Sketch-Based Navigation in
3D Virtual Environments

Benjamin Hagedorn and Jiirgen Dollner

Hasso-Plattner-Institut at University Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
benjamin.hagedorn|doellner@hpi.uni-potsdam.de

Abstract. Navigation represents the fundamental interaction technique
in 3D virtual environments (3D VEs) as it enables the users to ex-
plore the 3D world and to interact with its objects. Efficient navigation
strategies and techniques are required, which take account of the users
and their goals and avoid problems of general navigation methods, such
as “getting-lost” situations and confusing view configurations. This pa-
per presents a novel method for specifying and controlling navigation
in 3D VEs based on sketching navigation commands. The users sketch
their navigation intentions on top of the perspective projection of the
3D scene. The system interprets these sketches regarding their geometry,
spatial context, and temporal context. Unlike other sketchy navigation
techniques, our approach identifies the hit objects of the underlying 3D
scene and takes advantage of their semantics and inherent navigation
affordances. The approach has been prototypically implemented for the
exploration of a virtual 3D city model with a touch-sensitive display.

1 Introduction

Navigation, which is often referred to as “the aggregate task of wayfinding and
motion” [4], denotes the fundamental interaction technique in 3D geovirtual
environments (3D VEs) but still represents a non-trivial task for the user inter-
face technology [7]. General navigation techniques (e.g., world-in-hand controls,
fly-over controls, and virtual trackballs) give the users direct control over the
navigation process. Common problems of these approaches include “getting-
lost” situations, confusing view configurations, abrupt camera motion, and loss
of visual contact to landmarks. Thus, to improve the usability of 3D interaction
processes, navigation techniques have to assist users to navigate through and
interact with the 3D world and its objects.

This paper presents a sketch-based navigation technique for 3D VEs such
as virtual 3D city models and 3D landscape models. In our approach, the users
express their navigation intentions in terms of graphical sketches by drawing
curves and points to indicate paths and locations as well as pen-based gestures.
These sketches are interpreted according to a pre-defined graphical vocabulary
of navigation commands, taking into account their spatial and temporal context
as well as the navigation affordances inherent to the elements of the 3D VE.

Fig. 1. Left: Example of a sketch-based navigation command applied to a complex
virtual 3D city model. The user draws a curve on the street and combines this com-
mand with a circle like gesture. The derived animation will move the camera along
the sketched path and finally rotate for inspecting the target area. — Right: Using the
sketch-based navigation with a touch-sensitive smart board.

Sketch-based navigation is conceptually a higher-level navigation technique,
as it relieves the users from controlling the motion task and even can assist in
wayfinding. It can be used with any device allowing for 2D sketch input, e.g.,
mouse, graphic tablet, or touch-screen — see Fig. 1.

2 Related Work

Navigation constraints cope with the large number of degrees of freedom inher-
ent to 3D navigation and represent a major technique in the field of assisted
3D navigation. Hanson and Wernert [9] propose designer-supplied constraints
on the bases of 2D controllers, Tan et al. [13] introduce the speed-coupled flying,
and Buchholz et al. [1] apply several navigation strategies for reaching a high
orientation value. A detailed description of constraints for navigation in geovir-
tual environments can be found at Déllner [5]. StyleCam by Burtnyk et al. [2]
represents an authoring-based approach constraining the camera movements in
space and time. HoverCam by Khan et al. [12] assists users in panning, zoom-
ing and tumbling the virtual camera, particularly for single object inspection.
Different from those, Russo dos Santos et al. [7] propose a navigation concept,
which provides specific navigation methods according to the type of a 3D VE.
Sketching is a natural and intuitive input technique, which can be applied
for 2D and 3D interaction. In the context of virtual 3D objects and virtual
3D worlds, sketching is often regarded as an effective means for modeling and
manipulation [3][11][14]. Only few approaches seem to target at sketch-based
navigation in 3D VEs. Igarashi [10] et al. introduce the concept of path draw-
ing for 3D walkthroughs, which allows the users to sketch the path a virtual
avatar shall move along on top of the perspective view of the 3D scene. Cohen
et al. [3] suggest a method for sketching 3D curves and mention the possibility

to use them as a camera path and Hachet et al. [8] propose a technique, which
uses a circle-shaped gesture for focus definition and a special widget for posi-
tioning the camera. Déllner et al. [6] present an approach for semantics-based
navigation in 3D city models on mobile devices, which bases on sketching naviga-
tion commands by stylus and incorporates the type and meaning of the 3D city
objects for deriving an appropriate navigation animation. The article at hand
gives a detailed description of an extended sketch-based navigation concept and
implementation.

3 Sketch-Based Navigation

3.1 Sketchy Navigation Commands
As described in [6], we conceptually distinguish two types of navigation sketches:

— Object-related sketches are associated with objects of the 3D VE and en-
able a semantics-based interpretation as the system can derive the intended
navigation from the semantics of the marked scene objects.

— Pen-based gestures implement a complementary set of commands that are
not bound to a spatial context.

Sketchy navigation commands allow for the following types of navigation inter-
actions, which differ in their degree of navigation abstraction:

— Camera-oriented navigation. Users perform wayfinding by themselves. They
think in terms of moving the camera “left and right”, “up and down”, etc.

— Motion-oriented navigation. Users sketch by drawings, where the camera
shall move along and where to gaze. This allows for the definition of more
complex navigation patterns, such as “drive along this path and look at that
building”.

— Task-oriented navigation. Users sketch complete tasks or subtasks to be ful-
filled, e.g., “get an overview” or “inspect the building”. Particularly, they no
longer deal with camera positions and orientations or camera paths and gaze
directions. Of course, task-oriented navigation commands heavily depend on
the users and the user tasks.

Table 1. Examples of pen-based gestures. The black dot indicates a gesture’s starting
point.

Sketch | Navigation Command Sketch | Navigation Command Sketch | Navigation Command
L Tilt up the camera. @ |Rotate the camera to right. () Take an overview position.
1 Tilt down the camera. —® | Rotate the camera to left. @ Undo last navigation.

4

Table 2. Examples of sketch-based navigation commands. Gestures can be used as
modifiers for object-related sketches.

Sketch

Navigation Command & Result

Point on a building: Finding
the shortest path to the build-
ing, driving there, and looking
at the building.

Navigation Command & Result

Point on a building’s roof:
Flying up to the roof, placing
the camera on top and looking
around.

Point on the ground and
point on a building: Flying to
the marked ground point and
looking at the building finally.

Curve on a street: Driving
along the street.

Point on the ground and
circle-shaped gesture: Flying
to the marked ground point and
looking around.

Curve on a street and point
on a building: Driving along
the street and looking at the
building finally.

Point on the sky: Soaring
above ground for overview.

Circle-shaped gesture and
point on a building: Soaring

) above ground and looking at

the building finally.

In our approach, motion-oriented navigation commands are mainly defined by
object-related sketches. Pen-based gestures cover user interface management op-
erations (undo), low-level camera-oriented navigation commands (e.g., rotating
or tilting), modify preceding object-related sketches, or trigger more complex
navigations. Table 1 and Table 2 illustrate examples of sketchy navigation com-
mands.

3.2 Navigation Affordances of 3D Objects

The navigation abilities and affordances of typical elements of 3D VEs play a
key role in our approach. Taking into account the semantics of involved scene
objects facilitates navigation strategies that can be adapted to specific users
and tasks. These elements provide motion-oriented and task-oriented navigation
affordances, as well as additional information that can be facilitated for the
generation of appealing camera animations.

Thus, the sketch-based navigation technique requires for an appropriate model
that not only contains geometry but also provides thematic information about
the contained entities. Our implementation basis on the CityGML model, which
is a specification for virtual 3D city and landscape models and supports, e.g.,
terrain models, vegetation models and detailed building models. The prototype
implementation regards terrain, vegetation area, building, roof, street, and the
sky as relevant object types.

¢

Perspective . Navigation
e 9(3D View) 7 Sketching /J\ Sketches)

N2
3D Rendering /30 Environment Modb Sketon Prolect|c_>r_1/
\ / Gesture Recognition
N2
Camera Sketch Navigation \ Sketch Interpretation
Settings Vocabulary /
T N N2
Camera Animation - .
[nextFrame] Animation { Description j\ Navigation Planning
N2
(Nawgaet:)or:e?;mbm} Navigation Visualization
Navigation Sketch Processing

Fig. 2. Principal components of the sketch-based navigation command system.

4 Processing Sketch-Based Navigation Commands

The users enter object-related sketches by the left mouse button or by finger
or stylus on touch-sensitive displays. For gesture input, the right mouse button
or a view plane button are used. Additionally, sketch-based navigation process-
ing comprises sketch recognition, sketch interpretation, and camera animation —
see Fig. 2.

4.1 Interpreting Navigation Sketches

For the interpretation of navigation sketches, our technique takes into account
the sketch geometry (curves and points), the spatial context (the virtual location
to which the sketch is aligned or associated), and the temporal context (the
sketch composition, command history, and drawing speed). [6]

Object-related sketches get evaluated from the scene graph by projecting
each 2D sketch point (curves are discretized), calculating a set of ray intersec-
tions with the relevant objects, and retrieving the object types. For each sketch,
its semantics is determined from the major type of the nearest to the camera
intersection of each sketch point. All intersections corresponding to this type
represent the projected sketch and form the basis for retrieving positions and
orientations. Together with the geometry type, this semantics defines the mean-
ing of the sketch, e.g. “Curve-Street”.

Gestures are interpreted from their 2D shape without taking into account the
underlying scenery. The sketched 2D geometry is analyzed by a shape recognition
algorithm, which uses the distance and angle of intermediate gesture points as
features for the correlation of drawn gestures and predefined template gestures
and results in navigation commands such as “Gesture—CircleLeft”.

For composite sketches, the component interpretations are concatenated and
thereby represent more complex navigation commands, e.g., “Curve—Street, Point—
Building”. From these navigation command representations, the navigation sys-
tem concludes how to generate camera animations from the sketch input.

To improve the usability of our sketch-based navigation, the history of navi-
gation commands and animations is considered. For this, the navigation system
stores the past navigation activities (the type of navigation and a possible target
identifier). For example, a user points on a building and triggers the navigation
“drive to building”. If the user points to the same building with the follow-
ing sketchy navigation command, the system synthesizes a short camera flight
around the object allowing the user to “inspect the building”.

4.2 Mapping Navigation Commands to Animations

Based on the determined navigation intention, the camera animation is planned.
For each supported (composite) sketchy navigation command, the system fea-
tures a handler comprising the knowledge of how to derive paths and orientations
from projected sketches and gestures. For a curve on a street, the curve points
are filtered for removing noise and interpreted as a path on that street. Extend-
ing this sketch by a point on a building, orients the camera toward the hit surface
point. By contrast, a single “point on building” command leads to the compu-
tation of the shortest path to that building. The navigation handlers generate
camera settings for key frames (e.g., starting point, intermediate points, and end
point of a camera path), which are interpolated for creating the animation.

4.3 Visualization of Pending Navigation Commands

As a key element, our extended sketch-based navigation approach incorporates
feedback to the users by visual cues about pending navigations. They act as a
preview of how the system interprets the sketches, which navigation is deter-
mined, and allow the users to verify whether their navigation intention has been
correctly recognized.

The navigation cues are integrated into the 3D scene and displayed and
animated during the navigation animation. Path arrows on the terrain or street
hint at where the camera will move along and billboard-attached target arrows
indicate points of interest — see Fig. 3.

4.4 Sketching Speed

The speed at which sketch geometry is drawn can be utilized for improving the
sketch-based navigation interface. It can denote the user experience, can be used
for determining animation speed, and could influence the animation dramaturgy.

Sketching speed is different for near and far parts of the 3D scene. A path
drawn at far distance has a smaller extend on the 2D view plane than a path
drawn nearby. Thus, the speed of object-related sketches is calculated from the
path speed in 3D. As gestures are not projected into 3D, their speed is calculated
from the speed of sketching on the view plane.

Fig. 3. Example of a sketch-based navigation command (left) and the resulting vi-
sual cues integrated in the 3D scene (right). The path arrow symbolizes the camera
movement and the target arrow points to the selected building.

5 Conclusions and Future Work

The presented sketch-based navigation commands abstract the navigation pro-
cess in 3D virtual environments. Instead of controlling and maneuvering the vir-
tual camera, users rather specify their navigation goals, trigger automated nav-
igation processes, and obtain smooth camera animations. The graphical naviga-
tion commands are interpreted according to shape, spatial context, and temporal
context. The approach takes advantage of the inherent navigation affordances of
the scene objects, considers sketching speed, and integrates visual feedback.

Sketch-based navigation lends itself for being used by non-experts on 3D
navigation but also for providing task- and user-specific mechanisms to complex
navigation operation. Furthermore, sketch-based navigation allows to implement
a step-by-step interactive exploration of 3D VEs on thin clients (e.g., mobile
devices), which would only handle the sketch input, while the corresponding
server manages the 3D VE and renders the camera animations.

In future work, we will investigate task and goal-specific sketchy navigation
commands and extend the sketch-based navigation vocabulary including more
object types and navigation affordances for virtual 3D city and landscape models.
Additionally, we plan to enhance the visual feedback mechanisms to return more
information about recognized navigation intentions and to extend the camera
dramaturgy taking into account additional 3D object types.

References

1. Henrik Buchholz, Johannes Bohnet, and Jiirgen Dollner. Smart and physically-
based navigation in 3d geovirtual environments. In IV ’05: Proceedings of the Ninth

10.

11.

12.

13.

14.

International Conference on Information Visualisation, pages 629-635, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin Balakrishnan, and Gor-
don Kurtenbach. Stylecam: Interactive stylized 3d navigation using integrated
spatial & temporal controls. In UIST ’02: Proceedings of the 15th annual ACM
Symposium on User Interface Software and Technology, pages 101-110, New York,
NY, USA, 2002. ACM.

Jonathan M. Cohen, John F. Hughes, and Robert C. Zeleznik. Harold: A world
made of drawings. In NPAR ’00: Proceedings of the 1st International Symposium
on Non-Photorealistic Animation and Rendering, pages 83-90, New York, NY,
USA, 2000. ACM.

Rudolph P. Darken and Barry Peterson. Handbook of Virtual Environment Tech-
nology, chapter Spatial Orientation, Wayfinding, and Representation, pages 493—
518. Lawrence Erlbaum Assoc., New Jersey, 2002.

Jirgen Dollner. Constraints as means of controlling usage of geovirtual environ-
ments. Journal of Cartography and Geographic Information Science, 32(2):69-80,
April 2005.

Jiirgen Dollner, Benjamin Hagedorn, and Steffen Schmidt. An approach towards
semantics-based navigation in 3d city models on mobile devices. In Michael P. Pe-
terson Georg Gartner, William Cartwright, editor, Location Based Services and
TeleCartography, Lecture Notes in Geoinformation and Cartography, pages 357—
368, Berlin Heidelberg, 2007. Springer.

C. Russo dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud, and J. P. Paris.
Metaphor-aware 3d navigation. In INFOVIS ’00: Proceedings of the IEEE Sympo-
sium on Information Visualization 2000, pages 155-165, Washington, DC, USA,
2000. IEEE Computer Society.

Martin Hachet, Fabrice Decle, Sebastian Knodel, and Pascal Guitton. Navidget
for easy 3d camera positioning from 2d inputs. IEEE Symposium on 3D User
Interfaces 2008, pages 83—89, March 2008.

Andrew J. Hanson and Eric A. Wernert. Constrained 3d navigation with 2d con-
trollers. In VIS ’97: Proceedings of the 8th Conference on Visualization ’97, pages
175-182, Los Alamitos, CA, USA, 1997. IEEE Computer Society Press.

Takeo Igarashi, Rieko Kadobayashi, Kenji Mase, and Hidehiko Tanaka. Path draw-
ing for 3d walkthrough. In UIST ’98: Proceedings of the 11th annual ACM Sympo-
sium on User Interface Software and Technology, pages 173—174, New York, NY,
USA, 1998. ACM.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A sketching in-
terface for 3d freeform design. In SIGGRAPH ’99: Proceedings of the 26th annual
Conference on Computer Graphics and Interactive Techniques, pages 409-416, New
York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

Azam Khan, Ben Komalo, Jos Stam, George Fitzmaurice, and Gordon Kurtenbach.
Hovercam: interactive 3d navigation for proximal object inspection. In I3D ’05:
Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, pages
73-80, New York, NY, USA, 2005. ACM.

Desney S. Tan, George G. Robertson, and Mary Czerwinski. Exploring 3d navi-
gation: Combining speed-coupled flying with orbiting. In CHI ’01: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 418-425,
New York, NY, USA; 2001. ACM.

Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. Sketch: An interface
for sketching 3d scenes. In Holly Rushmeier, editor, SIGGRAPH 96 Conference
Proceedings, pages 163-170. Addison Wesley, 1996.

