D6 is a client-server system for the storage, visualization, and processing

of spatial data. Geo-information from different sources is integrated into an object-
relational database and optionally placed on the web to be accessed from different clients.

Spatial data is made available through various standard-based interfaces. Interoperability
of CityServer3D with existing spatial data standards and infrastructures supports an
effective management of 3D city models. In addition to 2D and 3D geometries in

different levels of detail (LoD) CityServer3D can be used to store and process technical
and metadata.

The CityServer3D includes different tools to support the sustainable management of
three-dimensional city models. An integrated rule-based system allows application-

specific access and consistent data management. Configurable development rules serve to
automatically keep distributed data sources consistent in terms of content. Different
methods integrated into the system support the integration and harmonization of

heterogeneous spatial data. In this way a high quality of the data stock can be reached and
ensured in the long run.

The rule-based system also allows the context-sensitive selection and visualization of 3D
models. In this model, the data is made available to different users in the form they need

to perform their daily work. The handling of a city model by different authors is governed
by access rights. The built-in versioning allows to trace all processing steps.

The CityServer3D also includes different methods for a rule-based analysis and
enhancement of the data quality of spatial data. 3D city models can e.g. be checked for
completeness and consistency of content. Faults in geometries are reliably spotted and
often eliminated.

For the storage of spatial data the CityServer3D uses an object-relational or schema. Due
to the multilayer architecture the CityServer3D is independent of the actual database
management system. The modular structure allows for high extensibility and

maintainability. As the integration of new, application-oriented software modules is very
easy the connection to existing system landscapes and business processes is possible
without artificial difficulties.

CityServer3D is implemented in Java using the OSGi component model. It can use

MySQL, Oracle, PostGIS/PostgreSQL and other Databases as a storage back-end, while
offering standard services such as WMS, W3DS and proprietary services to manage the
city model itself. CityServer3D runs on Windows and Linux.

As part of the experiment, two CityServer3D instances were provided on a 4-Processor

Intel XEON-based machine. The two instances served geodata from two local MySQL
databases loaded with the Paris and Mainz datasets.

6 http://www.cityserver3d.de/en/the-product/technologies/

http://www.cityserver3d.de/en/the-product/technologies/

OGC 12-075

14 Copyright © 2012 Open Geospati al Consortium

7.2.2 3DCityDB

The 3D City Database7 (3DCityDB), developed by IGG, is a free 3D geo database to

store, represent, and manage semantically rich all-purpose 3D city models based on
CityGML and on top of a standard spatial relational database. Its database model contains
semantically rich, hierarchically structured, multi-scale urban objects facilitating complex
GIS modeling and analysis tasks, far beyond visualization.

CityGML is the format of choice at IGG for city model storage, not for visualization in
this IE though. For visualization purposes KML/COLLADA (portraying the CityGML
contents) was chosen instead. Stored data can be exported in different 3D visualization

formats and styles from 3DCityDB through the 3DCityDB Import/Export tool, a Java-
based front-end that allows for high-performance importing and exporting spatial data.
Supported data formats are CityGML, KML, and COLLADA.

In this IE, two 3DCityDB instances containing the city models of Paris and Berlin were

provided and served as data repositories and source for the preprocessing step of
converting CityGML data to KML/COLLADA (through the 3DCityDB Import/Export).
They also provided the running W3DS serving the Paris and Berlin data with necessary

input for discerning which objects are comprised in the requested bounding box and must
be delivered to the client.

A complete Berlin city model was already available in a 3DCityDB at IGG (not
accessible to other participants), which was immediately ready for use. A test dataset

containing a small part of the Berlin city model was made available to all participants in
CityGML format.

The Paris data set provided by IGN in CityGML format was imported directly into a
3DCityDB (by means of the 3DCityDB Import/Export tool) hosted at IGG.

7.2.3 IGG Web 3D Service

For 3DPIE, IGG developed a Web 3D Service based on the “Draft for Candidate
OpenGIS® Web 3D Service Interface Standard, Version 0.4.0.” and ran two W3DS
servers for central areas of the cities of Berlin and Paris. In its first version, the IGG

W3DS delivers exclusively buildings objects; other object types like street furniture,
vegetation, terrain models will be included in a later version.

While mostly compliant, the IGG W3DS differs in two main characteristics from the
specification: Firstly, the supported output format is KML/KMZ instead of X3D.

Secondly, the IGG W3DS allows a consumer to apply more than one style to a layer.
Currently, the IGG W3DS implements the W3DS GetCapabilities and GetScene

operations; also, both HTTP GET and POST methods with KVP and XML encoding are
supported.

7 http://www.3dcitydb.net/

http://www.3dcitydb.net/

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 15

The IGG W3DS is implemented in Java making use of Servlets and runs on Tomcat
7.0.16 on top of a Linux server. The implementation is open source but has not been
made widely available to the public due to the lack of documentation.

The W3DS servers running at IGG for both Berlin and Paris data share the same code
base. They only differ in their URLs, the cached data they serve, and the 3DCityDB they
are connected to.

7.2.4 OSM-3D Web 3D Service

The OSM-3D8 W3DS has been developed by the University of Heidelberg and has been
used in several research projects dealing with Spatial Data Infrastructures and 3D
graphics. The main focus was to provide a component for delivering virtual city models

within a distributed geospatial information system, which comprises services for web
maps, geocoding, routing, sensor data, catalog, geo-processing, and others.

Advanced features include handling of multiple LODs for buildings, custom SLD styling,
and automatic tiling of large models. The W3DS implements the interface versions 0.3.0,
0.4.0, and 0.4.1 interface versions.

In addition to the default X3D format, it also supports VRML and COLLADA. Importers
exist for Shapefiles, CityGML, VRML, and OpenStreetMap data. Processed 3D data is
stored. The implementation is based on open source products Apache Tomcat, Java

Topology Suite, Xj3D, Aristoteles, GeoTools, PostGreSQL, and PostGIS for spatial
indexing.

7.2.5 HPI 3D Server and Web View Service

The HPI Web View Service is developed as reference implementation for the Web View
Service interface specification. Accordingly, it follows an image-based approach to
deliver 3D content to various types of clients. The HPI Web View Service is part of the

HPI 3D Server, which is an ongoing project to create a flexible service-based 3D
portrayal infrastructure and focuses on the storage, management, and delivery of large
scale, textured 3D geovirtual environments, especially, on digital 3D city models. In the

scope of the 3DPIE, the CityGML datasets of Paris (provided by IGN) and the publicly
available Berlin dataset were integrated as a basis for image generation and delivery.

7.2.6 XNavigator

The Java-based XNavigator software is a feature-rich W3DS client, which can be used to

view and interactively explore 3D city and landscape models using data from distributed
data sources. The 3D content in X3D format is fetched automatically from a standards-

based W3DS server. This includes automatic tiling and view-dependent generalization of
the Digital Elevation Model (DEM) as well as the objects on it (e.g. buildings or trees).
The different layers that are available in the W3DS such as buildings, labels or POIs can

be added to or removed from the created 3D scene on the fly. The client offers a wide

8 http://www.osm-3d.org/home.en.ht m

http://www.osm-3d.org/home.en.htm

OGC 12-075

16 Copyright © 2012 Open Geospati al Consortium

range of rendering properties, so that the look of the scene can be changed by the user.
Also, it supports styling via 3D-SLD [22].

Apart from the W3DS rendering, several other OGC-compliant services are supported.
For example, external data from a Web Feature Service (WFS) can be included as well as

sophisticated analysis functions defined in a Web Processing Service (WPS) (e.g., [23]).
Also, many parts of the OpenGIS Open Location Services (OpenLS) standard are
supported, such as geocoding and a POI search based on the Directory Service.

Moreover, routes from A to B can be calculated with the Route Service and displayed in
3D. The 3D Emergency Route Service uses a combination of a WPS describing an

emergency scenario and the Route Service, avoiding critical areas [24]. Both integrated in
one scene leads to a useful visualization. With this standards-based client-server
architecture, many different data sources can be (re-)used and a high level of

interoperability is guaranteed. The XNavigator is open source and can be either
downloaded or launched via Java WebStart9. It has been developed by the GIScience
group at the University of Heidelberg.

7.2.7 InstantReality Player

The instantreality-framework is a high-performance Mixed-Reality (MR) system, which
combines various components to provide a single and consistent interface for AR/VR

developers. Those components have been developed at the Fraunhofer IGD and ZGDV10
in close cooperation with industrial partners.

The key component in 3DPIE is the instant reality player, which implements an X3D
system with a large coverage of the X3D standard components. Development also aims at
improving and extending the X3D standard.

However in 3DPIE, only a fraction of the capabilities are used, since service-delivered
scenes are of a static nature and many X3D components target dynamic scenes.

7.2.8 BSContact Geo

The BS Contact Geo 3D engine from Bitmanagement Software GmbH enables the
visualization of geographic information in third-party hardware and software products.

BS Contact Geo is based on BS Contact and its capabilities. The software is expanded
and is focusing on the special requirements of the GIS community using ISO standard

compliant formats like CityGML and Geo-nodes from X3D and VRML standards of the
Web3D consortium.

7.2.9 HPI 3D WVS Clients

As proof of concept, the HPI has developed several clients that exploit the HPI 3D Web

View Service. These clients are based on different technologies, support different client
platforms and configurations, and provide different functionalities, e.g., they provide

9 http://www.osm-3d.org/Start.en.htm

10Zentrum für Graphische Datenverarbeitung, Darmstadt, Germany

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 17

different degrees of interactivity. All these clients consume the Web View Service
interface provided by the HPI 3D Server. Clients include, e.g., the HPI 3D Web Display
Client and the HPI Mobile Client.

7.2.10 Google Earth

3DPIE also tested how to integrate service-based 3D portrayal capabilities with Google
Earth, which is Google’s virtual globe application that is widely used for a variety of

applications and use cases. In its base version, Google Earth is a free software that allows
for the interactive exploration of geospatial data including, e.g., a 3D terrain model,

satellite and aerial images, 3D city models, or vegetation models. Also, it provides
additional geodata of various categories; this includes, e.g., photographs, videos, borders
and labels, environmental phenomena, etc. This underlying base data is managed and

hosted by Google itself; however, Google Earth can be extended by user-specific
spatially referenced data, e.g., 2D and 3D models (KML/ COLLADA), traces, or images.
Google Earth also provides functionalities for accessing and integrating map data from

WMS servers. In 3DPIE, we tested this feature for accessing a W3DS. Additionally, we
made use of NetworkLinks, a KML feature, to access remote 3D portrayal services.

7.3 Ex periment setup

7.3.1 Ex periment phases

The experiments are grouped into three work items, which represent three different
phases of the IE and which are aligned along the 3D portrayal pipeline: data integration,
service integration, and service delivery.

7.3.1.1 Data integration

Data integration phase includes experiments that test and demonstrate the integration of
3D geodata in standard 3D formats into 3D databases, servers, and services.

7.3.1.2 Service integration

Service integration phase tests the interoperability of multiple W3DS and WVS servers,
as well as the exploitation of these services from various clients.

7.3.1.3 Service delivery

Service delivery phase mainly tests the applicability of W3DS and WVS approaches for
web-based and mobile 3D portrayal of geospatial 3D environments. For this, various web
clients and mobile clients are accessing the W3DS and WVS servers established in the
phases before.

7.3.2 Ex periments overview

The overall 3DPIE included several experiments within the three experiment phases
(Figure 2). These experiments are characterized in the following sections.

OGC 12-075

18 Copyright © 2012 Open Geospati al Consortium

Figure 2: Data flows of all experiments in the 3D Portrayal Interop erability Experimen t.

7.3.2.1 Import raw data into W3DS and WVS servers (Experiment 1)

CityGML is a potential input format for 3D streaming and visualization services.
However, also other formats from BIM and GIS fields may be addressed. This input data

needs to be converted and optimized to be served as 3D graphics data through a W3DS or
to be rendered efficiently through a WVS; e.g., performance can be increased by batching

geometry meshes or combining textures. This experiment will include these conversion
and optimization processes. COLLADA, X3D, and 3DS will be considered as storage
and exchange formats. Results will be stored in a database or as files, depending on
service implementation.

1A) Integration of 3D geodata into a W3DS server

1B) Integration of 3D geodata into a WVS server

7.3.2.2 Linking WVS and W3DS (Experiment 2)

This experiment addresses the interoperability between W3DS and WVS on the interface
and application level by integrating WVS images in a W3DS client: Perspective images

will be displayed on a virtual canvas in the 3D scene of a W3DS client. A benefit of this
is that more complex rendering techniques can be applied or other information layers can
be made visible, that are too heavy for client-side real time 3D rendering (e.g.
streamlines) or that cannot be transferred to a client due to legal issues.

7.3.2.3 Integration of multiple W3DS in a 3D client (Experiment 3)

In this experiment data is integrated seamlessly on the object/model level. This
experiment will test basic W3DS interface capabilities that are necessary to merge
multiple data sets, e.g., format and CRS conversions.

Website

showing 3D

content

W3DS Client

Application

Mobile Apps

3D

Database

W3DS Server

3D

Database

WVS Server

Other

Datasets

CityGML

Datasets

#1B

#1A
#3

WI-1: Data Integration WI-2: Service Integration

WI-3: Service Delivery

#4A/B

#5A/B

#2

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 19

7.3.2.4 W3DS/WVS for browser-based portrayal (Experiment 4)

This experiment will test the ease of including 3D geospatial content in web pages as

multimedia component, e.g., based on Java applets, dynamic images, or WebGL viewers.
Also technologies for direct HTML integration may be tested. This could be the basis for

further mashup experiments. Many client components are already available and provided
by participants, but they need to be tested against other server implementations. W3DS
and WVS are addressed:

4A) Browser-based 3D portrayal through W3DS

4B) Browser-based 3D portrayal through WVS

7.3.2.5 W3DS/WVS for mobile portrayal (Experiment 5)

This experiment will test the applicability of the 3D portrayal approach for the

visualization of and interaction with large 3D worlds on thin clients such as smart phones
and tablets:

5A) Mobile 3D graphics from W3DS

5B) Mobile perspective images from WVS

7.4 Use Cases

Interoperable 3D portrayal capabilities represent a valuable building block for various

applications and systems for many application areas. One major use case we had in mind
when designing the 3DPIE experiments is urban planning (Figure 3). Interoperable 3D
portrayal capabilities can support the various stakeholders, e.g., city planners, architects,

construction engineers, but also the public to participate in urban planning processes. For
this, 3D portrayal can provide means to analyze, visualize, communicate, assess, and

decide about actual and planned situations. For example, a land surveying office or an
external 3D content provider could set up a 3D portrayal server that integrates and
provides access to geospatial data that is relevant for planning purposes, including terrain

models, thematic maps, building models and even subsurface data such as utility network
models. City planners could easily access and use this data for planning purposes. Also,
architects could be provided with 3D context buildings through a 3D portrayal service as

a basis for their design work. Further, W3DS/WVS-based (web and mobile) clients and
viewers could be used to communicate several designs to the public and, e.g., to request
for comments or to set up polls on those.

OGC 12-075

20 Copyright © 2012 Open Geospati al Consortium

Figure 3: Examples of using 3D portrayal capabilities within the urban planning process.

8 Experiment activities

8.1 Importing Paris data into IGG Web 3D Service

8.1.1 General approach

As KML is the data format of choice at IGG for visualization, all 3D data provided by the

IGG W3DS is served in KML format. Depending on the style requested by a client, the
W3DS serves either pure KML (footprint, extruded, geometry styles) or KML with
embedded COLLADA models (COLLADA style). The provided KML/COLLADA data

focuses on coordinates, surfaces and textures and is as such only a subset of all
information available from the original CityGML data: KML mainly emphasizes on data
presentation while CityGML is more semantically oriented.

Only geometries and textures of building objects served by the W3DS are included in the

KML representation. Additional display options like “balloons” or building “highlighting
on mouse over” were not considered for this experiment, even though they were
technically feasible with 3DCityDB Import/Export tool means.

The IGG W3DS is designed to serve to a consumer a master KML file that references

pre-cached KML/COLLADA data. To determine which objects to include into a W3DS
GetScene response, the W3DS makes use of the underlying 3DCityDB. The overall
architecture of the IGG W3DS and the 3D portrayal pipeline are illustrated in Figure 4. It
consists of three main building blocks:

1. A cache of previously generated KML and COLLADA files for all buildings in
all styles contained in the bounding box for which the Web 3D Service is set up.
These KML and COLLADA files are generated in one swipe by means of the

3DCityDB Import/Export tool. This tool connects to the 3DCityDB and with the

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 21

corresponding settings generates a separate file for each building and style in the
area of interest. All these files (around 60,000 for Berlin, 14,000 for Paris) must
be put into the WebContent folder of the Servlet for cached access.

2. An active connection to the 3DCityDB the KML and COLLADA files were
generated from. This connection will be used for spatial queries on the DB (with
the bounding box data from the request) in order to determine which buildings

must be served. The DB must be the same since the cached files in the
WebContent folder are all named after the gml:id (and style) of the building they
represent.

3. A thin business logic layer binding the previous two blocks together. The business

logic will check the incoming request parameters and if they are valid, generate
with the help of the connection to the 3DCityDB a master KML file containing
pointers to the relevant cached building files for the requested bounding box. The

cached building files will then be subsequently requested by the client and
automatically served on demand by Tomcat. No further logic interaction is

needed. This architecture ensures fast response times at the cost of higher network
traffic, which is an acceptable trade-off in this environment.

Figure 4: Scheme of the GIScience W3DS.

Differing from the W3DS specification the output format supported by the IGG W3DS is
not X3D but KML/KMZ. Also, differently from the W3DS specification it is possible to
specify more than one style for the same layer. To do so, the layer name must be present

as many times as the layer’s style names in the requests. Both lists must have the same
length. It is even possible to define visibility limits for switching from one style to
another; the visibility limits must simply be added at the end of the style name in the
format:

OGC 12-075

22 Copyright © 2012 Open Geospati al Consortium

_<min_visibility_limit>px[<max_visibility_limit>px]

The IGG W3DS set up for 3DPIE serves only a single layer called “citygml:Building” in
four different styles named “footprint”, “extruded”, “geometry” and “collada”.

Responded 3D scenes are tiled, but not in a conventional way. The returned master KML
file (containing pointers to the relevant cached building files) is itself untiled. Each

building that the master file points to is contained in a region of its own (see <Region>
tag in the KML specification). The region with all features it contains, in this case just the
building, becomes visible when it reaches <min_visibility_limit> pixel size specified in

the request, it becomes invisible again after reaching <max_visibility_limit>. If no
visibility limits are specified and only one style is defined in the request , the regions (that
is, the buildings) are always visible (<min_visibility_limit> = 0, <max_visibility_limit> =

-1). If no visibility limits are specified and more than one style is defined in the request ,
predefined visibility limits apply (0px20px for footprint, 20px40px for extruded,
40px60px for geometry, 60px-1px for COLLADA).

Examples of GetScene requests are:

http://IGG.3DPIE.OGC.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&V

ERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52
.533,13.406,52.53615&LAYERS=citygml:Building&STYLES=collada

http://IGG.3DPIE.OGC.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&V
ERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52

.533,13.406,52.53615&LAYERS=citygml:Building,citygml:Building&STYLES=geomet
ry_10px45px,collada_45px

Through the course of 3DPIE it turned out that an export of X3D directly from a
3DCityDB could be a valuable building block of a standards -based 3D portrayal pipeline.

This could be used, e.g., to load specific data sets, e.g., buildings in a planning area, into
X3D-enabled clients. This might be useful, e.g., for cases, where a full W3DS (which of
course could also deliver X3D) is not required. Also, such capabilities could help to

implement and set up a W3DS that does provide data in X3D format such as shown for
the case of IGG’s W3DS in this experiment.

8.1.2 Paris data import and W3DS configuration

The Paris data provided by IGN in a series of CityGML files covered an area of

approximately 137 km2 of the Paris city center. It was provided in a tiled form: The
whole bounding box (643174.3, 6857518.932, 657513.248, 6867080.967) was divided
into 434 tiles that summed up to 50 GB.

This complete dataset was imported into a 3DCityDB hosted at IGG by means of the

3DCityDB Importer/Exporter Tool. This tool is provided along with the 3DCityDB and
allows a user to easily load CityGML data into the database.

Then, from the filled 3DCityDB a relevant subset of this data was exported directly into
the KML/COLLADA format using again the Importer/Exporter Tool. It achieves data

http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building&STYLES=collada
http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building&STYLES=collada
http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building&STYLES=collada
http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building,citygml:Building&STYLES=geometry_10px45px,collada_45px
http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building,citygml:Building&STYLES=geometry_10px45px,collada_45px
http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building,citygml:Building&STYLES=geometry_10px45px,collada_45px
http://igg.3dpie.ogc.org/W3DS/Berlin?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:4326&FORMAT=model/kml&BoundingBox=13.40154,52.533,13.406,52.53615&LAYERS=citygml:Building,citygml:Building&STYLES=geometry_10px45px,collada_45px

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 23

export (from 3DCityDB) and format conversion (into KML/COLLADA) in one single
step. The Importer/Exporter Tool allows a user to precisely control the export and

conversion process. This includes, e.g., the region and object types to export, the level of
detail to use, color parameters and texture settings, KML-specifics to apply, and usage of
the Google elevation service to position objects correctly on Google’s terrain model.

Also, settings were chosen so that for each building a subfolder named after the

building’s gml:id was generated. Each subfolder would contain four different files for the
same building, one for each style. The file name results from the combination of the
building’s gml:id and the style’s name.

As a result of this naming strategy each Building is accessible under the URI

http://<W3DS_address>/<folder_for_building_layer>/<building_gmlid>/<building_gmli
d_style>.kmz. These KML/COLLADA files serve as the service’s cache; they are
generated only once. Later, these URIs will be dynamically embedded in the master file

that are created and returned as service response by the W3DS. The transparent structure
of the links makes debugging and possible future enhancements of the W3DS a
straightforward task.

After this generation of KML/COLLADA files per building, the whole subfolder

collection for buildings was copied to the WebContent folder of the IGG W3DS. The
WebContent folder is, as the name implies, the default root folder all cached contents for

a servlet are delivered from. The business logic layer of the IGG W3DS is written
accordingly to pick the right files from the right subfolder in WebContent when the
corresponding gml:id of a building was found inside the Bounding Box of the W3DS

GetScene request. The business logic is the same for all IGG Web 3D Service instances.
Only the service’s connection data must be adapted to connect to the right database and
be able to check a request’s bounding box against the correct 3D city model data.

8.2 Importing Berlin data into IGG Web 3D Service

Already before the beginning of 3DPIE, a complete Berlin city model was available in a
3DCityDB at IGG (not accessible to other participants) and immediately ready for use

and test. The activities required for importing the data into the IGG W3DS for Berlin
were identical to those for the IGG W3DS for Paris: portrayal of the 3DCityDB contents
to KML/COLLADA using the Importer/Exporter Tool, copying the resulting collection

of subfolders into the WebContent folder of the servlet implementation and specifying
the connection data for the Berlin 3D city model.

8.3 Importing Mainz data into CityServer3D

The city of Mainz uses CityServer3D for the management of their 3D city models. The

data to import was provided as CityGML files along with PNG images as textures for
LOD2 data like Münsterplatz and sewage duct planning data. Additionally, a digital

terrain model is available. The data was generated via laser scanning of the terrain and
imported in PCI Geomatics Raw data format.

As CityServer3D directly supports the formats used for 3DPIE, the import did work as
expected and no problems occurred.

OGC 12-075

24 Copyright © 2012 Open Geospati al Consortium

With the help of the CityServer3D WebAdmin, a web client, the Mainz data set was
imported into the CityServer3D.

CityServer3D was one of the first implementations of W3DS since the 0.3.0 draft was
published, and has been updated to conform better to W3DS 0.4.0 for 3DPIE. As the

W3DS implementation is a first-class citizen in CityServer3D, at import timethere is no
decision about styles or data formats to use in the experiments.

The “GetScenario” operation, a proprietary W3DS extension for delivering tailored
portrayals is CityServer3D’s substitute for styles. It is conceptually unfit for

standardization (which might change given some progress in production rules
standardization), but has been used in 3DPIE to deliver tiled terrain data in Mainz. It is
mostly compatible to the GetScene operation and can, potentially, be substituted for
GetScene.

The CityServer3D contains on-demand request and texture caches which are employed
for 3DPIE. Therefore, some requests may take substantially longer than others. Pre-
generated or pre-filled cache content was not provided, except as a side-effect of internal
testing.

8.4 Importing Paris data into CityServer3D

The Paris data was supplied as zipped CityGML files along with TIF images as textures.

The main issue was the large amount and size of image data, which made up the major
part of the data set. Especially for the use in a web browser the sheer size of the TIF
images leads to massive performance degradations in terms of resource usage and

bandwidth. Therefore we decided to convert the images to the JPEG format. This
conversion was done with the standard tool ImageMagick. All references within the
CityGML files had to be adapted accordingly. This was done with a custom Unix Shell

script. This reduced the size of the data from 61.9 GB to 8.2 GB, which was easier to
handle.

8.5 Importing Paris data into HPI Web View Service

The goal of this experiment is to integrate a large CityGML dataset into an existing Web
View Service instance. Generally, this requires converting the 3D data provided in
CityGML format into an optimized internal representation that can be rendered

efficiently while at the same preserving their association to the origination feature
information.

8.5.1 Workflow

The target of the integration process is to generate compact and efficiently accessible data

representations from the given input data. The Paris dataset includes a textured 3D
building models as well as a digital terrain model textured with orthophotos. The

processing of the terrain model was performed analogous to the processing of other types
of city objects.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 25

Figure 5: Integration of massive Ci tyGML data into HPI 3D Server includes three stages: data

extraction, geometry optimization, and texture optimization.

Data integration is a preprocessing step, which basically consists of three stages: data
extraction, geometry optimization, and texture optimization (Figure 5), which include,
e.g., the following operations:

1. Extract feature data:

o Extract all features from the CityGML documents and create internal
feature representations

o Transform geo-coordinates into computer graphical coordinate system
o Triangulate feature geometries
o Assign object ids to feature geometries

2. Optimize geometries
o Organize geometries in an optimized out-of-core spatial data structure,

e.g., as tiles of a regular quad-tree

o Batch geometries, i.e., merge geometries, to further reduce data footprint
o Serialize the quad-tree tiles, which include batched geometries

3. Optimize textures
o Reorder and compress textures
o Generate optimized mip map levels

o Adjust texture coordinates to specific texturing techniques

Input for the WVS data integration process were a) the original data set provided by IGN,

which included texture atlases, and b) a second CityGML data sets without texture
atlases, which was exported from IGG’s 3DCityDB that was hosting the Paris buildings.

8.5.2 Results

The complete Paris city model was successfully preprocessed and loaded into the HPI
Web View Service. It turned out that the techniques to process and optimize building data
worked out also for large terrain data.

OGC 12-075

26 Copyright © 2012 Open Geospati al Consortium

Due to specifics of the Paris data model regarding multiple occurrence of object ids in
various CityGML files, the resulting internal representation contains few inconsistencies
for buildings cut at data tile borders (see next Subsection), which however could be
resolved by extending feature extraction mechanisms to work across input files.

To reduce processing time, we exploited the HPI Future SOC Lab, a high performance
computing platform, which provides, e.g., server systems with huge main memory (up to
2 TB) and multiple CPUs (up to 128 logical cores). To reduce I/O costs, a 160 GB RAM

disk for processing the Paris data was used. Also, the CityGML input files were
processed by 8 threads in parallel. So, it took, e.g., less than 6 hours to import the Paris

data set without texture atlases (418 CityGML tiles with JPEG-compressed textures and a
total data size of 12 GB unzipped). The size of the resulting (internal) data is currently
4.4 GB in total.

8.5.3 Problems and solutions

8.5.3.1.1 Granularity of object ids

Assigning object ids to the extracted and processed geometries is required for associating
the internal geometries to additional feature data, e.g., feature attributes. However, it is

not fully specified what granularity should be used for assigning such object ids.
Therefore, several object ids could be assigned according to different criteria. For

example, they could be assigned for each occurring city object (e.g., each sub feature of a
Building instance gets assigned an own id), per object class (e.g., same id for all Building
objects), or per top level CityObjects (e.g., same id for all sub features of a Building

instance). Finally, we chose an assignment of object ids per top level city object, because
this fits best to the Paris dataset, which is modeled primarily in CityGML LOD2.

8.5.3.1.2 Terrain data encoded in CityGML

In earlier implementations of the preprocessor, there was no focus on supporting terrain

elevation data included in the CityGML data source; rather a separate data source had
been used for generating a separate digital terrain representation. However, the approach

of merging geometry into batches of triangles (originally designed for single objects such
as buildings) proved to be applicable also to the tiled terrain data. Nevertheless, this tiling
leads again to a problem of object id assignment: The data loading and import

mechanisms might need to recognize the Relief data distributed over several files as parts
of one special scene object, i.e., one terrain model.

8.5.3.1.2.1 Strict geographical tiling of the data set

The Paris 3D city model was delivered strictly tiled by geographical space: Feature’s

whose geometries overlap tile borders were cut into several parts and distributed over
these tiles each stored in a separate file. However, all these feature parts carry the same

gml:id. Currently, this conflicts with the 3D server’s internal data import and object id
assignment mechanism, which assumes that one feature (i.e., one gml:id) shows up only
once during the overall processing of the input data. Hence, these different parts get

assigned different object ids. However, this circumstance does not affect the image
rendering and display process; only functionalities that rely on object ids (e.g., object

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 27

selection) are affected by this fact. While it is perfectly valid in CityGML to have the
same gml:id in several CityGML documents, it could ease the processing of this data if a

single feature would be completely included in one document, e.g., by assigning the
whole overlapping feature to a single tile and accepting possibly overlapping bounding
boxes of the single tiles. However, the HPI 3D Server’s import process is planned to be
extended to cope with such multiple occurrences of identical gml:ids.

8.6 Importing O penStreetMap data into O SM-3D Web 3D Service

As already described in the Section 7.2.2, OSM data mainly comprises two-dimensional

geometries. These geometries are provided in that way, that several geo-referenced nodes
are combined to ways and/or relations. Additional 3D-related information (e.g. the height
of a map feature) can be attached as a key-value pair to the corresponding OSM feature.

Thus, processing of OSM data for the usage in the OSM-3D W3DS is a two-step process:

Firstly, two-dimensional geometries of the corresponding map features (mainly building
footprints) need to be computed. Secondly, all available information (i.e. key-value pairs)
and the 2D-geometry can be utilized for generating three-dimensional models.

The generation of two-dimensional geometry is based on database processing algorithms.

A regularly updated PostgreSQL database with OSM data is utilized as a data container.
Several SQL scripts and PostGIS functions (e.g. ST_Geometry etc.) are then utilized for
generating two-dimensional footprints of the different map features (buildings, land

usage areas etc.). Thereby, it needs to be considered that a polygon in OSM can be either
a simple polygon, which is mapped by one closed way (a closed way is a way whereat the
first and last node are equal), or a more complex polygon (e.g., a polygon with holes),

which is mapped with the aid of relations. In the latter case, the SQL script has to
generate a polygon by deriving the outer polygon(s) and cutting out the inner polygon (s).

After a polygon has been created, it is then again stored in a PostgreSQL database. For
more information on OSM processing and the generation of 2D geometry, especially for
more details on the system setup and SQL commands please refer to [13].

These 2D footprints are the basis for further processing steps. Due to the open key-value
pair methodology in OSM, there is (in theory) a lot of 3D-related information available in

the OSM database. For the generation of 3D building models, one of the most important
characteristics of a building is its height. Within OSM, there are potentially two keys

available which contain such information: on the one hand the key height (which directly
contains the height of the building) or the OSM key building:levels (the amount of
levels), which allows an approximation of the height of a building. Obviously, the former

key is advantageous, but nevertheless if not available, the information contained in the
latter key is better than no information at all. This height information is used to extrude
the footprint geometry of a building and to generate a 3D volumetric body. This results in

a block model that corresponds to a CityGML LOD1 building model. For the generation
of even more realistic building models, roof geometries are generated on top of the

extruded buildings. For that, the OSM keys that contain roof information (currently
building:roof, building:roof:shape and building:roof:type) are evaluated. Since
building:roof:shape is defined as best practice [14] and also most commonly used, this

key is evaluated at first, and only if not supplied, the other keys also considered.

OGC 12-075

28 Copyright © 2012 Open Geospati al Consortium

Currently, the building generation process supports the creation of flat roofs, pitched
roofs, cross-pitched roofs, hipped roofs, pyramidal roofs and gambrel roofs (cf. [14]).
Additional roof types such as mono-pitched roofs etc. will be also be implemented in

near future. How far the roof is raised in the air is either explicitly added in OSM with the
key building:roof:height or implicitly with the key building:roof:angle (in this case the

real height needs to be computed with trigonometric equations).

Regardless of what type of roof geometry needs to be generated, the algorithms always

strongly depend on the complexity of the footprint polygon. For simple geometries such
as those consisting of five points, the processing is quite straight forward (mainly linear
algebra computation), as well as for shifted or rotated geometries . Some building

geometries in OSM are slightly concave, i.e. per definition they are concave but
comparing the geometry with the oriented bounding box (OBB) of the geometry, all

points are very close to the OBB. This either results from imprecise mapping, but also
occurs in the case of very small notches. For the creation of roof geometries for such
building footprints, the approach in OSM-3D first applies a slight simplification on the

building footprint, so that imprecise mappings are neglected. Additionally, it is assumed
that geometries, for which every point of the geometry is closer to the OBB than a
distinct threshold, do also have a simple roof geometry which is based on the OBB (can

be computed with linear algebra equations). Currently, this threshold has been defined as
one meter. These roofs are not necessarily equal to the real world roofs, but they can be

considered as a quite good approximation of the reality. Finally, for making the building
models even more realistic and appealing, the roofs are colored according to the tags
building:roof:colour or building:roof:color, as well as the building body can be colored

according to building:facade:colour, building:facade:color, building:colour or
building:color.

8.7 Displaying KML from W3DS in Google Earth

External resources can be embedded in Google Earth (GE) using so called Network

Links. GE does not support OGC services directly and cannot extract meta information
such as service provider, supported protocols, supported coordinate reference systems,

and available layers from a Network Link. There is neither content, language nor version
negotiation. The W3DS logic respectively the description of the service content must be
encapsulated in a KML document from which the user can then choose available options,

e.g. enabling a specific layer. A Network Link can act as view-dependant spatial anchor
triggering the download of further KML resources over the network. W3DS resources
can be embedded as GetScene or GetTile request URLs in KML or by directly pointing
to W3DS objects using unique IDs.

Several approaches for embedding W3DS content as KML have been evaluated in this IE
which are described in the following subsections.

8.7.1 Connect CityServer3D and Google Earth

CityServer3D’s approach is to offer a separate operation “GetTileDefinition” for W3DS

(see 10.3.2 for details). As currently implemented, it serializes a pre-configured tile set
with matching W3DS references in a number of formats. One of these being KML, the

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 29

Mainz data set could be visualized using Goolge Earth (Figure 6). As can be seen, the
height and location mismatches between Google’s globe and Mainz data set are quite

pronounced. The exact cause of the location mismatch was not determined, but is
probably linked to the CRS conversion process or problems of the same.

Figure 6: Main z in Google Earth, made available over GetTil eDefinition .

8.7.2 Connect IGG W3DS with Google Earth

The easiest way to display any response results from the IGG Web 3D Services is to add
a Network-Link in Google Earth itself specifying a valid W3DS request in the link
address field. When activated by selecting the attached checkbox on sidebar to the left the

request will be sent to the W3DS and the results will be shown automatically in Google
Earth (Figure 7).

Another simple way of displaying KML/COLLADA from the W3DS is making Google
Earth the default application for showing kml/kmz files and call the W3DS from a web

browser’s address field. The download of the kml master file will start immediately and
the user will be asked to save or open the downloading file. When open (at the moment or
later) the files containing those single buildings included in the scene will be requested by

Google Earth when the building's (footprint-) bounding box becomes large enough on
screen. The Tomcat instance hosting those cached files will then serve them on demand.

OGC 12-075

30 Copyright © 2012 Open Geospati al Consortium

Figure 7: Network-Link defined in Google Earth.

8.7.3 Connect OSM-3D W3DS with Google Earth

W3DS GetScene and GetTile requests are using axis parallel bounding boxes for
extracting a spatial subset which can be added to the client’s 3D scene. Usually space is

divided two-dimensionally into a grid of adjacent rectangles for defining spatial batch
selection instead of downloading each object individually. The grid can be used as
skeleton that defines the structure of the resulting scene. Each cell of the grid contains a

service request which is triggered by a Network Link. Basically, pixel size of the cell
controls when a Network Link is activated. Instead of downloading the entire data set,
only the cells near the virtual camera are filled with content.

The OSM data set covers the whole planet. Creating a grid in WGS84 with reasonably

sized cells of about 39.5 arc seconds (ca. 1,200 meters at the equator) would result in an
excessive number of 536,870,912 grid cells. This is far too many to be encoded in KML

and processed by normal personal computers. For integrating the OSM-3D the grid was
therefore replaced by a dynamically created quadtree. Only a base cell of 360x180
degrees is loaded by GE as KML file. The quadtree is implicitly created by the W3DS

logic. Each KML contains four sub-cells each defined by a Network Links containing a
W3DS GetScene request. The W3DS does not grant direct access to its data for arbitrary
bounding boxes. Only if the bounding box is smaller than a specified value, the actual

data is retrieved from the database, encoded in COLLADA and packaged in a KMZ file,
which is then loaded by GE. This threshold size value corresponds to the

MaxScaleDenominator in SLD, which also denies access to the data at smaller scales,

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 31

resulting in a blank image. If the bounding box size is too big, then the W3DS returns
another KML file with four sub-cells each defined by a Network Links containing a

W3DS GetScene request. GE is able to traverse through the quad tree structure very
quickly and starts downloading data when the camera is close to the ground. This
integration approach was tested with OSM buildings, which are generally available at
major cities (Figure 8).

Figure 8: OSM-3D buildings in Chicago integrated in Google Earth as Network Links.

8.8 Accessing X3D

8.8.1 Web-based portrayal through W3DS using Instant Reality Player

The aim of this experiment is to we are visualize data from OpenStreetMap3D server

with Instant Reality Player release 2.0. The supported data formats are X3D in its various
encodings and VRML. The player directly visualizes the W3DS responses. Manual
download to the local file system is not necessary. The Instant Reality Player is used to
access the OSM-3D Web3D Service using VRML and X3D format.

8.8.1.1 Test subject: O penStreetMap3D server

8.8.1.1.1 Test Setup 1: 3D scene in VRML format

Example GET request for retrieving OSM-3D data in VRML format:

http://GIScience.3DPIE.OGC.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetS
cene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/vrml&BoundingBox=
9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0

http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/vrml&BoundingBox=9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/vrml&BoundingBox=9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/vrml&BoundingBox=9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0

OGC 12-075

32 Copyright © 2012 Open Geospati al Consortium

Figure 9: Scen e in InstantPlayer.

Result: The scene was displayed correctly (Figure 9).

8.8.1.1.2 Test Setup 2: 3D scene in X3D format

Example GET request for retrieving OSM-3D data in X3D format:

http://GIScience.3DPIE.OGC.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetS

cene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d&BoundingBox=9
685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0

http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d&BoundingBox=9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d&BoundingBox=9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d&BoundingBox=9685,63449,971500,63464&layers=Buildings,DEM&OFFSET=969450,6344450,0

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 33

Figure 10: Scene in InstantPlayer.

Result: The scene was displayed correctly (Figure 10).

8.8.1.1.3 Test Setup 3: 3D scene in X3D binary format.

Example GET request for retrieving OSM-3D data in X3D binary format:

http://GIScience.3DPIE.OGC.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetS

cene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d%2Bbinary&Boun
dingBox=790053.1172,6572361.3988,790664.6134,6572972.895&layers=Buildings&off
set=790053.1172,6572361.3988,0

Result: The binary format is not working; the Instant Player stops loading with an error

message. There seems to be an incompatibility in the binary representations expected.
Whether the underlying cause is a violation of the binary encoding standard or a result of
the known ambiguous specification could not be determined.

8.8.1.2 Test subject: 3D Blacksburg data

The 3D Blacksburg data is directly used from http://www.3d.cgit.vt.edu/index.php/83-

explore-3d-blacksburg/downloads/96-download-models after required registration at
http://www.3d.cgit.vt.edu/.

http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d%2Bbinary&BoundingBox=790053.1172,6572361.3988,790664.6134,6572972.895&layers=Buildings&offset=790053.1172,6572361.3988,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d%2Bbinary&BoundingBox=790053.1172,6572361.3988,790664.6134,6572972.895&layers=Buildings&offset=790053.1172,6572361.3988,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d%2Bbinary&BoundingBox=790053.1172,6572361.3988,790664.6134,6572972.895&layers=Buildings&offset=790053.1172,6572361.3988,0
http://giscience.3dpie.ogc.org/OSM3D/W3DS?SERVICE=W3DS&REQUEST=GetScene&VERSION=0.4.0&CRS=EPSG:900913&FORMAT=model/x3d%2Bbinary&BoundingBox=790053.1172,6572361.3988,790664.6134,6572972.895&layers=Buildings&offset=790053.1172,6572361.3988,0
http://www.3d.cgit.vt.edu/index.php/83-explore-3d-blacksburg/downloads/96-download-models
http://www.3d.cgit.vt.edu/index.php/83-explore-3d-blacksburg/downloads/96-download-models
http://www.3d.cgit.vt.edu/

OGC 12-075

34 Copyright © 2012 Open Geospati al Consortium

8.8.1.2.1 Test: 3D scene in X3D format.

Figure 11: Blacksburg 3D scene in InstantPlayer on Linux.

Result: There are some minor incompatibilities with the viewpoint/coordinate setup.
When getting closer to the buildings, the scene was clipped. After adjusting the near
plane zratio in the InstantPlayer the scene could be visualized as expected (Figure 11).

8.8.2 Portrayal through W3DS using BS Contact Geo

In this experiment, the interoperability of X3D client software and a W3DS server was
tested. In general the tests were successful in rendering 3D graphics data retrieved from a

CityServer3D instance in Bitmanagement’s BS Contact Geo. The experiment was run
with Bitmanagements Client software BS Contact Geo, Version 7.220, Development
build 11/2011 accessing IGD’s CityServer3D instance hosting the Mainz data.

The client did use the server’s operation GetTileDefinition:

http://IGD.3DPIE.OGC.org/Mainz/W3DS?do=GetTileDefinition&template=entrypoint&
surface=mainz_stadt

This experiment did identify some inconsistencies regarding the interpretation and

implementation of the X3D standard, which could be resolved in the course of the
experiment:

4. The field 'height' of the 'GeoElevationGrid' node was not exported correctly.
Some of the numbers were replaced with a certain "Unicode" character.

http://igd.3dpie.ogc.org/Mainz/W3DS?do=GetTileDefinition&template=entrypoint&surface=mainz_stadt
http://igd.3dpie.ogc.org/Mainz/W3DS?do=GetTileDefinition&template=entrypoint&surface=mainz_stadt

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 35

5. In XML coded X3D files some of the MFString attributes containing only one
string value were not coded correctly. The double quotes were missing.

6. In VRML coded X3D fields the PROFILE statement was missing.

7. In VRML coded X3D files all top-level nodes were enclosed in a 'Scene' node.
This is done only with XML coding.

8. Some MFString values in XML coded X3D files were not yet coded correctly.

9. Non-equal values for the xSpacing and zSpacing fieldsd of the GeoElevationGrid
node did lead to distorted geometries and renderings.

8.9 Merging data from multiple Web 3D Services in XNavigator

The motivation for this experiment was to demonstrate the interoperability between
multiple W3DS instances. We used the OSM-3D W3DS and the CityServer3D W3DS

implementations on server side and the integrated client XNavigator as client. The goal
was to merge both data sets in the client by accessing the servers in parallel with only a
few configuration settings.

XNavigator is an open source development specifically designed as W3DS client and for

visualizing global data sets with the accuracy needed for showing even the smallest
details in a global reference system. As W3DS client it supports the W3DS logic and
syntax. It supports version and language negotiation as well as automatically parsing the

contents section providing information of available layers , styles, CRSs etc. Since the
W3DS logic is supported, it must be possible to connect to any service instance.

XNavigator was already used as a client for GIScience’s W3DS in the OpenStreetMap3D
project, which is available as live service.

The CityServer3D, developed by Fraunhofer was used as a second service instance due to
its support of X3D. It contains the Mainz data sets, comprising building geometries,

sewage ducts, as well as a detailed model of an area around the Münsterplatz. The OSM-
3D W3DS by GIScience contains a terrain model, simple building geometries and points
of interest.

8.9.1 Workflow

The workflow for integrating multiple W3DS servers in the XNavigator is illustrated by
the sequence diagram in Figure 12.

As a first step, the service description (meta data) of CityServer3D was accessed using
the GetCapabilities request and processed by the W3DS parser of XNavigator. This

proved to be possible without major problems because both, the service and the client
connectors, were derived from the same reference XML schema.

The second step involved modification of the client code in order to support several

server instances simultaneously. The client is configured at startup using an XML file,
which contains all service URLs, camera, light and navigation settings. The configuration

OGC 12-075

36 Copyright © 2012 Open Geospati al Consortium

was extended to support multiple W3DS URLs and connection credentials
(username/password). No further settings were required.

On startup, connections to all W3DSs are established and the results of GetCapabilities
requests parsed. The contents sections contain information on the available layers, which

is collected so that a list is provided to the user for enabling or disabling single layers.
Each layer is connected to a specific W3DS URL. GetScene requests are always issued in

a tiled fashion, i.e. with adjacent bounding boxes. If no tile set is defined for a specific
layer, then a default tiling schema is constructed, which can be changed by the user
afterwards. Credentials are passed along GetScene requests if required using HTTP Basic
Authentication.

Figure 12: Sequen ce diagram showing XNavigator startup phase.

8.9.2 Results

An important aspect of service interoperability could be demonstrated by this experiment:
that it is possible to use the OGC version, language and content negotiation mechanism

for plugging in 3D services into existing applications. As an example, the XNavigator
client was used to integrate 3D data from the GIScience W3DS and the CityServer3D
W3DS (Figure 13).

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 37

8.9.3 Problems and solutions

We faced a few problems that could be overcome by applying special options only to
CityServer3D requests.

10. Order of coordinate axes: CityServer3D uses a right hand coordinate system in
which the z axis is pointing upwards. XNavigator requires a right hand coordinate
system with the y axis pointing upwards. This problem was addressed by
introducing an option for flipping y and z axes.

11. Usage of synonymous EPSG codes for Spherical Mercator projection:
Unfortunately there are two EPSG codes around for Spherical Mercator, which
was used for accessing 3D models (EPSG:900913 and EPSG:3857).

12. Layer names versus Layer identifiers : Partly layer names were used for accessing
W3DS layers instead of the unique identifiers.

13. Height values of the different data sets do not match: The terrain model was
created from SRTM data, which has an inherent vertical accuracy of 16m. The
Mainz model was created by the local municipality having much higher resolution
elevation data available. Most buildings are sunk into the ground a few meters.

Figure 13: 3D Data from two W3DS instan ces merged together: 1) terrain model (textu red with

OpenStreetMap) and POIs from GIScience’s server, 2) buildings from CityServer3D. Location:

Main z, Germany.

OGC 12-075

38 Copyright © 2012 Open Geospati al Consortium

8.10 Merging 3D models from W3DS and imagery from WVS in XNavigator

The motivation for this experiment was to figure out how image-based services (Web

View Service, panorama images, webcams, video feeds, orthographic imagery) and geo-
referenced imagery can be integrated into real 3D geo applications : Photographs and web
cams may provide a much more accurate impression of how a site looks like. A

precondition of merging such imagery with a 3D model is a proper definition of the
location and viewing angles at which the photographs were taken. Often, switching to
perspective and panoramic images requires an alternative set of behaviors for zooming

and panning actions. Displaying imagery can be realized within the 3D application using
textured spheres, boxes or canvases, without switching to a 2D rendering mode.

Also, renderings of synthetic 3D worlds can be “outsourced” to a dedicated rendering
server which allows free definition of camera location, angles and other properties, in

contrast to photographs. This is the purpose of the Web View Service. Performing server
side rendering may be necessary, e.g., if

14. the 3D model is too big or too detailed to be rendered by the client at acceptable
frame rates,

15. the network bandwidth is too limited to transmit the amount of data required for
3D models at reasonable time,

16. the rendering exploits advanced algorithms usually not available in real time
graphics (ray tracing, ray casting, caustics, soft shadows, depth blurring).

8.10.1 Workflow

The XNavigator client was used as frontend for accessing W3DS and WVS. To have a

basic 3D model as reference, the OSM-3D W3DS was used. The basic setup is identical
to the setup used by the live osm-3d.org service. An additional panel was implemented as
plug-in for accessing a WVS. It allows the user to set the URL of the service and a spatial

reference system as EPSG code, which is used for describing coordinates in WVS
requests. Once the user has navigated to a place where data is provided by the WVS, he

can manually trigger GetView requests towards the used WVS. The GetView requests
contains a perspective definition, which must be derived from the virtual camera of the
3D viewer (Figure 14). The virtual camera is always defined as a 4x4 transformation

matrix in computer graphics, from which the current position and viewing angles (pitch,
heading, roll) can be easily extracted. A GetView request requires a point of camera
(POC), a point of interest (POI), and an up vector (UP). A POI can be generated using
POC, camera orientation, and a default distance in that direction.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 39

Figure 14: Extraction of GetView persp ective parameters from the camera definition in XNavigator

and creating a virtual canvas for image display.

Since the reference system used by the viewer may not be supported by the WVS, an
optional coordinate transformation step must be implemented. For this purpose an
external Coordinate Transform Service (CTS) can be used, supporting the full set of

EPSG codes. This takes effect if the EPSG code in the WVS panel does not match the
internally used reference system.

The constructed request URL is used as texture on a small rectangular geometry that is
placed in front of the camera. The so constructed virtual canvas occludes the 3D model in
the background and displays the output of the WVS GetView request.

OGC 12-075

40 Copyright © 2012 Open Geospati al Consortium

Figure 15: Persp ective imagery from a WVS displayed in the 3D viewer XNavigator. The montage

shows 3D con ten t from W3DS (left) and WVS (right) for the same camera position.

8.10.2 Results

The setup was tested with both Web View Services provided by HPI. The first one was

containing a subset of the Berlin model with 2 areas with textured buildings and a
complete textured terrain model. The second one was containing the complete 3D model
of Paris as described in section 7.1.1. It was possible to switch between both at runtime

(Figure 15). The resulting imagery was almost perfectly matching the underlying OSM-
3D model. Only minor perspective deviations could be observed.

8.10.3 Problems and solutions

The underlying 3D model used by the WVS may be defined in a local coordinate system,

e.g. UTM. In this case it is impossible to perfectly merge the perspective imagery with a
3D globe model as used by the osm-3d.org project. However the effect is barely visible at

the scales used in this experiment. It becomes only visible when zooming out and
requesting an overview image.

Also, the problem of different height references becomes visible again as a vertical shift
of the displayed buildings and terrain when switching to the WVS-generated image in

XNavigator. This is because, on the one hand, the WVS provides images of the Berlin
building models and a terrain model that is matching perfectly this building data and, on
the other hand, the 3D building models generated and provided by the OSM-3D W3DS
are based on a different terrain model.

8.11 Sharing and displaying WVS imagery in web browsers

8.11.1 Sharing static 3D views

Based on its HTTP-GET binding, the WVS allows for encoding requests for an image
showing a specific 3D view on a 3D scene by URL. As these rendered 3D views are

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 41

compressed and formatted by standard image formats (e.g., JPEG, PNG) they can be
easily integrated, e.g., in website or generally in web-based applications. Also these URL

encoding 3D views can be easily shared with others, e.g., through sending by email or
posting to social media networks.

An example WVS GetView requesting for accessing a 3D view showing the Louvre in
Paris is:

http://HPI.3DPIE.OGC.org/Paris/WVS?SERVICE=WVS&VERSION=0.3.0&REQUES

T=GetView&CRS=EPSG:4326&PORTRAYALS=WIDTH=640;HEIGHT=640;Projectio
ns=Perspective,2.336462,48.860645,70,2.336462,48.861145,35,0,0,1,90,90,1,90000;IM
AGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=95&LAYERS=terrain,bl
dgs&STYLES=default,textured

8.11.2 JavaScript-based interactive client

The HPI 3D Web Display Client is a 3D client application that is running in a web
browser. It is mainly implemented in JavaScript and thus can be integrated, e.g., into web
portals and web applications.

The client is requesting 3D views as images from the underlying Web View Service.
These images are displayed to a client user, i.e., no 3D rendering capability is required at
the client-side. Also the client provides a user interface that allows a user to interactively

navigate through 3D portrayals in a manner that is similar to 2D map clients such as
Google Maps. For example, when a user moves the virtual camera foreword, a new

image that represents this new 3D view is requested and displayed; through this a step-
by-step navigation in the virtual scene is possible.

Additionally, if available at the client-side, the HPI Web Display Client exploits the
WebGL-capabilities of a web browser and requests not only a single image but a

complete panorama (i.e., six sides of a cube map) from the Web View Service, drapes
these on a cube around the virtual camera, and allows the user to look around in the scene
in an highly interactive manner. As mainly based on JavaScript technology, the HPI Web
Display Client can also be used in web browsers running on a mobile device.

The HPI Web Display Client has been used to access and explore the Paris 3D city model
(Figure 16).

http://hpi.3dpie.ogc.org/Paris/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=EPSG:4326&PORTRAYALS=WIDTH=640;HEIGHT=640;Projections=Perspective,2.336462,48.860645,70,2.336462,48.861145,35,0,0,1,90,90,1,90000;IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=95&LAYERS=terrain,bldgs&STYLES=default,textured
http://hpi.3dpie.ogc.org/Paris/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=EPSG:4326&PORTRAYALS=WIDTH=640;HEIGHT=640;Projections=Perspective,2.336462,48.860645,70,2.336462,48.861145,35,0,0,1,90,90,1,90000;IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=95&LAYERS=terrain,bldgs&STYLES=default,textured
http://hpi.3dpie.ogc.org/Paris/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=EPSG:4326&PORTRAYALS=WIDTH=640;HEIGHT=640;Projections=Perspective,2.336462,48.860645,70,2.336462,48.861145,35,0,0,1,90,90,1,90000;IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=95&LAYERS=terrain,bldgs&STYLES=default,textured
http://hpi.3dpie.ogc.org/Paris/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=EPSG:4326&PORTRAYALS=WIDTH=640;HEIGHT=640;Projections=Perspective,2.336462,48.860645,70,2.336462,48.861145,35,0,0,1,90,90,1,90000;IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=95&LAYERS=terrain,bldgs&STYLES=default,textured
http://hpi.3dpie.ogc.org/Paris/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=EPSG:4326&PORTRAYALS=WIDTH=640;HEIGHT=640;Projections=Perspective,2.336462,48.860645,70,2.336462,48.861145,35,0,0,1,90,90,1,90000;IMAGELAYERS=COLOR;FORMATS=image/jpeg;QUALITIES=95&LAYERS=terrain,bldgs&STYLES=default,textured

OGC 12-075

42 Copyright © 2012 Open Geospati al Consortium

Figure 16: HPI 3D Web Display Cli ent running in a web browser allowing to explore the 3D Paris

data set.

8.12 Displaying WVS imagery on mobile clients

The motivation of this experiment was to exploit a WVS server from a 3D client
application running on a mobile device for interactive 3D portrayal.

For this experiment, we used the HPI 3D Mobile Client, which provides an interactive

user experience based on image-based rendering technologies. Currently it is primarily
provided as an App for iOS devices, e.g., iPhone and iPad; however, as implemented in a

platform-independent way, it could be ported to other mobile platforms, too. The Mobile
Client provides continuous 3D visualization and creates an interactive user experience
that is comparable to common desktop 3D clients. This is reached through image-based

rendering techniques: The client consumes not only color images from a Web View
Service but also depth representations and object id images, from which a 3D scene is
reconstructed and rendered in real-time at the client side. All interaction techniques are
made through the iPads or iPhones multi-touch display.

8.12.1 Workflow

The client is implemented as an iOS application. Right after starting the App, the client is
requesting a specific App server to gather information about the App configuration and

the WVS instance to connect to. For a specific camera position, the client then requests
images for the six faces of a cube that is surrounding the virtual camera. For each of these

faces it requests color images, depth representations, and object id images. To reduce
network load and allow for server-side optimizations, all faces and layers are requested
by a single WVS request. An example for retrieving multiple WVS image layers of such
cube face by one GetView request is:

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 43

http://HPI.3DPIE.OGC.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUES
T=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;

HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,
120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMAT
S=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERL
IN&STYLES=orthophoto,default

According to such request the server loads the required data, renders the requested image
layers, encodes those, e.g., in standard image formats, and returns those as HTTP multi-
part response.

The client is consuming this data from the received data stream and is using it in various

ways for visualization purposes. Firstly, it is rendering the cube surrounding the virtual
camera and drapes the retrieved images on this cube. This gives the users the illusion of
being positioned in a complete 3D environment. The user can explore this environment,

e.g., by rotating the virtual camera or zooming in and out. In the case of zooming in, e.g.,
the client requests new color images showing the actual scene section in more detail.

Secondly, the client is reconstructing and rendering a textured 3D mesh from the depth
layer provided by the WVS, i.e., it is no more displaying the textured cube. In this mode
the client allows a user to move the virtual camera freely, e.g., moving it
forward/backwards or sideward.

Based on the object id layer requested from the server, the client is also capable to
distinguish different objects and allow a user, e.g., to select and highlight specific objects
(e.g., buildings) and to rotate around such objects to inspect it.

Figure 17: iOS App running on the iPad and iPhone providing WVS-based access to and interactive

visuali zation of the 3D Paris city mod el.

http://hpi.3dpie.ogc.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMATS=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERLIN&STYLES=orthophoto,default
http://hpi.3dpie.ogc.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMATS=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERLIN&STYLES=orthophoto,default
http://hpi.3dpie.ogc.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMATS=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERLIN&STYLES=orthophoto,default
http://hpi.3dpie.ogc.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMATS=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERLIN&STYLES=orthophoto,default
http://hpi.3dpie.ogc.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMATS=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERLIN&STYLES=orthophoto,default
http://hpi.3dpie.ogc.org/Berlin/WVS?SERVICE=WVS&VERSION=0.3.0&REQUEST=GetView&CRS=WGS84&BACKGROUND=default&PORTRAYALS=WIDTH=256;HEIGHT=256;Projections=Perspective,13.409292,52.518795,210,13.408311,52.521346,120,0,0,1,90,90,1,10000000;IMAGELAYERS=COLOR,DEPTH,OBJECTID;FORMATS=image/jpeg,image/png,image/png;QUALITIES=80,100,100&LAYERS=terrain,BERLIN&STYLES=orthophoto,default

OGC 12-075

44 Copyright © 2012 Open Geospati al Consortium

8.12.2 Results

The HPI WVS Mobile Client was used successfully to access high-quality rendered

images of the Paris 3D city model including building models and digital terrain model
and to display and explore the 3D scene on the iPad and iPhone. The client allows a user
to interactively control the virtual camera to explore the 3D city model as well as to
select, highlight, and inspect specific buildings (Figure 17).

8.12.3 Problems and solutions

As already describe in Section 8.5.3, the issue of strict geographical tiling of the original
data currently results in different internal object ids assigned to different parts of, e.g., the

same building or even for (original) terrain tiles. In the client App this gets visible when
selecting and highlighting such objects (Figure 18).

Figure 18: Object id images retri eved from the HPI WVS for the Paris data set. They show that

curren tly different terrain tiles (l eft) and parts of the same bridge (right) have assigned different

object ids.

8.13 Rendering CityGML data in the web browser

8.13.1 O verview of the approach

The LSIS Laboratory (Laboratoire des sciences de l’information et des systèmes),
component of the French CNRS (Centre national de la recherche scientifique), has been
working on 3D data exchange between client and server. Our attention has only been
focused on building representation in CityGML.

The general approach follows the idea that geometry and semantic need to be exchanged
together. Generally, this is not taken into account in a purely graphics -based approach for
3D portrayal of urban data. However, this approach aims at keeping feature semantics

closely linked to its geometry representation. For this, three kinds of tests have been
done, which will be presented in detail in the results section. The first test fetches an
entire CityGML file from an OGC standardized stream. The second test includes

processing of the original CityGML file to improve the data transfer characteristics

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 45

between server and client. In the third test, data exchange is done based on a JSON-
stream.

Two clients have been prototyped to study these data exchange approaches. The first one
is a thin client based on WebGL. The second one is a thick client based on C++.

In server side, a solution that is based on Java components constructed by the French

company Geomatys is proposed. Geomatys also supported the development of WebGL
client and Java server.

8.13.2 Tests

8.13.2.1.1 Transferring pure CityGML data

In our first experiment, we have studied the solution used in the OWS-4 testbed, which is
particularly based on Snowflake software’s WFS server to exchange CityGML data. For

this part of the experiment, the thick client based on C++ was used to query the WFS
server.

In a first step, all the building objects contained in a layer were requested from the
snowflakes WFS server and were successfully portrayed from the received CityGML
data (Figure 19).

Figure 19: Screenshot of the LSIS CityGML thick Clien t.

Downloading an entire CityGML file implies an important latency. The GetFeature query

can be tuned by using the bounding box parameter (BBOX). It is then possible to
decompose the query in several ones. This of course requires managing possible
duplicate building objects that could be contained in several bounding boxes.

OGC 12-075

46 Copyright © 2012 Open Geospati al Consortium

Even if we use Snowflakes software’s strategy, it appears important to cut the CityGML
files in smaller ones. In this part, we have proposed to have different decomposition
process:

 The first one is a thematic decomposition. In our work, we have taken into
account the building layer. Other elements can be treated in a same way.

 A second decomposition is based on a spatial grid which permits to make an

indexation of each element. For example, for a square of a grid, it is possible to
know which building is entirely or partially contained.

Two other processes have been proposed to reduce latency and improve the portrayal
process. We have built a process to simplify the geometry which is possible to use. At the

server side, a tessellation operation is proposed. It permits to send only triangulated
geometry, which can be rewritten in CityGML format to facilitate the visualization in
client side. Another operation is based on the possibility to compute missing LOD. For

instance, with a LOD3, it is possible to deduce LOD2 or LOD1. This functionality is not
finished yet.

Figure 20 shows the architecture in the server side. This part has been developed in Java
by the Geomatys Company. It is based on Mapfaces and Geotoolkit , open source

projects led by Geomatys. The CityGML file is parsed using JAXB. After a thematic
decomposition and spatial indexing, each element is eventually tessellated decomposed in
different LOD.

Figure 20: Architectu re of the LSIS server.

The communication mechanism between client and server is very close to the WFS
interface. The server responds with a CityGML document, which contains only one
feature (Figure 21).

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 47

Figure 21: Data Exchange between LSIS client and server.

In a last experiment, we proposed to stream replace the CityGML stream with one using

JSON as exchange format. JSON is understood in our client based on the three.js library
and begin to appear in geo services. It permits to choose the information that we want to
send. First experiments have been done on the geometry part; currently, thematic data
and texture data is not taken into account.

In conclusion, in these experiments, we were interested in the study of 3D urban data
transfers between a client and a server. Initially, we studied the possibility of transferring
a CityGML data stream. The size and complexity of data makes it difficult to use such

data stream on the client side, especially in the case of clients with limited computation
capacities such as web browsers with WebGL support. In a second step we propose to
simplify CityGML data on the server side. We finally made first experiments on a stream

based on JSON. Such kind of data is easily usable with WebGL. It is then possible to
send geometric and semantic data to a client.

In the future, LSIS would like to continue their work to offer a most successful prototype
using WebGL. It would use a JSON data stream. Even if they can have a tiling and LOD

process for urban data, it would be interesting to hide some parts behind 2D data by using
a process similar to billboarding based, e.g., on images retrieved from a WVS.

8.14 Rendering W3DS data in the web browser

Test data setup: Mainz data set

Server: CityServer3D

Using a CityServer3D web-interface to render W3DS-delivered data in the client browser

The X3DOM 3D City Viewer, as the name implies, is based on X3DOM, a technology
also developed at Fraunhofer IGD. It is based on Javascript and WebGL or Stage3D,
which together cover a major and rising share of installed browsers.

Short Description of X3DO M 3D City Viewer

The screen in Figure 22 is divided in a 3D display to the left and an OpenStreetMap

display to the right. In the map display you can move or zoom with the buttons next to

Viewer
GET Request

CityGML

Listener on
.w3go

OGC 12-075

48 Copyright © 2012 Open Geospati al Consortium

the upper left corner of the map. You can click with the left mouse button in the map and
drag the mouse. This opens up a rectangular area which is to be displayed in the 3D view.

Within the 3D view you can click and drag with the mouse to rotate the 3D view. You
can also click right and drag to zoom.

Figure 22: X3DOM City Viewer.

8.15 Rendering W3DS data on mobile devices

Test data: Mainz data set

Server: CityServer3D

X3DO M city viewer over Firefox on Android 2.3

The x3dom city viewer web interface shown above can be used on mobile devices.

Currently, the x3dom component cannot actually be used, because touch-based
interaction (as is common on mobile devices) is not yet implemented in X3DOM.
However the component renders the geometries delivered over W3DS without noticeable

additional delay (compared to a desktop system). Figure 23 and Figure 24 show the
X3DOM city viewer running on a smartphone and a tablet, both running Android 2.3
oeprating system.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 49

Figure 23: X3DOM City Viewer on Android 2.3 (Samsung Galaxy S II).

Figure 24: X3DOM City Viewer on B&N NOOK color with Firefox and Android 2.3.

OGC 12-075

50 Copyright © 2012 Open Geospati al Consortium

8.16 Extended LO D concept for X3D

Motivation

The extensibility of X3D as a client portrayal platform provides a powerful means to
implement and test new functionality. In the X3D Immersive Profile, for example,

authors can use the Prototype mechanism to encapsulate and extend the scene graph with
custom nodes. For this OGC project, we have sought to better align X3D LOD semantics

and performance with the CityGML data model. We developed a testbed and method to
explore the computational and quantitative impacts of the native ISO LOD node versus
one designed with the CityGML application and semantics in mind.

Since model popping and awkward loads are a hindrance to interactive portrayal, we set
out to understand the computational performance and perceptual impacts of these LOD

techniques in urban and semi-urban environments. Toward this goal, we present our work
to develop a new X3D LOD node whose switching semantic considers the tradeoff of
speed and accuracy between LOD3 and LOD4 and whose definition considers a

simplified, proxy shape. We quantify the effect of model switching with Frames-Per-
Second logged over several example worlds and show that this extension is significantly

faster (with upstream processing of a proxy shape) than with the native radial-based X3D
LOD, even when implemented with an ECMAScript Script within a Proto.

The ISO X3D specification provides a native LOD semantic for radial, distance-based
tests and child switching. However, there are many common situations where buildings
are not symmetric in all 3 directions (towers, train stations, city blocks). In addition, it is

typically in the transition to and from LOD4 that incurs the greatest network and
rendering load. Such an LOD extension would be especially valuable to bridge the scale
between GIS and BIM models of a building, exteriors and interiors for example.

Prototype

We implemented an X3D PROTO node with a target of CityGML semantics and
applications where the different LODs of a building were separate X3D models loaded by

an Inline (fetched from a URL). Up until LOD4, the LOD switching is driven by the
simple distance calculation. However, the LOD3–LOD4 transition is managed by
computing if the user is within a proxy six-sided prism defined by 8 points (Figure 25).

Figure 25: Proposed proxy shape for X3D LOD extension between LOD3 and LOD4.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 51

Thus, the node signature for our 3DPIE LOD Prototype is a simple extension as shown

below; the LOD4 test is ‘within a six-sided manifold’ (a proxy shape) defined by the 8
points of the proxyPrism field:

<ProtoInstance name="LODPIE" DEF="BLDG1225D" >

 <fieldValue name="position" value="100 0 100"/>

 <fieldValue name="rotation" value="0"/>

 <fieldValue name="LOD4"> <Inline url="inlines/LOD4.x3d" /> </fieldValue>

 <fieldValue name="LOD3“> <Inline url="inlines/LOD3.x3d" /> </fieldValue>

 <fieldValue name="LOD2“> <Inline url="inlines/LOD2.x3d" /> </fieldValue>

 <fieldValue name="LOD1“> <Inline url="inlines/LOD1.x3d" /> </fieldValue>

 <fieldValue name="LOD3_cutoff" value="300"/>

 <fieldValue name="LOD2_cutoff" value="550"/>

 <fieldValue name="LOD1_cutoff" value="650"/>

<fieldValue name="proxyPrism" value="-20 0 -15 -20 0 15 20 0 15 20 0 -15

 -12 15 -9 -12 15 9 12 15 9 12 15 -9"/>

</ProtoInstance>

Evaluation

Ten (10) test environments were generated and we measured Frames-per-second (FPS)
for each LOD type. Each test environment was generated with different waypoint paths

through a 10 x 10 city grid. Each grid block contained one building model, which is
shown in Figure 26 below; model properties are described in Table 1. For these tests, the
camera animation travel speed was held constant over a fixed number of waypoints (10),

each of which was a visit into a building, loading the LOD4 model.

Figure 26: Screenshots of the X3D building model used for LOD1, LOD2, LOD3, and LOD4.

OGC 12-075

52 Copyright © 2012 Open Geospati al Consortium

Table 1: X3D model attributes used in the X3D LOD extension experiment.

LOD1

Triangles: 12

Vertices Transformed: 24

Textures: 1

Texture Memory (bytes): 7100

LOD2

Triangles: 377

Vertices Transformed: 491

Textures: 1

Texture Memory (bytes): 7100

LOD3

Triangles: 377

Vertices Transformed: 491

Textures: 3

Texture Memory (bytes): 303275

LOD4

Triangles: 52224

Vertices Transformed: 66594

Textures: 11

Texture Memory (bytes): 761003

The LOD prototype and test environments were implemented and instrumented in X3D

and tested with InstantPlayer; we collected FPS with an internal X3D Script node. FPS
values were buffered to an ECMAScript array and printed out at the end of the run. The
Render Window Size was 1024x768 on an Intel Core i7 2.67GHz with 8 Cores and 12

GB RAM; 3 x NVIDIA GeForce GTX 285 running Windows 7 Enterprise.

Results

With over 50,000 Frames per Second (FPS) recordings over all trials, we compared the

average under each condition for each of the 10 test cases through Student’s t-Test (Table

2). A t-test shows that the differences between conditions is significant, since n= 10 ,
df=9, t-Ratio=-6.19079; p < .0001 .

Table 2: Basic statisti cs for the FPS performan ce result over all trials.

Proxy Prism Radial Distance

Standard Deviation 1.2883727 1.3186482

Average FPS 45.434102 43.751629

These results show that even in a regular grid where building blocks are rectangular, our

proxy prism PROTO outperformed the native LOD overall in terms of FPS. If the
proxyPrism shape can be computed upstream from the X3D client (i.e. on the server),
then building models can be switched more efficiently. For X3D immersive clients, the

PROTO method with an interpreted language will be respected, but certainly some
performance gains may be made if engines support a native implementation of the node.

There are several exciting avenues of future research, including additional server-side
optimization, alternative LOD schemes and leveraging the X3D Binary encoding. We
will publish the full results of our X3D LOD extension test in an upcoming paper. Our

future work includes a perceptual investigation into these and other techniques for real
time LOD switching.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 53

9 Results

9.1 Testing of service-based 3D portrayal approaches

3DPIE participants did successfully test and demonstrate how to set up 3D portrayal
pipelines based on open formats and services for various client platforms and devices .

Based on the experiments of the IE’s three work items, we tested and demonstrated
various aspects of service-based, 3D graphics-based and image-based 3D portrayal of

complex 3D models. Especially, complex sets of detailed 3D city models (in the
CityGML format; including geometry and textures) could be integrated into various
W3DS/WVS servers and could be delivered to various clients, desktop clients, web-based
clients as well as clients running on mobile devices.

3DPIE experiments did lead to several server instances hosting various 3D data sets and
their access and usage by various clients. Especially, through 3DPIE we did establish a
number of server-client connections that did not exist and have not been tested before
3DPIE (Figure 27).

Figure 27: Server-cli ent connections that were newly established and tested by 3DPIE experimen ts.

OGC 12-075

54 Copyright © 2012 Open Geospati al Consortium

9.2 Extending the implementation basis for W3DS

Some of the software systems used for the experiments have been extended or have even

been completely new developed. The following subsections name and describe these
implementations.

9.2.1 New implementation of IGG W3DS

For this experiment, IGG designed and implemented a completely new W3DS. This

W3DS provides cached KML/COLLADA data, which is exported from a 3DCityDB by
means of the 3DCityDB importer/exporter tool and cached at the server-side. The
architecture and specifics of the IGG W3DS and the workflow to prepare large data sets
for this W3DS is described in detail in Section 8.1.

9.2.2 CityServer3D was adapted to latest W3DS specification

The CityServer3D’s W3DS support was improved to conform to W3DS 0.4.0 Draft. This

includes support for http GET-based GetScene, GetFeatureInfo and GetCapabilites. The
0.3.0-capability was retained.

9.2.3 Improvements of OSM-3D W3DS

In order to perform the Google integration tests, COLLADA and KML/KMZ exporters

have been added. In case that another than the default format (VRML) is requested, the
stored VRML content is parsed and converted into an internal scene graph representation.
This scene graph is then serialized using the X3D or COLLADA exporter. The behavior

of switching between COLLADA and KML export based on the bounding box size was
also added to the layer configuration.

9.2.4 Extension of the XNavigator client to consume different W3DS

The capability of handling multiple W3DS instances required changes in the tile loading

mechanism, implementation of the memory cache, and definition of the configuration
file. The modifications also include special handling of CityServer3D requests, identified

by the service URL. A preliminary GUI dialog was introduced to manage W3DS
connections. All these changes were introduced in the main code of XNavigator as of
version 1.4.0.

9.3 Increasing conformance of service implementations

9.3.1 W3DS conformance of CityServer3D

The CityServer3D supports all mandatory W3DS operations, except that SOAP was not

considered mandatory as it is not in OGC Web Services Common (WSC) 2.0. The SOAP
encoding, the GetLayerInfo and GetTile operations are not supported.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 55

9.3.1.1 Deviations in recommended GetScene parameters

The W3DS GetScene operation defines the following request parameters where the
CityServer3D implementation deviates in interpretation or ignores the input (Table 3).
Deliberately ignored items indicate conceptual issues seen by Fraunhofer IGD.

Table 3: Implementation of the W3DS GetScene requests parameters in CityServer3D.

Names Definition Comment

minHeight

MinHeight

Vertical lower limit for

boundingBox selection

criteria

Ignored (but checked for errors)

maxHeight

MaxHeight

Vertical upper limit for

boundingBox selection

criteria

Ignored (but checked for errors)

spatialS election
SpatialSel ection

Indicat es method of
selecting objects with

BoundingBox

Ignored

format

Format

Format encoding of the

scene

Not 100% compatible to [OGC 06 -121r9] clause 10.5

(no support for parameterized mimes)

layers

Layers

List of l ayer to ret rieve the

data from

Interpreted as layer names, not identi fiers.

styles

Styles

List of server styles to be

applied to the layers

Ignored

lods

LODs

List of LODs request ed for

the layer

Deliberately ignored. In the view of Fraunhofer IGD, the

LoD problem is not adequately addressed by these two

parameters. In parti cul ar, the binding to the layers

parameter is questionable.
lodSelection

LODS election

Indicat es method for

selecting LODs

time

Time

Date and time Ignored

offset

Offset

Offset vector which shall be

applied to the scene, i.e.

subtract ed from the scene

Will be subtracted or used as X3D 3.2 GeoOrigin

(depending on format and custom parameters (1)).

background

Background

Identi fier of the background

to be used

Deliberately ignored. (Underspeci fi ed)

light

Light

Add light source Deliberately ignored (Underspeci fied)

viewpoints

Viewpoints

Add Viewpoints to choose

from

ignored

(1) The X3D 3.2 Geo extension cannot be used without an offset (GeoOrigin in X3D
3.2), so there is an ambiguity resolved by this parameter. X3D 3.3 can only use the Geo
extension without offset, so again there is an ambiguity. This is not an issue when not

targeting X3D browsers with and without geo extension available. However, we view a
simple decision by the requested X3D profile as insufficient for this use case because
only the “Full” (most advanced) profile encompasses the geo extension.

9.3.1.2 Additional GetScene parameters in the CityServer3D

Also, Fraunhofer’s CityServer3D supports additional parameters for the W3DS GetScene
operation (Table 4).

OGC 12-075

56 Copyright © 2012 Open Geospati al Consortium

Table 4: Implementation of additional W3DS GetScene request parameters in CityS erver3D.

Names Definition Comment

x3d. forceUseFaceS et Boolean: Emit X3D FaceSets even

if TringleSets could be emitt ed

This is used to steer the X3D profile, and

could possibly be implemented as a

parameterized mime type.

x3d.geoExtension Boolean: Use the X3D Geo

extension.

Used to creat e offset-subtract ed X3D

(without Geo extension).

x3d.origin Like offset, but for X3D Geo

extension only

Discontinued, used in 0.3.0

implementation

x3d.optimize Boolean: true to optimize for faster

display

False by default, preserving information

9.3.1.3 O ther W3DS conformance aspects

The CityServer3D does various things slightly differently than was anticipated during the
course of the project. These minor aspects are listed here for completeness:

 CityServer3D does not have an OGC service dispatcher. As a consequence,
different operations of a service are reachable under different service prefixes.
There is no technical requirement here, but it is an intuitive assumption for many.

 The CityServer3D W3DS is not as portrayal-oriented as other implementations.

By default, it does NOT “optimize” (e.g. recombine them for performance) result
geometries. Since such endeavors usually incur loss of information, and CityGML
precisely exists to prevent loss of information, we suggest addressing the issue in

an upcoming standard in more detail. A possibility could be adding an optional
parameter to preserve information if possible, and including this as a capability.

 The layer parameter is not interpreted conformant by CityServer3D. However we
think that it should be possible to use human-readable names in query parameters
given they resolve unambiguously.

The W3DS specification is supposed to be based on OGC WSC 2.0. We have spotted
some misalignments in comparison to the current WSC specification (06-121r9, not the
draft reference), which are listed here:

 The GetScene operation is implemented solely as KVP (HTTP GET). This is,
strictly speaking, disallowed by the current draft which mandates XML via HTTP
POST. We view this specification as being in excess of the customs in WSC 2.0.

 WSC 10.2.3 Bounding box KVP encoding specifies a way to encode N-D
bounding boxes. Therefore, the minHeight and maxHeight parameters can be
dropped.

 WSC mandates specifications to name HTTP codes corresponding WSC
errors/error codes. This is not done in W3DS.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 57

9.3.2 Conformance tests for 3D portrayal services

In order to validate the current W3DS implementations a compliance test tool was

developed using JMeter (http://jmeter.apache.org/) scripts. The main aim was to test the
supported mandatory and optional requests and parameters and validate the result send by

the server. In total, 57 test patterns have been implemented to test possible combinations
of query parameters and results based on draft v0.4.0.

As a result of the conformance test, an overview graphics showing the implementation
status of mandatory and optional request parameters is created. Detailed reports are

provided to the organizations that are implementing the respective server only and will
not be published. The main idea of the JMeter compliance test suite is to support the
development of the W3DS.

9.4 Increasing conformance of data format implementations

9.4.1 Impact on IGN’s CityGML implementation

The large 3D city model of Paris, provided by IGN, represented a major contribution to

3DPIE. This data set was integrated into various portrayal servers and was delivered to
various 3D clients through the W3DS and WVS interfaces, i.e., several 3D portrayal
pipelines could be established and tested. It was ensured that the original CityGML data

and also derived graphics and image data was processed and delivered only by
participants that signed a proper NDA. Also, IGN did receive valuable feedback
regarding the proper modeling, export, and usage of this specific data set.

9.4.2 X3D conformance in CityServer3D

Numerous shortcomings of the CityServer3D’s X3D implementation have been identified
and subsequently addressed. They were mostly the result of lax (probably context -free)

parsing by the implementation we most often talk to, InstantReality. Among many others,
the few notable improvements were:

 Non-uniform terrain grids (with holes) are now exported as zero-height where no
data is available. X3D, as a rendering format, has no need to express information
irrelevant to rendering.

 A proper X3D header with profile information is now being generated.

 If not known, the X3D default to assume convex faces is now suppressed,
correcting some rendering issues.

 X3D xml and binary encoding are supported now.

10 Discussions

10.1 Precision issues in interactive 3D display of geo data

Hardware accelerated graphics using OpenGL or DirectX have a major shortcoming. All
vector and matrix calculations on the GPU are done in 32 bit single precision floating

OGC 12-075

58 Copyright © 2012 Open Geospati al Consortium

point arithmetic. This is insufficient for representing geo coordinates directly. In case of a
globe we have coordinates with a magnitude of approximately 6.4*10

6
 meters. The 23 bit

mantissa of IEEE binary32 (float data type) gives us an accuracy of about 0.8 meters

(6.4*10
6
 / (2

23
-1)). Although it might seem enough to represent simple building

geometries, it also affects matrix computations of transformation groups and causes jitter,

severely reducing rendering quality. This design was copied by many popular 3D
formats, including Wavefront’s obj format, Autodesk’s 3ds format, and X3D, all
specifying vertex data and vectors as floats.

On the other hand, GML uses geo-coordinates directly for describing 3D geometries. In

order to visualize GML content correctly, optimizations must be applied, which reduce
the magnitude of all coordinates and shift the model towards the origin. Otherwise the
above described effects will be visible.

Both server side and interactive 3D portrayal of geospatial data need to consider spatial
accuracy when choosing scene graph APIs and delivery formats.

10.2 Serving Large City Models

10.2.1 Suitable encodings for the delivery of large city models

Within the Web3D Consortium, developments led to the Geospatial Component

extension for X3D, specifying a couple of node types for defining geographic content, for
example GeoLocation, GeoOrigin, GeoCoordinate, and GeoViewpoint. All of these node

types encode coordinates as double precision vectors along with a CRS identifier
(supported are geodetic, UTM, and earth-fixed-geocentric). Especially the GeoLocation
node is very useful for geo-referencing arbitrary models and importing them into 3D GIS.

Unfortunately, the Geospatial component is ignored by all 3D editors, converters, and
authoring tools so that it cannot be relied on during content creation and editing phases.
But it can be used for import and export tasks and for deploying 3D servers.

Unfortunately, Sprites are not supported by X3D, which makes is difficult to represent
placemarks. The concept of a Sprite is to render a static icon directly on the screen,

maintaining the icon’s original pixel size without perspective deformations. This is
important for ensuring the readability of placemarks.

In KML, coordinates are also specified as double precision vectors. They are mostly used
for defining Placemarks. The height value is usually retrieved from the terrain model. A

Placemark can be visualized as icon, symbol or text. It is also possible to link to an
external COLLADA model by a URL or relative path within a KMZ archive. COLLADA
is more powerful than KML since it supports transformation groups, materials, textures,

and a wide range of visual effects. The combination of KML and COLLADA allows
using standard 3D authoring tools and easy deployment of the models in 3D servers

10.2.2 Challenges of WVS-based 3D portrayal of large city models

A key challenge of the WVS approach is that two consecutive WVS requests could

request totally different views on a 3D scene, e.g., by requesting different data layers or
requesting disjunctive view areas (Figure 28). Also, service-based rendering requires a
WVS server to synthesize and deliver a final, high-quality image for the actual request.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 59

Figure 28: S cen e objects covered by th e view frustu ms of two different GetView requests. Two

consecutive requests could require totally differen t data to b e load ed to the graphics card and

rendered.

As a consequence, a WVS server’s rendering subsystem might have a) to load per request
totally different data (and dismiss previously loaded data in the case of large city models)

and despite of that b) has to render the required view quite immediately, i.e., “with the
first frame” to deliver this to the service consumer. In this issue, service-based rendering
is much more challenging than client-side rendering (such as implemented by W3DS

clients or full desktop 3D applications), which usually take several frames to load, render,
and display the complete data in highest quality.

To reduce rendering time and so the actual request/response round trip time, a server-side
rendering system (such as a WVS server) needs to consider specific techniques for data
management and rendering. These include, for example:

Specialized rendering techniques

 Out-of-core data structures and out-of-core rendering

 Massive texturing techniques (e.g., texture atlases)

 Rendering acceleration techniques, (e.g., impostor/billboard-based
representations)

Parallel rendering technologies

 Exploiting several multiple render nodes

 Exploiting several GPUs per render node

Massive hardware to reduce I/O delay

 Using huge amount of RAM to store geometry and texture data

 Using fast secondary storage, e.g., solid state disks (SSD)

 Large GPU graphics memory to store large data sets

OGC 12-075

60 Copyright © 2012 Open Geospati al Consortium

Also, server-side preprocessing of complete image sets (e.g., full panoramas, i.e., cube
maps as described before) and caching these image sets would help to reduce the time to
deliver imagery. Pre-computing and caching 3D panoramas at the server side would lead

to a 3D equivalent of the Web Map Tiling Service (which is providing 2D map data).
Currently, server-side caching is not considered by the WVS specification. Also, pre-

computed 3D panoramas are valid only for a single 3D position of the virtual camera; if
required transition panoramas would have to be requested from the portrayal service
anyway or would have to be derived at the client side.

Additionally, a specific WVS server could introduce session handling as a higher-level

approach to manage rendering resources and to ensure, e.g., that data that is required for a
specific user (e.g., for exploring a specific part of the 3D scene) remains in memory.

10.2.3 Managing texture data in large urban data sets

Large urban 3D data sets can include massive texture data; e.g., for all façade surfaces

textures could be extracted from oblique imagery and stored along with the surface
geometry. Several tools and techniques can help to handle this massive texture data;
examples are texture atlases and texture compressions.

A texture atlas packs multiple separate textures into one texture, the texture atlas. The
concept of texture atlases can occur in different stages of a 3D portrayal pipeline, e.g.:

 Modeling and storing texture data by the help of texture data.

 Internal representation of loaded texture in a 3D portrayal server for efficient
texture management and handling.

 Texture atlases for packing and efficiently transferring texture data to a graphics
card for rendering the final portrayal.

According to the tools and technologies used for modeling, processing, loading,
managing, and rendering the original 3D geodata, the texture atlases in each of these
stages could differ, e.g., in content, size, format, data compression. Thus, texture atlases
need to be used carefully and with respect to actual 3D portrayal pipeline.

Texture atlases can be applied for merging the textures of a 3D city model, e.g., many
small façade textures. Here, texture atlases mainly help to reduce the number of image
files to be handled. For example, the appearance model of the CityGML format allows

specifying texture coordinates for textured surfaces. Aligned to this, the Paris data
provided by IGN are heavily using texture atlases and are combining all the terrain and
façade textures into texture atlases; for each data tile one or more texture atlas are
provided.

If texture atlases are used for modeling the 3D geodata, the tools used to import the data
into the 3D portrayal services would have to support these combined textures. – For
example, the 3DCityDB did not yet support texture atlases; thus, importing the raw Paris

data into the database would lead to a plenty of copies of the texture atlas in the database,
one for each surface referencing the texture atlas. Thus, a preprocessing step was required

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 61

that cut the texture atlases into several sub textures and adapted the CityGML appearance
data accordingly to reference the extracted textures.

Image size and image compression are an additional important factor for handling large

texture data. According to the type of thematic data and the type of application (e.g.,
overviews vs. pedestrian views) appropriate (lossless or lossy) data compression
algorithms and formats can be applied to the raw image data. Facade photos, e.g., can
often be compressed by JPEG compression without losing too much information.

When texture atlases need to be compressed, one should consider if the sub textures
should be extracted from the atlas, compressed separately, and repacked into a new atlas.
This is because some compression algorithms, e.g., lossy conversion into the JPEG

format, could lead to artifacts at the adjacent borders of the packed sub textures, e.g.,
colors from one sub texture could bleed into the adjacent sub texture. At the end this
would lead to artifacts in the finally rendered image of the 3D scene. Generally, image
compression algorithms need to be selected carefully.

If a server shall provide data in different “data layers” (i.e., of different feature types), it
would be beneficial not to pack textures of objects of these different data layers into one
texture atlas. If they were combined in one atlas and if only one of the data layers would

be requested by a client, the server would have to handle (and in the case of WVS load
and render) texture data that is actually not required for this request.

Additionally, the portrayal servers might have specific schemes for structuring and
managing the loaded texture data. Texture atlases play an important role here, too: To use

textures for the rendering process, the required textures need to be transferred to the
graphics card. Storing multiple smaller textures into one larger is often more efficient to

transfer and use this texture. – So, a rendering technique could rely on a texture atlas that
is quite different from the one in which the raw data’s textures were modeled in.

10.3 Dealing with tiled data

10.3.1 W3DS tiling approach

The usual way to access map data is by defining a rectangular bounding box which is
used as spatial selection filter. The bounding box can be of arbitrary size which allows

very flexible client configurations. This capability is provided by the W3DS operation
GetScene, which contains parameters for selecting layers, styles, time, CRS, LODs, and a
rectangular, axis parallel bounding box.

In many cases it is useful to spatially partition all data in a layer into smaller chunks of

data which can be prepared prior to be delivered to web clients. This applies mostly for
terrain data or other data representing 2.5D surfaces. Like in image pyramids, surface
data can be made available as a set of adjacent tiles aligned on a grid or raster. For this

kind of data, the preferred way of accessing individual tiles is not by defining a bounding
box as spatial selection filter, but by using row and column indices referring to the
position within the grid.

OGC 12-075

62 Copyright © 2012 Open Geospati al Consortium

The W3DS includes a GetTile operation which facilitates the access to tiled data. A
TileSet definition provides information on the spatial alignment of the tiles in a
hierarchical grid structure.

The general use case for the GetTile operation is that a smart client is dynamically

assembling the displayed scene graph from multiple tiles that are downloaded from a
W3DS server (Figure 29). Tiles may be available in multiple sizes and resolutions or
accuracies, referring for instance to the triangle density of the data. Tile sizes are related

by powers of two and share the same origin. This ensures that tiles of several levels
seamlessly fit together in a multi-resolution scene, which is the preferred way to achieve
perspective views on complex landscapes.

Figure 29: A til e level in the TileSet definition can be described as grid with origin at LowerCorner.

The concept of multiple tile levels is loosely coupled to the concept of Levels of Detail
(LODs). However, tile levels refer to the strictly hierarchical organization of spatial

subsets of the data of one layer. Dividing a rectangular tile into four quarters defines the
next higher level. This higher level contains data of higher accuracy, or triangle count.
The relation of the data amount (features, textures, triangles etc.) between tile levels

should be approximately 1 to 4, to be consistent with already established tiling schemas
and image pyramids.

LowerCorner
0,0

1,2 1,1

0,1 0,2

1,0

Tile Indic es (Row,
Col)

Tile Size

Tile Size

TileCol Axis

TileRow Axis

2,0 2,1 2,2

…

…

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 63

The spatial partitioning of an existing layer must be described by a TileSet element so
that the the GetTile operation can be used correctly. The TileSet element is contained in
the Layer definition of the server’s meta data.

An example of a planet wide TileSet in WGS84 with 11 levels may look like this :

<w3ds:TileSet>

 <ows:Identifier>dem_tileset</ows:Identifier>

<w3ds:CRS>EPSG:4326</w3ds:CRS>

<w3ds:TileSizes>180 90 45 22.5 11.25 5.625 2.8125 1.40625 0.703125

0.3515625 0.17578125</w3ds:TileSizes>

<w3ds:LowerCorner>-180.0 -90.0</w3ds:LowerCorner>

<w3ds:NumBaseCols>2</w3ds:NumBaseCols>

<w3ds:NumBaseRows>1</w3ds:NumBaseRows>

</w3ds:TileSet>

Each tile level can be described as a grid with origin at the LowerCorner coordinate,

which is the lower left or south east corner of the extent covering all data in the layer
(Figure 29). The LowerCorner is defined only once in a TileSet. Each tile level therefore
shares the same origin. For example, tile level n is defined by a grid originating at

LowerCorner and grid size of value n in the TileSizes list. Tile extents are between the
grid lines.

This data structure is comparable to an image pyramid or quad tree. Each tile is divided
into four quarters in the next higher level representing a higher degree of accuracy.

10.3.2 GetTileDefinition in CityServer3D

The GetTileDefinition operation in CityServer3D is a simple template-based mechanism.
It is intended to serve tiling definitions (or parts thereof) to clients in a range of formats.

In 3DPIE, X3D GeoLOD and KML NetworkLink nodes were generated on the server so
an X3D- or KML-compatible client can consume tiled data without actually knowing it
communicates with a W3DS server.

The most significant difference to the draft-recommended GetTile is that the numerical
tile processing and the translation to text representing the results is being handled on the
server side. Thus, the approach is less dependent on client-side implementation details.

This is important because there is virtually no way of achieving consistent tiling results
across clients, which then hinders cache hit-rates and potentially impairs reliability
(depending on the selection strategy, small gaps may amount to missing buildings).

The underlying problems are mostly that IEEE 754 does not fit nicely with decimal plain -

text notation, and CPU-specific details in floating point handling. Since both will stay for
some time, we suggest GetTile should not be specified to rely as much on the client as it
does now.

OGC 12-075

64 Copyright © 2012 Open Geospati al Consortium

10.3.3 Tiling for WVS

Providing tiled data allows a client to fetch large amount of data more easily and allows a

server to cache the data that could be requested. Thus, one major benefit of tiling
mechanisms is to reduce response time. However, for image-based 3D portrayal no tiling
scheme has been discussed and specified so far. Key questions to address in such effort
would be, e.g., how to discretize the 3D space and how to address these tiles.

10.4 Dealing with height references

The exact elevation of buildings and other structures may not be captured very accurately
due to the following reasons:

 The model was created based on photographs.

 The model was created based on ground plans and rule based reconstruction.

 No accurate elevation data was available.

Also, the quality of the terrain data used for the visualization varies significantly. Data
available from municipalities is mostly captured using land surveying techniques or
LIDAR and has a very good quality. Many research and commercial projects use globally

available data sets such as SRTM, ASTER or other open products with very low
accuracy.

When trying to merge data from different servers within a Spatial Data Infrastructure, for
instance buildings from one source and terrain from another source, vertical

inconsistencies will most likely occur. Usually it is preferred to use the terrain as
reference and adjust other ground objects relative to it, even if the quality of the terrain is
worse. Basically two strategies for reducing vertical inconsistencies can be distinguished:

 Ground objects are delivered in a format that supports a reference point per object

and an attribute indicating that the elevation is always relative to the ground. This
can be encoded in KML/COLLADA combination using Placemarks. However,
this leaves the logic of how to attach the object to the ground to the client. This

can be done by continuous picking or by physical gravity models. The
computational cost is proportional to the number of objects.

 Ground objects are corrected by the service that delivers the terrain data. A
separate operation can be added to the 3D portrayal service that computes

elevation values for arbitrary reference points by using interpolation. The
functionality is identical to that of the Elevation service described in section 6.1.5.
The terrain data must be same as used for the visualization. Since the elevation

data is only retrieved from a service for a set of reference points once, it does not
need to be loaded by the client in advance.

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 65

10.5 Potential changes in W3DS and WVS interface definitions

10.5.1 W3DS GetTile operation

Fraunhofer IGD suggests making the W3DS GetTile less client-dependent, i.e., to release
a W3DS client from computing tile boundaries (Section 10.3.2).

10.5.2 W3DS custom extensions

Fraunhofer IGD proposes to specify a reserved (vendor) prefix for custom extensions.
This could take the form of specifying that parameters beginning with “x-“ or “x-
<vendor>-” are never specified as a part of the standard (e.g. the IETF uses such

prefixes). Although this should be WSC business, we didn’t identify a comparable
mechanism there.

10.5.3 Rethinking the concept of data layers

As in the WMS, the LAYER parameter of the W3DS GetScene request and the WVS
GetView request specifies which data sets a server shall consider for processing the
operation responses. However, while the concept of layers and drawing them one upon

the other fits well for the WMS, this does not really fit for the 3D case. In the case of
W3DS and WVS we are even more dealing with graphics representation of feature sets.
This could be reflected better, by renaming the LAYER parameter, and making this
conceptual difference clear in the service specifications.

10.5.4 Styling data layers

Closely linked to the meaning of “layers” (or rather feature representations) is the issue of

styling selected 3D data sets. For example, thematic maps (i.e., raster data to use, e.g., as
textures) could be modeled in two different ways: First, a server could advertise thematic
maps as separate “data layers”. Second, a server could provide such textures as a specific

style, e.g., of a terrain “layer”. While the first way is closer to drawing “layers” on top of
each other, the latter is closer to the idea of selecting feature data to portray and also
closer to how, e.g., CityGML is modeling the appearance of feature data.

10.5.5 Semantics of data layers

To allow W3DS or WVS clients to request a meaningful representation (3D graphics data
or image) of the 3D environment provided by the servers, it would be required to provide
some kind of semantics along with the metadata describing the data sets offered by the

WVS servers. So a W3DS or WVS client could, e.g., ensure to always include a terrain
model in the list of requested data set. Allowing a client to distinguish and request offered

data sets according to their semantics (and to their importance for a scene representation)
could help a client user to assemble a specific scene representation and so could help to
reduce the size of transferred data.

OGC 12-075

66 Copyright © 2012 Open Geospati al Consortium

11 Future Work / Next steps

Only selected issues of service-based, standards-based 3D portrayal have been tackled by

3DPIE. Some issues that could be relevant to look at, e.g., in future phases of 3DPIE, are
described in the following.

11.1 Navigation in the 3D scene

Navigation represents the core functionality of a 3D client to allow users to explore and

experience provided 3D data. Still today 3D clients require users to control the virtual
camera mainly directly, e.g., to move it or rotate it by mouse, keyboard, or touch-input.

To provide more efficient (e.g., automated and assisting) navigation techniques,
additional knowledge about the 3D scene and the portrayed features is required at the
client-side. Thus a general question is how to provide W3DS/WVS clients with

appropriate information about the scene and the portrayed features and how to integrate
this knowledge in a service-based portrayal pipeline. Especially, e.g., thin WVS clients
that do not fetch any geometric data from a WVS require additional server-side
functionalities for efficient navigation support.

11.2 Feature data access

Geodata Portrayal, i.e., the display of 2D/3D geodata, provides the platform to allow a

user to explore and – in the broadest sense – use the data that is portrayed. A key
functionality is to access the underlying data of a portrayed 3D scene. A WMS, e.g.,
specifies a GetFeatureInfo operation that allows a client to data of a feature at a specific

pixel position in a portrayal requested via GetMap request. – Also for the W3DS and
WVS corresponding capabilities and operations are specified. However, in the course of
3DPIE it turned out, that also alternative ways to request feature data from a W3DS exist

and are already implemented. Future work could include to test and evaluate these
approaches for fetching feature information from 3D portrayal services.

11.3 Data analysis

Another key functionality of 3D clients is to analyze portrayed 3D scenes, e.g., to
measure distances and paths in the scene. While for the case of W3DS-based portrayal,
such capabilities could be implemented mainly at the client side, different approaches are

required for the image-based 3D portrayal approach of the WVS. Especially for thin
WVS clients that do not reconstruct any geometric information (e.g., retrieved from a
depth image) additional service operations are required to support analysis

functionalities. Future work could include testing the analysis capabilities of the current
WVS specification.

11.4 WVS/W3DS standardization

A major next step is to foster the standardization of one or more 3D portrayal services
according to OGC’s standardization process.

Regarding future W3DS standardization, Fraunhofer’s position is to find a small,
agreeable core for standardization and spare advanced features for later revisions. This

OGC 12-075

Copyright © 2012 Open Geospati al Consortium 67

core could consist of GetCapabilities and a basic set of the current GetScene parameters ,
defined as a profile or conformance class. The document should build upon the current

WSC and align to it where possible. Advanced features could then be added to other
profiles/conformance classes and be subject to later standardization rounds. Section
9.3.1.3 lists some aspects that need to be addressed in the course.

Also, W3DS and WVS share general concepts (e.g., spatial selection via bounding box

(W3DS) or via view frustum (WVS)). Because of this, 3DPIE participants discussed the
possibility to create and specify one general “3D portrayal service” that provides a
common core as well as additional modules for W3DS and WVS.

OGC 12-075

68 Copyright © 2012 Open Geospati al Consortium

Bibliography

[14] Goetz, M., Lauer, J., Auer, A. (2012): An Algorithm Based Methodology for the

Creation of a Regularly Updated Global Online Map Derived From Volunteered
Geographic Information , 4th Int. Conf. on Advanced Geographic Information
Systems, Applications and Services. GEOProcessing 2012. Valencia, Spain.

[15] OSM. Proposed features/Building attributes. Available from:

http://wiki.openstreetmap.org/wiki/Proposed_features/Building_attributes ,
accessed on 25/11/11

[16] 3D City Database, Weblink (accessed October 2011) http://www.3dcitydb.net/

[17] A. Altmaier, T. H. Kolbe: Applications and Solutions for Interoperable 3D Geo-
Visualization. In: D. Fritsch (ed.), Proc. of the Photogrammetric Week 2003 in
Stuttgart, Wichmann Publisher, 2003

[18] Kolbe, T. H.; König, G.; Nagel, C.; Stadler, A. (2009): 3D-Geo-Database for
CityGML, Version 2.0.1, Documentation, April 24th. http://opportunity.bv.tu-
berlin.de/software/attachments/606/3DCityDB-Documentation- v2_0.pdf

[19] Kolbe, Thomas H. (2009): Representing and Exchanging 3D City Models with

CityGML. In: Lee, Jiyeong / Zlatanova, Sisi (Ed.): Proc. of the 3rd Int. Workshop
on 3D Geo-Information, Seoul, Korea. Lecture Notes in Geoinformation &
Cartography, Springer Verlag, 2009.

[20] Schilling, A.; Kolbe, T.H. (2010): Draft for Candidate OpenGIS® Web 3D

Service Interface Standard, Version 0.4.0.
http://portal.opengeospatial.org/files/?artifact_id=36390

[21] Wilson, T. (2008): OGC® KML, OGC® Standard Version 2.2.0. Open
Geospatial Consortium, Doc. No. 07-147r2, April 14th.
http://portal.opengeospatial.org/files/?artifact_id=27810

[22] Neubauer, S. and Zipf, A. (2007). Suggestions for Extending the OGC Styled

Layer Descriptor (SLD) Specification into 3D - Towards Visualization Rules for
3D City Models. Urban Data Management Symposium (UDMS 2007).

[23] Walenciak, G., B. Stollberg, et al. (2009). Extending Spatial Data Infrastructures
3D by Geoprocessing Functionality. The Int. Conf. on Advanced Geographic
Information Systems & Web Services. GEOWS 2009. Cancun, Mexico.

[24] Neis, P., A. Schilling, et al. (2007). Interoperables 3D Routing auf Basis von
OpenLS - Ein 3D Emergency Route Service (3DERS) als Aggregation eines
Emergency Route Service (ERS) und eines 3D Route Service (3DRS). AGIT
2007. Symposium für angewandte Geoinformatik. Salzburg, Austria.

	Open Geospatial Consortium
	OGC 3D Portrayal Interoperability Experiment
	FINAL REPORT
	Warning
	Preface
	Submitting organizations
	OGC® 3D Portrayal Interoperability Experiment Final Report
	1 Introduction
	1.1 Scope
	1.2 Document contributor contact points
	1.3 Revision history
	1.4 Forward

	2 References
	OGC 06-121r3, OpenGIS® Web Services Common Standard
	3 Terms and definitions
	3.1
	4 Conventions
	4.1 Abbreviated terms
	4.2 Example URLs

	5 3D Portrayal overview
	6 Data models, formats, services, and standards
	6.1 Service components
	6.1.1 Web 3D Service (W3DS)
	6.1.2 Web View Service (WVS)
	6.1.3 Tile Caches
	6.1.4 Coordinate Transformation Service
	6.1.5 Google Elevation Service

	6.2 Data encodings and bindings
	6.2.1 CityGML
	6.2.2 KML/COLLADA
	6.2.3 X3D
	6.2.4 X3DOM
	6.2.5 HTML5/WebGL
	6.2.6 OpenStreetMap data format

	7 Experiment design and architecture
	7.1 Data sets
	7.1.1 Paris city model
	7.1.2 Berlin city model
	7.1.3 Mainz city model
	7.1.4 Blacksburg city model
	7.1.5 OpenStreetMap data

	7.2 Software
	7.2.1 CityServer3D
	7.2.2 3DCityDB
	7.2.3 IGG Web 3D Service
	7.2.4 OSM-3D Web 3D Service
	7.2.5 HPI 3D Server and Web View Service
	7.2.6 XNavigator
	7.2.7 InstantReality Player
	7.2.8 BSContact Geo
	7.2.9 HPI 3D WVS Clients
	7.2.10 Google Earth

	7.3 Experiment setup
	7.3.1 Experiment phases
	7.3.1.1 Data integration
	7.3.1.2 Service integration
	7.3.1.3 Service delivery

	7.3.2 Experiments overview
	7.3.2.1 Import raw data into W3DS and WVS servers (Experiment 1)
	7.3.2.2 Linking WVS and W3DS (Experiment 2)
	7.3.2.3 Integration of multiple W3DS in a 3D client (Experiment 3)
	7.3.2.4 W3DS/WVS for browser-based portrayal (Experiment 4)
	7.3.2.5 W3DS/WVS for mobile portrayal (Experiment 5)

	7.4 Use Cases

	8 Experiment activities
	8.1 Importing Paris data into IGG Web 3D Service
	8.1.1 General approach
	8.1.2 Paris data import and W3DS configuration

	8.2 Importing Berlin data into IGG Web 3D Service
	8.3 Importing Mainz data into CityServer3D
	8.4 Importing Paris data into CityServer3D
	8.5 Importing Paris data into HPI Web View Service
	8.5.1 Workflow
	8.5.2 Results
	8.5.3 Problems and solutions
	8.5.3.1.1 Granularity of object ids
	8.5.3.1.2 Terrain data encoded in CityGML
	8.5.3.1.2.1 Strict geographical tiling of the data set

	8.6 Importing OpenStreetMap data into OSM-3D Web 3D Service
	8.7 Displaying KML from W3DS in Google Earth
	8.7.1 Connect CityServer3D and Google Earth
	8.7.2 Connect IGG W3DS with Google Earth
	8.7.3 Connect OSM-3D W3DS with Google Earth

	8.8 Accessing X3D
	8.8.1 Web-based portrayal through W3DS using Instant Reality Player
	8.8.1.1 Test subject: OpenStreetMap3D server
	8.8.1.1.1 Test Setup 1: 3D scene in VRML format
	8.8.1.1.2 Test Setup 2: 3D scene in X3D format
	8.8.1.1.3 Test Setup 3: 3D scene in X3D binary format.

	8.8.1.2 Test subject: 3D Blacksburg data
	8.8.1.2.1 Test: 3D scene in X3D format.

	8.8.2 Portrayal through W3DS using BS Contact Geo

	8.9 Merging data from multiple Web 3D Services in XNavigator
	8.9.1 Workflow
	8.9.2 Results
	8.9.3 Problems and solutions

	8.10 Merging 3D models from W3DS and imagery from WVS in XNavigator
	8.10.1 Workflow
	8.10.2 Results
	8.10.3 Problems and solutions

	8.11 Sharing and displaying WVS imagery in web browsers
	8.11.1 Sharing static 3D views
	8.11.2 JavaScript-based interactive client

	8.12 Displaying WVS imagery on mobile clients
	8.12.1 Workflow
	8.12.2 Results
	8.12.3 Problems and solutions

	8.13 Rendering CityGML data in the web browser
	8.13.1 Overview of the approach
	8.13.2 Tests
	8.13.2.1.1 Transferring pure CityGML data

	8.14 Rendering W3DS data in the web browser
	8.15 Rendering W3DS data on mobile devices
	8.16 Extended LOD concept for X3D

	Table 1: X3D model attributes used in the X3D LOD extension experiment.
	Table 2: Basic statistics for the FPS performance result over all trials.
	9 Results
	9.1 Testing of service-based 3D portrayal approaches
	9.2 Extending the implementation basis for W3DS
	9.2.1 New implementation of IGG W3DS
	9.2.2 CityServer3D was adapted to latest W3DS specification
	9.2.3 Improvements of OSM-3D W3DS
	9.2.4 Extension of the XNavigator client to consume different W3DS

	9.3 Increasing conformance of service implementations
	9.3.1 W3DS conformance of CityServer3D
	9.3.1.1 Deviations in recommended GetScene parameters

	Table 3: Implementation of the W3DS GetScene requests parameters in CityServer3D.
	9.3.1.2 Additional GetScene parameters in the CityServer3D

	Table 4: Implementation of additional W3DS GetScene request parameters in CityServer3D.
	9.3.1.3 Other W3DS conformance aspects
	9.3.2 Conformance tests for 3D portrayal services
	9.4 Increasing conformance of data format implementations
	9.4.1 Impact on IGN’s CityGML implementation
	9.4.2 X3D conformance in CityServer3D

	10 Discussions
	10.1 Precision issues in interactive 3D display of geo data
	10.2 Serving Large City Models
	10.2.1 Suitable encodings for the delivery of large city models
	10.2.2 Challenges of WVS-based 3D portrayal of large city models
	10.2.3 Managing texture data in large urban data sets

	10.3 Dealing with tiled data
	10.3.1 W3DS tiling approach
	10.3.2 GetTileDefinition in CityServer3D
	10.3.3 Tiling for WVS

	10.4 Dealing with height references
	10.5 Potential changes in W3DS and WVS interface definitions
	10.5.1 W3DS GetTile operation
	10.5.2 W3DS custom extensions
	10.5.3 Rethinking the concept of data layers
	10.5.4 Styling data layers
	10.5.5 Semantics of data layers

	11 Future Work / Next steps
	11.1 Navigation in the 3D scene
	11.2 Feature data access
	11.3 Data analysis
	11.4 WVS/W3DS standardization

	Bibliography

