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Abstract. Automated processing, semantic enrichment and visual
analytics methods for point clouds are often use-case specific for a given
domain (e.g, for Facility Management (FM) applications). Currently,
this means that applicable processing techniques, semantics and visual
analytics methods need to be selected, generated or implemented
by human domain experts, which is an error-prone, subjective and
non-interoperable process. An ontology-driven analytics approach
can be used to solve this problem by creating and maintaining a
Knowledge Base, and utilizing an ontology for automatically suggesting
optimal selection of processing and analytics techniques for point
clouds. We present an approach of an ontology-driven analytics concept
and system design, which supports smart representation, exploration,
and processing of indoor point clouds. We present and provide an
overview of high-level concept and architecture for such a system,
along with related key technologies and approaches based on previously
published case studies. We also describe key requirements for system
components, and discuss the feasibility of their implementation within
a Service-Oriented Architecture (SOA).

Keywords. Knowledge Base; Point Clouds; Semantic Enrichment;
Service-Oriented Architecture; Ontology.

1. INTRODUCTION
An ontology can be used to define the relationships between entities, methods,
data, semantics, and processes for a given domain. An ontology can also be used
to set up and maintain a Knowledge Base, and for performing related inferencing
operations. A Knowledge Base contains all of the semantics, rules and facts used
to infer a decision based on provided ontology (usually with ontological metadata).
As such, a Knowledge Base employs a given ontology to structure its data.
When the ontology is updated by various process results and inputs (e.g., domain
expertise, computed semantics, etc.), so is the Knowledge Base with new rules,
facts and associated semantics. Thus an interdependent relationship exists between
the two concepts, as they are both used to contribute to the definition, creation
and updating of knowledge within a given domain. Indoor point clouds, once

RE: Anthropocene, Proceedings of the 25th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA) 2020, Paper 154 (Preprint). © 2020 and published by
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processed and analyzed, have the potential to provide insights into the structure,
state, and dynamics of buildings and other constructions, and, by that, to support
decision making, e.g., in Facility Management (FM).

1.1. PROBLEM STATEMENT

However, since point clouds are ambiguous by nature, they impose constraints for
being applied due to phenomena such as visual clutter and self shadowing. Even
more crucial is the lack of any semantics or even ontologywithin their context (e.g.,
ontology of a typical office building). An ontology-driven approach would enable
automated selection of optimal processing and analysis techniques of point clouds
for indoor environment representations, and also enhance decisionmaking through
insightful analytics within the subdomain of Operations and Maintenance (O&M)
in FM (e.g., for space and inventory management as well as for the optimization
of room utilization, occupant comfort, emergency routes, etc). Even when point
clouds are semantically enriched, they seldom contribute to the ontology of a
building and are only used for single-use decision making cases. Therefore,
an ontology needs to be formed that relates to the digital representation and
associated O&Mprocesses for the operation of a building. There is a paucity for an
ontology-driven analytics,where users can simply query such a system in order for
it to generate, associate and present useful semantics for FM decision making tasks
(using point clouds as the main representation of the physical environment). In
turn, the knowledge of such a “smart” systemwould be expendedwhen performing
any subsequent tasks.

1.2. RESEARCH CONTRIBUTIONS

We present and discuss conceptual system and process designs for each of
the key components for an ontology-driven analytics system. We propose an
ontology-driven approach that can adapt specific algorithms for segmentation
and classification of point cloud clusters, perform such processing operations,
and make use of visualization methods to present the resulting semantics to FM
stakeholders.

2. FOUNDATIONS AND RELATEDWORK
Point clouds can be used to visually inspect and assess the current state of the
built environment, can help to track construction-related or refurbishment-related
changes over time, and can be used as base-data for the generation of as-is and
as-built Building Information Models (BIM) (Qu and Sun 2015). A point-cloud
based representation of indoor environments within the context of interactive 3D
visualization enables enhanced stakeholder engagement and communication (Xu
et al. 2018). Since point clouds do not contain any other information besides
spatial distribution in 3D space and possibly color and/or intensity values, they
need to be enriched with semantics to effectively support the various FM-related
tasks. This process can be error-prone and time-consuming when performed
manually (e.g., introducing errors in decisions due to incorrect observations).
Generation and injection of semantics into point clouds is based on associating
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each segmented point cluster with either metric (Armeni et al. 2017), domain
expertise (Sacks et al. 2018), or probabilistic deep-learning-based processes and
their outputs (Che et al. 2019).

A particular challenge is dynamically assigning semantics or adapting
processing algorithms for generalized use-cases when using point clouds. The
process of semantic enrichment of point clouds is in most current situations
unidirectional (e.g., point clouds are semantically enriched at a single time for
a single purpose, with the semantics remaining valid only for the current version
of the point cloud). Therefore, in order to be able to dynamically generate and
query semantics for point clouds, a feedback system using a Knowledge Base
for semantics generation and updating is required. Cursi et al. (2017) describe
the development of a prototypical BIM Semantic Bridge system, that can map
Industry Foundation Classes (IFC) semantics to an ontology representation using
OWL (Web Ontology Language). They state that the main advantage developing
a knowledge base using an ontology-drive approach is that is allows experts from
different AEC domains to access and exchange knowledge during the design phase
of a building (as BIM by default focuses on geometric representation of a building
or structure).

Poux et al. (2017) advocate the use of a multi-level semantics framework, in
which the first level of semantics represents the point cloud data structure, the
second represents the connection elements between the point cloud data structure
and the spatial context, while the third level connects specific ontologies with the
point cloud that is used by domain experts for performing various semantic queries.
All three semantic levels are connected within a feedback loop to a Knowledge
Base. The Knowledge Base is updated through inputs from analytic results,
devices and domain expertise. Ponciano et al. (2019) describe a fully semantically
guided approach for the detection of objects in indoor point clouds. They propose
the use of a constantly updated knowledge base that, in turn, is used to select and
adapt the most appropriate processing algorithm based on the observed ontologies.
Sadeghineko et al. (2018) describe the generation of semantically rich BIMmodels
from point cloud data, where each segmented region of a point cloud is given
a unique annotation using the Resource Description Framework (RDF) schema
specification, thus enabling relationships between BIM elements to be captured
and queried.

The use of visualization for enhancing stakeholder decision making can be
accomplished using various annotation methods, and plays an important role
for focusing the viewers attention to the semantics of a 3D point cloud scene.
Florio et al. (2019) describe different visualization techniques for exploring
BIM models using semantically-driven representation configurations. Savva et
al. (2017) describe a context-driven annotation approach for 3D indoor scenes,
which automatically suggests and presents possible object semantics to the user
while they are exploring the scene. A similar approach is described by Zhang et
al. (2016), using statistical inference based on user-guided image annotations of
indoor environments and their potential spatial arrangements. Another important
point is that approaches for semantic enrichment, ontology generation and visual
analytics can be implemented using an Service-Oriented Architecture (SOA),
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which can help for e.g., decoupling of hardware and software requirements
between the user and the processing system (Döllner et al. 2012).

3. CONCEPTUAL SYSTEM DESIGN

Figure 1. A high-level overview of the main architecture and components of the
ontology-driven analytics system for indoor point clouds. The stakeholders interact with the
point cloud and are provided with analysis outputs. User tasks such as spatial or inventory

queries are inferred from the Knowledge Base component, which is derived and updated using
the ontology-driven approach. Conceptual design of an SOA that satisfies the integration

requirements of the conceptual system components is shown on the right diagram. The server
is responsible for the processing, inference, DBMS operations, and ontology updating tasks,
while the client enables the users to select the initial point cloud they want to perform semantic
queries on, to visualize the result of the query, as well as to use and update the ontology. .

Fig. 1 illustrates the overall high-level design for the ontology-driven analytics
system. The proposed system design is made up of six key components: (1)
the Knowledge Base component, (2) DBMS (Database Management System)
component, (3) Algorithm Library, (4) Analytics, the (5) the Processing
component and (6) the Query component. The six components work together
in order to update ontologies, generate semantics and parameter values for
selected processing algorithms. It is assumed that a core ontology is defined,
which is then subsequently updated through the introduction of new semantics,
expert knowledge and existing digital documentation. Initially, the Processing
component would be used to filter the input point cloud (e.g., generate
normal vectors, remove duplicate points, or sub-sample). The user can enter
a new analysis task - a semantic query, that would be interpreted by the
Query component. The Query component uses this query (translated into a
machine-readable format), to infer a decision using the ontology represented by
Knowledge Base component. In turn, the Knowledge Base component then
utilizes the existing semantics objects accessed by the DBMS component to form
a decision. In this case the selected decision is based on matching the algorithm
for the required task from the Algorithm Library component.

The selected algorithm would then be sent back to Processing component,
which would apply it along with specific parameters to the point cloud. The result
of the processing would be semantics that can be injected into the point cloud for
further semantic enrichment. These associated semantics would then be sent to
the DBMS component in the form of standardised semantics description object,
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where they would be once again utilized by the Knowledge Base component next
time a new task is initiated by the user. In such a scenario the Knowledge Base
acts as an inferencing component of the system. In an example scenario, a user
wants to take an inventory of all types of specific chairs in a given office room
(Fig. 2). The point cloud is first processed by the Processing component (e.g., for
normals compuation, planar surface segmentation, etc). Next, the user’s semantic
query for selecting all chairs will be sent to the Knowledge Base component that
will compare all existing semantics obtained from semantics objects in the DBMS
component, in order to select a specific algorithm for detecting the objects via the
AlgorithmLibrary component. For example, it is known that chairs are often found
in rooms with desks, and that each office has at least one computer desk, which in
turn has specific dimensions for the room object that is evaluated from segmented
planar clusters obtained from the initial processing of the point cloud. It would
also be known that the point cloud has RGB values, and that it was captured using
commodity mobile hardware (so it is a coarse representation of the real-world with
a lot of noise). Based on this ontology, the Knowledge Base component could
formulate an algorithm suggestion and request the Algorithm Library component
for a multiview classification algorithm with specifically tuned parameters (based
on the derived semantic relations). Once the selected classification algorithm
detects and classifies the chairs, the associated resulting semantics that are injected
and presented to the user via the Analytics component would also be sent to
the DBMS component. This would make the whole ontology-driven system
“smarter”, as new semantics are introduced with each new user query, and new
relations are used to update the ontology that is inferred by the Knowledge Base
component for future use.

Visualization of the semantically-enriched clusters of a point cloud scene is
vital for highlighting their location in 3D space, and bringing them to the attention
of the user for further inspection and assessment. Often, indoor point clouds
may contain visual clutter that requires the user to manually navigate and select
regions-of-interest for inspection, semantic enrichment and further annotation. In
order to draw the users attention to areas of interest in a point cloud that may
contain a lot of visual clutter, we can consider the use of visualization idioms
(Haber and McNabb, 1990) for highlighting and possibly abstracting, through
visualization, the spatial areas of interest in the point cloud. The Analytics
component fulfils the role of generating the visual representation of the 3D point
cloud, specific point cloud clusters and their associated semantics. We propose the
use of specific visualization styles for representing the semantics that were injected
into specific point clusters as a result of the ontology-driven scene analysis. These
could, e.g., include cluster color coding, floating boxes, abstracted geometry,
and manipulation of opacity values (Fig. 3). We also propose the concept of a
“smart scene annotation” sub-system as part of the Analytics component, using a
probability-based recommendation approach (Fig. 4). Such a component would
take into account the currently visible point clusters and would automatically
provide suggestions to the user of the object that is currently in view, based on the
probabilities derived from the associated semantics of that point cluster (essentially
a semi-automated semantics-annotation process).
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Figure 2. A core ontology example for using a point cloud representation for an O&M task.

Figure 3. Examples of different visualization idioms used to highlight semantics in a typically
cluttered point cloud of an office (from the Stanford dataset by Armeni et al. 2016). The

examples feature simple color coding of different object-type point clusters (left),
opacity-based visualization in order to avoid visual occlusion (center), and use of abstracted

3D geometry in place of the point clusters in order to simplify the visualization and draw more
visual attention from the viewer (right).
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Figure 4. Example of the proposed smart scene annotation, based on the derived probabilities
introduced with the classification of point clusters as specific furniture objects. The user is

presented with the top three possible semantics for each of the point clusters that are
highlighted as “office furniture” objects. The user would, in turn, be able to select the correct

semantic for each cluster, and this selection would then be sent to the Knowledge Base
component in order to update relations, semantics and processes between the related room and
building. Furthermore, a user could manually add semantics that is not already offered and, by

that, could extend or refine the underlying ontology itself.

In the context of visualisation and analytics systems, the use of a SOA can
help to decouple the often complex image generation process (e.g., on a dedicated
high-performance rendering server) from the display of and interaction with those
images on clients of various classes (i.e., running various hardware configurations,
such as smartphones and tablets), which may be of an older generation, and may
not have the hardware and software capabilities to process and render data in
real-time and in high quality. Other services could implement and advertise other
complex computation tasks including, e.g., deep-learning-based classification
of point clouds. The proposed Algorithm Library and Processing components
will contain all of the related algorithms used for processing, reconstructing,
classifying and evaluating point clouds. Additionally, the design of the Knowledge
Base and DBMS components as separate services allows for running the
generation and association of semantics as well as ontology management, on
dedicated workstation computers with high-performance computing and storage
capabilities, whilst rather lightweight clients can access this functionality through
the service interfaces.

4. DISCUSSION
In terms of feasibility of implementing the conceptual ontology-driven analytics
system, four specific system design requirements and tasks need to be considered.
Firstly, a key requirement for the proposed system is an existing and suitable
ontology for buildings and indoor spaces. This ontology could then be interpreted
and used as the default ontology by the Knowledge Base component when
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formulating the Algorithm Library component selection response based on the
user’s initial semantic query. For actual implementations of an ontology, it can
be defined essentially as a schema (e.g., RDF). Attempts at defining a formal
ontology for buildings and using it to derive semantic relationship for FM-related
applications, in most cases those based on BIM requirements, have been discussed
by Iskidag et al. (2013), Emgård and Zlatanova (2007) and Nagel et al. (2009).
Valid topologies can be derived form BIM-based representations of indoor spaces
(e.g., office building related), though this is dependent on using and parsing IFC,
CityGML or other related BIM and GIS files. In most cases relationships between
specific entities, e.g., in the IFC file representation, can be used to generate
connectivity graphs between spaces in a building representation. However, the
building and indoor space ontologies are often derived for a single use-case, and
therefore difficult to generalize. There is specific paucity for forming any sort of
ontologies based on point clouds, which has no standardized semantic file format
that is comparable to that of IFC or CityGML (unless an extension is used to
embedded point clouds into those file formats, though important semantics and
reconstructed geometry are generally not preserved).

Secondly, the task to evaluate and select a suitable DBMS that can handle
the parsing, updating and querying of semantic objects would need to be
undertaken. Such a database system could be a relational or non-relations DBMS
oriented towards semantics and spatial queries. Borrmann (2010) propose an
octree-based spatial query database system for retrieval of VRML digital building
and city models, implemented and tested using extended versions of relational
and object-oriented SQL for custom spatial queries. Ma and Sacks (2016)
describe a NoSQL cloud-based database for storage, sharing and retrieval of BIM
models (in addition to allowing further semantic enrichment by supporting custom
IFC-complaint mapping and representation using the Binary JavaScript Object
Notation (BSON) format). Solihin et al. (2017) define and test a BIM-based
rule language and describe a system for transforming BIM-data into SQL-based
representation for allowing simplified access to FM-related data for stakeholders.
The authors note that while relational (also known as SQL-based) DBMSs can
be easily extended without rewriting interfaces from scratch, there are still issues
concerning the speed of access to data from user queries, as well as enriching
such data with custom information due to having to parse and convert IFC-related
schematics.

Thirdly, the specific algorithms to be included in the Algorithm Library and
used by the Processing components need to be selected and evaluated. While
there is a wealth of algorithms available for specific processing tasks of point
clouds, certain algorithms are, e.g., better suited towards outdoor point clouds. We
have found that certain classification and clustering algorithms provide promising
results for classifying indoor point clouds (Stojanovic et al. 2019a).

Fourthly, it is important to define if a specific system is developed only for
observation-based analysis and decision making, or if the results from semantic
enrichment will be used to infer specific condition-based rules within e.g.,
Building Management System (BMS), Computer Aided Facilities Management
(CAFM), Integrated Workplace Management System (IWMS) or Environmental
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Management Systems (EMS). In such a case it would be necessary to introduce
more safeguards, and perhaps restrict the system to non-critical O&M monitoring
and forecasting tasks.

5. CONCLUSIONS
Based on the provided literature review and discussion of related and influential
work, it can be concluded that there is currently no straightforward implementable
software solution for ontology-driven analysis of indoor point clouds. While
there are promising research results and prototypical implementations showing
how ontologies can be formed and integrated with point clouds in principle, using
semantics derived through various classification and processing algorithms, the
design and end-to-end implementation of a use-case oriented expert system as
described in this work is still an open issue. This is especially the case when
using domain expertise from FM stakeholders as most current ontology-driven
software prototypes for BIM and FM applications are not user-centered (e.g., no
focus on user interfaces, qualitative analysis of user input and feedback, etc) The
feasibility of implementing an ontology-driven approach is also supported by the
authors previously published research for semantic enrichment and visualization
(Stojanovic et al. 2019b). Additionally, previous work by the authors has also
demonstrated the feasibility of integrating various processing and representation
components for visualization of spatio-temporal data as well as point cloud
data (Stojanovic et al. 2019c). Based on this and the resulting prototypical
implementations and testing of core components, we conclude that a user-oriented,
analytics-focused and ontology-driven system can be designed, implemented, and
deployed, provided that a suitable ontology of buildings and indoor spaces can
be established. After the service-based implementation and successful testing of
these key components, we are currently working towards developing a working
prototype of the full concept proposed in this paper.
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