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Abstract
Representing Layered Depth Images (LDI) as 3D texture can be used to approximate complex, arbitrarily shaped
volumes on graphics hardware. Based on this concept, a number of real-time applications such as collision
detection or 3D clipping against multiple volumes can be implemented efficiently using programmable hardware.
One major drawback of this image-based representation is the high video memory consumption. To compensate
that disadvantage, this paper presents a concept and associated algorithms that enable a lossless, efficient LDI
representation which is especially designed for the usage within shader programs. The concept comprises the
application of a viewpoint selection, a cropping, and a compression algorithm. We evaluated our algorithm with
different test cases and show possible use cases.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors; I.3.5
[Computer Graphics]: Boundary representations; I.3.6 [Computer Graphics]: Graphics data structures and data
types;

1 Introduction

Real-time volumetric tests introduced in [TD08] enable a
multiple binary partition of a given arbitrary scene on ver-
tex, primitive, and fragment level. They have a number of
applications in real-time rendering and interactive visualiza-
tion, such as pixel-precise clipping, collision detection, and
rendering with hybrid styles [JI03]. This volumetric parity
test (VPT) relies on an image-based representation of solid,
arbitrarily shaped polygonal meshes (volumes). This repre-
sentation is an extension of the concept of Layered Depth
Images (LDI) [SGwHS98].

On GPU, an LDI can be stored as 3D texture or 2D texture
array [NVI06] of depth maps. This form of representation
enables a full hardware accelerated creation using render-to-
texture (RTT) but introduces also a number of disadvantages.
The main drawback of this approach is the high space com-
plexity of the 3D texture that results in a high amount of
graphics memory which is usually a limiting factor. The tex-
ture size depends on two conditions: the depth complexity
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and the utilization of the depth maps. The depth complexity
of a shape determines the number of necessary texture layers
in an LDI and has therefore an effect on the creation time.
For non-convex shapes, most of the depth maps are usually
sparsely utilized. Further, the implementation of the VPT has
to consider all texture layers to ensure correct results. This
can become costly in terms of runtime because most of the
texel fetches from a sparse utilized texture are redundant.

The aim of this work is to accomplish an efficient GPU
representation in terms of minimizing the texture size and the
necessary texture fetches. Thus, this paper makes the follow-
ing contributions. It presents three algorithms that facilitate
the efficient creation and storage of an LDI:

1. A method to find an optimal viewpoint for the creation of
an LDI for which the depth complexity is minimal.

2. A fast algorithm to determine the axis-aligned bounding
box (AABB) of an LDI. It is used to crop unused coherent
texture areas.

3. A lossless compression algorithm that encodes the depth
values of a 3D texture into a 2D texture and thereby
achieves maximal texture utilization. The decompression
can be performed using programmable hardware.
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Figure 1: Application examples for Volumetric Depth Sprites (VDS) in combination with a Volumetric Parity Test (VPT). Figure
A shows pixel-precise clipping against three different VDS. The same approach can be used to extract cut-edges (Figure B).
Figure C shows rendering with hybrid styles. All images are rendered within a single pass.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews approaches and related techniques of this work.
Section 3 presents an overview to the concept of volumetric
depth sprites, reviews the idea of volumetric tests, and shows
application examples. Section 4 introduces algorithms for
viewpoint selection, fast 2D bounding box calculation, and
lossless compression which facilitates an efficient representa-
tion of an LDI. Section 5 presents our results and discusses
limitations of our approach while Section 6 concludes this
paper and gives ideas for future work.

2 Related Work

The basic concept of LDIs is presented in [SGwHS98]. An
LDI is a view of the scene from a single input camera view but
with multiple pixels along each line of sight. The size of the
representation grows only linearly with the observed depth
complexity in the scene. In [BH03], a hardware-accelerated
method for volumetric collision detection and intersection
volume approximation is presented. The intersection test is
CPU based, and thus not applicable in shader programs.

In [DL01] a compression algorithm for LDI is introduced
that records the number of LDI layers at each pixel loca-
tion, and compresses LDI color and depth components sep-
arately. For LDI layer with sparse pixels, the data is aggre-
gated and then encoded. This representation cannot be de-
coded efficiently using shader programs. The same holds
true for the representation of compressed depth maps pre-
sented in [CSSH04]. It uses a mesh representation for the
compression of the depth maps.

Perfect spatial hashing [LH06] is a general approach for
compressing sparse 3D textures within a dense offset table.
This approach is designed for the usage in shader programs
but introduces two new textures, a hash and a offset table
instead of a single original texture. Applying this method
would increase the implementation complexity, for example,
of the VPT.

The depth peeling algorithm for order-independent trans-
parency was introduced by [Cas01]. It uses a second depth
test to extract layers of unique depth complexity from an arbi-
trary scene. It is possible to re-use these layers by performing
a render-to-volume technique [Dro07]. In [Lef03] various
memory layout options and optimizations are discussed. In
this context, ray marching is a well known algorithm for
interactive volume rendering [ZRL∗07].

3 Concept of Volumetric Depth Sprites

A Volumetric Depth Sprite (VDS) is an image-based repre-
sentation of the shapes volume that stores its depth values
along a viewing ray that is aligned towards the negative z-
axis. A VDS extends the concept of LDIs [SGwHS98] that
contain layers of unique depth complexity. Figure 2 shows
an example of a VDS derived from a complex 3D shape. A
VDS representation consists of the following components:

V DS = (P,LDI,d,wi,hi) (1)

Depth Layers LDI = (LDI0,…,LDI7)

3D LDI Texture Space [0,1]3

Non-Convex Polygonal Mesh S with d = 7

3D World Space IR3

s

t

x

y

Depth-
Peeling

z

O O

Figure 2: Example for an layered depth image representation
of a non-convex polygonal mesh. S is depth-peeled into a
number of slices, each containing depth maps of unique depth
complexity.
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Where P ∈ R3 denotes the position of the VDS in world
space coordinates. The depth complexity of S is denoted as
d ∈N/{0,1}. The layered depth image consist of d depth maps
LDI = (LDI0, . . . ,LDId−1). The initial texture resolution of
width and height is given by wi,hi ∈ N. To obtain a depth
value di ∈ [0,1]⊂ R,0≤ i≤ d−1 in the ith-depth layer for
a 2D point (s, t) ∈ [0,wi]× [0,hi], we sample the 3D texture
in LDI texture space with the coordinate LDIi

(s,t) = (s, t, i).

3.1 Hardware Accelerated Creation Process

The creation of a VDS is performed within a pre-processing
step using multi-pass RTT. Given a solid polygonal mesh S,
the associated LDI is generated by performing the following
steps:

1. Uniformly scale the shape to fit into the unit volume [0,1]3.
A camera orientation ODP and on orthogonal projection is
set that covers this unit volume. The near and far clipping
planes are adjusted accordingly.

2. Determine depth complexity d and create a 3D texture or
2D texture array with an initial resolution of wi, height
hi, and depth d. Our implementation uses a luminance
texture format with a single 32bit floating point channel.
The texture is initialized with a depth of 1, that we refer
to as invalid depth value.

3. Perform depth-peeling [Cas01] in combination with RTT.
The solid S is peeled using linearized depth values using
a W -buffer [LJ99]. Figure 3 shows an OpenGL shading
language (GLSL) implementation of the second depth test
necessary for depth peeling.

The implementation is based on OpenGL [NVI06] in combi-
nation with GLSL [Kes06]. We use framebuffer objects, high
precision 32bit float textures, and floating point depth buffer
precision for RTT.

// vertex shader
uniform float near;
uniform float far;
varying float depthInCamera;

void main(void){
vec4 position = gl_ModelViewMatrix * gl_Vertex;
// linearize depth value
depthInCamera = (position.z-near) / far;
gl_Position = gl_ProjectionMatrix * position;

}

// fragment shader (shader model 4)
uniform sampler3D LDI;
uniform int  pass;
varying float linearDepth;

void main(void){
// perform first depth test with depth map
if( (pass > 0) &&

(linearDepth <= texelFetch3D(LDI,
ivec3(gl_FragCoord.xy, pass-1),0).x)){

discard;
}
gl_FragDepth = linearDepth;

}

uniform sampler3D LDI;
uniform int  pass;
varying float linearDepth;

void main(void){
if((pass > 0) &&

(linearDepth <= texelFetch3D(LDI,
ivec3(gl_FragCoord.xy, pass-1),0).x)){
discard; }

gl_FragDepth = linearDepth;}

Figure 3: GLSL implementation of depth peeling with a 3D
texture that contains layers of unique depth layers.

3.2 Volumetric Parity Test

Given a VDS, the Volumetric Parity Test (VPT) classifies a
point V ∈ R3 with respect to its position in relation to the
shape’s volume. It can either be inside or outside the volume.
For reasons of precision, we do not consider the case that
the point can be on the border of the shape. To model such
test, we introduce a Boolean coordinate parity pT ∈ {0,1}.

r

t

Tr

(s,1,0)

(s,0,1)

Ray R

Inside

Outside

d0 d1 d2 d3

(s,0,0)

(Ts ,Tt ,0)
(Ts ,Tt ,1)pT =0 pT =1 pT =0 pT =1

S

(s,1,1)

Figure 4: Ray marching through an LDI representation of
the complex shape shown in Figure 2. The ray R intersects the
depth layers LDIi at four points and adjusts the rays parity
pT accordingly.

Before testing V , it must be transformed into the specific
3D LDI texture. For example, if V is a point in world space
coordinates, the transformed coordinate T can be obtained
by:

T = (Ts,Tt ,Tr) = M ·V (2)

The matrix M represents the mapping of world space co-
ordinates into LDI texture coordinates. It is defined by
M := T(C) · S ·B ·T(−P). Where B is a rotated orthonor-
mal base of the VDS. V is transformed into the LDI texture
coordinate space (B ·T(−P)), scaled by S, and then translated
(T(C))into the LDI origin C = (0.5,0.5,0.5).

Now, we construct a ray R = [(Ts,Tt ,0)(Ts,Tt ,1)] that
marches through the depth layers LDIi and compares Tr with
the stored depth values di. Starting with an initial parity, pT
is swapped every time R crosses a layer of unique depth
complexity (see Figure 4). This test can be formulated as
pT = V PT (T,LDI) so that:

V PT (T,LDI) =
{

1, ∃di∧∃di+1 : di ≤ Tr ≤ di+1
0, otherwise

(3)

di ∈ LDIi
(Ts,Tt ) di+1 ∈ LDIi+1

(Ts,Tt )

3.3 Application Examples for Volumetric Depth Tests

Despite clipping and collision detection, the concept of VDS
and the associated VPT has a number of applications. For
example, it enables rendering with hybrid styles [JI03] per
pixel and facilitates the generic usage of volumetric 3D lenses
[VCWP96] without limitations concerning the volumes shape
or the intersection of lenses. The rendering of volumetric
depth sprites is similar to those of nailboards (depth or z-

c© The Eurographics Association 2008.



Matthias Trapp & Jürgen Döllner / Efficient Representation of Layered Depth Images for Real-time Volumetric Tests

CPU

GPUDepth-Peeling 
To 3D Texture 3D Texture (LDI)

Shape S

2D Texture (LDIComp)
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3D Texture (LDICrop)

VPT Shader

CompressionAABB
Calculation

Viewpoint
Selection Render

Orientation ODP

Data Flow
Control Flow

Preprocessing Runtime

AABBLDI

Figure 7: Conceptual overview and data flow between algorithms participated in the preprocessing of an input shape S into its
LDI representation. After proper viewpoint selection, S is depth-peeled, cropped, and then compressed.

bool volumetricParityTestSM4(
in vec3 T,         // Point in LDI texture-space
in sampler3D LDI,       // layered depth image
in ivec3 dimensions,// LDI dimensions
in bool initParity)// initial parity

{ // initial parity; true = outside
bool parity = initParity;
// for each texture layer do
for(int i = 0; i < dimensions.r; i++){
// perform depth test
if(T.r <= texelFetch3D(LDI, ivec3(T.st, i), 0).x){
parity = !parity; // swap parity

} }
return parity; }

Figure 5: Efficient GLSL implementation of the VPT.

Figure 6: Combination of different geometries in a geovirtual
environment using 3D lenses. It is generated using pixel-
precise clipping and multi pass rendering.

sprites) introduced in [Sch97]. It is implemented using a
ray-marching and z-replacement shader.

Clipping: One application is clipping a polygonal shape
against multiple VDS. This can be done pixel-precise, by
applying the VPT in the fragment shader for each fragment.

The fragments coordinate is interpolated in eye-space and
than transformed into the LDI texture space using Equation
2. If the fragment is inside a VDS it is discarded. Figure 1.A
shows a result for performing clipping against three volumes
within a single rendering pass.

An extension of the same method can be applied for visual-
izing the shapes borders or to extract cut-edges. For a correct
application in 3D space a 3D point V is transferred into a
cube and then each corner vertex of this cube is tested using
the VPT. So, given a border size we offset V in each of the
eight directions. Figure 1.B shows this method by clipping
all non-border fragments.

Rendering with Hybrid Styles: Instead of per-object hy-
brid rendering [JI03], we are able to perform rendering with
different styles on per-vertex, per-primitive, and per-pixel
basis within a single rendering pass (Figure 1.C). Therefore,
we map a style to each VDS and exploit static branching to
apply the particular style.

Multiple 3D Lenses: Another interesting application for
volumetric depth sprites are 3D lenses [VCWP96] for focus
+ context visualization of large scale scenes. Figure 6 shows
an application that integrates different geometries within a
single image using clipping and multi-pass rendering. Our
approach delivers an alternative to multi-pass image-based
rendering algorithms [RH04, Rop04].

4 Algorithms for Efficient LDI Representation

One main drawback is the high memory consumption of
M = w ·h ·d when representing an LDI as 3D texture. This
is especially true for shapes with a high depth complexity
d. Consequently, lowering the texture resolution w or h can
result in a lack of precision when performing volumetric tests.
Our goal is to determine optimal width wi, height wi and
depth d to providing a high texture resolution simultaneously.
A reduction of d implies a reduced number of depth-peeling
passes which would speed up the dynamic creation of an LDI.
To achieve this, we propose three algorithms. The flowchart
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t Unused texelDepth value

RSend

ISranges
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O0 S0 S1 S2 S3 S4 S5 S6NIL O1 O2 NIL ISoffset RSstart

R0 E0 E1 E2 E3 E4 E5 E6NIL R1 R2 NIL ISranges

R0 = 3 R1 = 2 R2 = 2

RSend

Index Segment IS Range Segment RS

Offset = wb · hb

32bit

Intermediate Representation

Extract
Pack
Alpha RSstart

ISoffset

Pack 
Luminance

Figure 10: Concept of compressing the 3D texture LDIcrop into a 2D texture LDIcomp. All depth values are extracted from the
depth maps LDIi and then stored successively into a range segment RS. During this process an index segment IS is constructed.
It stores an offset (OV ) for a particular 2D coordinate (s, t) that points to the start of the respective depth ranges within RS as
well as the number (RV ) of successive depth ranges DR j . This intermediate representation is packed into a 2D texture LDIcomp.

in Figure 7 describes the complete preprocessing including
the following optimization algorithms.

4.1 Viewpoint Selection for LDI Creation

This step determines a camera orientation ODP with a
minimal depth complexity dmin ≤ dmax. The approach
is only effective for non-convex shapes with dmax > 2.

procedure orientation(S,OC,sH,sV){
// for each segment on sphere
for(h 0; h < sH; h h+1)
for(v 0; v < sV; v v+1)

OC adjustOrientation(OC, sH, sV)
// calculate metric
d   depthComplexity(S,OC)
o   coverage(S,OC)
// store result
append(list,(OC,d,o))
endfor
endfor
// sort results
sortDepthComplexityAscending(list)
sortCoverageDecending(list)
ODP getOrientation(list, 0)
}

Figure 8: Pseudo code for
choosing the optimal orien-
tation for LDI creation.

We use a simple setup for
viewpoint selection. The
camera is placed onto a
unit sphere that is con-
structed around the center
of the shape S. We mod-
ify the camera position
with respect to its horizon-
tal and vertical position
on the sphere. The pseudo
code to determine the
camera orientation ODP
for a shape S, an initial
viewpoint OC, and the
number of horizontal sH
and vertical segments sV is presented in Figure 8. For each
segment on the sphere, we calculate the orientation OC by

δ

γ

β

α

s

t

(0,0,0) (w,0,0)

(w,h,0)(0,h,0)
hS hE

vE

vS

AABB

α

δ

γ

β

procedure calculateAABB(VDS) 
hS 0; vS 0; hE w; vE h;
// determine horizontal start hS

for(s 0; s < w; s s+1)
if intersectV(0,h,s,LDI0)
hS s; break;

endif endfor
// determine vertical start vS

for(t 0; t < h; t t+1)
if intersectH(hS,w,t,LDI0)
vS t; break;

endif endfor
// determine horizontal end hE

for(s w; s > hS; s s-1) 
if intersectV(vS,h,s,LDI0)

hE s; break;
endif endfor
// determine vertical end vE

for(t h; t > vS; t t-1)
if intersectH(hS,hE,t,LDI0)

vE t; break;
endif endfor

// deliver result
AABB (hS, vS, hE - hS, vE - vS)

end

Figure 9: Algorithm for determining the AABB of an LDI
efficiently. The algorithm uses a scan line approach and tests
each texel of the LDI just once.

rotation the camera position around the x and y-axis with
θ = 360/sH and φ = 360/sV . Following to that, we deter-
mine the depth complexity d and the coverage ratio c of the
occupied and invalid texels. The results of all segments are
stored in a list that is sorted ascending by depth complexity
afterwards. Under the preservation of this order, we sort the
coverage values c in a descending order to obtain the orienta-
tion with the minimal depth complexity d and the maximal
coverage c. After ODP is retrieved we create the VDS accord-
ing to Section 3.1 and then proceed to crop and compress the
results.

4.2 Bounding Box Calculation & Cropping

Since hardware is not bounded to power-of-two texture di-
mensions anymore [NVI06], it is possible to optimize the
texture storage on video memory by cropping the 3D texture
to its 2D axis-aligned bounding box AABBLDI = (x,y,wb,hb)
that includes all occupied (valid) texel in the LDI. This is par-
ticularly efficient if the shape has a main spatial extend along
one of the two axis s and t, e.g., such as a torus. The AABB
calculation is performed on CPU using a scan line approach.
At first, we read the LDI texture back into main memory and
then apply the algorithm described in Figure 9. The algo-
rithm needs to test every texel just once. It uses two functions,
intersectH(hS,hE ,v,LDIi) and intersectV(vS,vE ,LDIi)
that test if a horizontal or vertical scan line, defined by two
rays RH = [(hS,v)(hE ,v)] and RV = [(h,vS)(h,vE)], contain
a valid LDI texel. After the AABBLDI is calculated, we crop
the 3D texture against it. The cropped LDI is denoted as
LDICrop.

4.3 Compression Algorithm

Compressing the 3D texture representation of an LDI can
decrease the amount of memory that sparsely occupied depth
layers require on hardware. Compression can also increase
the application performance by reducing the texture upload
time and the number of texture samples: Due to the design of
the VPT, the ray-marching algorithm (Figure 5) has to take
all depth layers into account to decide if a 3D point lies inside
the volume or not. So, texture samples are retrieved for layers
that may not contain any depth information.
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Concept: For sparse 3D textures, perfect spatial hashing
[LH06] can be applied to loss less pack sparse data into a
dense table. Since LDIs contain only depth values that de-
scribe a solid volume, we can propose a simpler alternative
for compression. Unlike existing compression algorithms for
LDIs [DL01] our approach has not to deal with color infor-
mation and exploits this specific property by storing only
the structure of the LDI into a 2D texture. Consider a ray R
as depicted in Figure 4. The depth values di, i = 0, . . . ,d−1
at the intersection points of R and the LDIi depth maps can
be grouped into a number of depth ranges DR j = (S j,E j),
with j = 0, . . . ,d/2. The interval [S j,E j], with S j = d j·2 and
E j = d j·2+1 specifies the inside of the volume along R. The
proposed compression algorithm consists of two phases: ex-
tract and pack. Figure 10 illustrates the process and involved
entities.

procedure extractVDS(VDS)
vector ISoffset,ISranges,RSstart,RSend;
for(s 0; s < w; s s + 1)
for(t 0; t < h; t t + 1)
// check if texel is set
if(LDI[s,t,0] ≠ NIL)

layers 0
// iterate over depth
for(r 0; r < d; r r + 1)

depthValue LDI[s,t,r]
if(depthValue ≠ NIL)
if(r & 2 = 1)

append(RSstart , depthValue)
else

append(RSend , depthValue)
endif
else break
endfor
ISoffset[t · w + s] || RSstart ||
ISranges[t · w + s] layers / 2
endif endfor endfor

end 

Figure 11: Pseudo
code for extracting
depth ranges.

Extract: The first phase
extracts all available depth
ranges and stores the values
of the even depth layer into
RSstart = (S0, . . . ,Sm) and
the values of the odd layer
into RSend = (E0, . . . ,Em)
respectively. Simultane-
ously, an index segment
IS, consisting of the vector
ISoffset = (O0, . . . ,On) and
ISranges = (R0, . . . ,Rn), with
n = wb · hb is constructed.
ISoffset, initialized with a zero
offset, stores an offset into
the RS for every 2D texel
(s, t) in the first depth layer
LDI0. ISranges stores the
number of depth ranges for
the coordinate (s, t). Thus,
we denote an index as a tuple I = (OV ,RV ), where RV
represents the number of depth ranges DRi, i = 0, . . . ,RV for
the ray coordinates (Rs,Rt). The pseudo code displayed in
Figure 11 provides details the first phase of the compression
algorithm that calculates the content of the specific segments.

Pack: The second phase packs the IS and RS into a 2D
luminance-alpha texture which is denoted as LDIComp. There-
fore, ISoffset and RSstart are stored successively in the lumi-
nance channel and ISranges and RSend in the alpha channel
respectively. The texture resolution is given by wc = hc =⌈√
|IS|+ |RS|

⌉
. Due to the constraints of texture resolution,

it is not possible to use 1D textures or texture arrays for
our data structure. The current hardware generation [NVI06]
limits the 1D texture resolution to 8192 pixels which can
easily be exceeded. Therefore, we have to evade to 2D tex-
tures and need to introduce an additional un-mapping step for
decompression.

Figure 12: Coordinate transformation to access the depth
ranges of a 3D point V.

4.4 Decompression on GPU

The decompression of an LDIComp can be performed in all
programmable hardware stages. Figure 13 shows a GLSL
implementation of the VPT for compressed and cropped LDI.
We use the NVIDIA gpu_program4 extension [NVI06]
for hardware support of unsigned integer data type and un-
filtered texel fetching. Figure 12 illustrates the process of
fetching texels from a compressed LDI by unmapping texture
coordinates.

To obtain the coordinates ISC into the IS for a given point
V , we first transform V using Equation 2. After scaling to
compensate cropping, we linearize (Ts,Tt) with respect to the
texture resolution of the original (wi,hi) and cropped LDI
(wb,hb). We then re-interpret the linearized coordinate with
respect to wc. After ISC is calculated, we retrieve the range
segment offset OV and the number of depth ranges RV . Now,
the coordinate RSC into the range segment RS is determined
and the depth ranges DR j are successively sampled. The VPT
bool testAABB2D(in vec2 v, in vec2 b1, in vec2 b2){
return (v.x>=b1.x)&&(v.y>=b1.y)&&(v.x<=b2.x)&&(v.y<=b2.y);}

bool volumetricParityTestCompressedSM4(
in vec4 T,             // point in LDI texture space
in sampler2D compressedLDI, // compressed LDI
in vec4 bounds,        // crop bounds
in uvec2 size,          // resolution of uncompressed LDI 
in bool initParity)    // initial parity

{ // initial parity; true = outside
bool parity = initParity;
// compensate cropping
if(testAABB2D(T.xy, bounds.xy, bounds.xy + bounds.zw)){
//map cropped cordinates to [0;1]
T.xy = (T.xy - bounds.xy) / bounds.zw;
// retrieve compressed texture size (CTS)
uvec2 CTS = uvec2(textureSize2D(compressedLDI, 0)); 
// uncompressed vds coordinates (UVC)
uvec2 UVC = uvec2(T.st * vec2(size)); 
// convert to linearized UVC (LUVC)
unsigned int LUVC = UVC.y * size.x + UVC.x;
// coordinate of the index segment (ISC)
ivec2 ISC = ivec2(LUVC % CTS.x, LUVC / CTS.x);
// sample from index segment IS
uvec2 IS = uvec2(texelFetch2D(compressedLDI, ISC, 0).ra); 
if(IS.x != 0u) { // depth ranges available ?
for(unsigned int i = 0u; i < IS.y; i++) {
// calculate range sample coordinate (RSC)
ivec2 RSC = ivec2((IS.x + i) % CTS.x, (IS.x + i) / CTS.x);
// sample range depth range DR
vec2 DR = texelFetch2D(compressedLDI, RSC, 0).ra;
if(T.z <= DR.x && T.z >= DR.y){ // perform parity test

parity = !parity;
break;

} } } }
return parity;}

Figure 13: GLSL shader source code for performing the VPT
with cropped and compressed LDI.
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Table 1: Performance results of our algorithms for input meshes of different depth complexity. The tests are performed with an
initial texture resolution of wi = hi = 1024 and sH = sV = 8 segments for viewpoint selection. The time metric is seconds, the
texture sizes are displayed in texel.

Shape #Vertex dmin dmax tcrop tcomp tpeel tview Mcrop Mcomp Cratio

Sphere 994 2 2 0.077 0.437 0.187 2.532 2,097,152 3,742,848 1.78

Complex 768 2 6 0.078 0.297 0.187 3.085 2,097,152 3,011,058 1.44

Cow 2,903 8 14 0.234 0.109 2.156 7.531 3,026,688 1,204,352 0.39

Potato 6,146 6 12 0.203 0.219 25.766 7.172 5,683,200 3,317,888 0.58

Knot 23,232 6 12 0.2 0.125 25.875 9.265 3,143,880 1,835,528 0.58

Hebe 34,344 10 18 0.313 0.078 37.078 12.187 3,358,720 1,089,288 0.32

of Equation 3 is implemented by swapping the input parity
pT if S j < Rz < E j.

5 Results & Discussion

Our test platform is a NVIDIA GeForce 8800 GTS with 640
MB video memory and AthlonTM62 X2 Dual Core 4200+
with 2.21 GHz and 2 GB of main memory at a viewport
resolution of 1600x1200 pixel. The test application does not
utilize the second CPU core. We have tested our algorithms
with simple or complex, convex and non-convex input shapes
of different geometric and depth complexity.

5.1 Performance

Preprocessing: Table 1 shows preprocessing results for
different input shapes. The compression ratio is given by
Cratio = Mcomp/Mcrop. The proposed compression algorithm
performs effectively for non-convex meshes with a high depth
complexity. We are able to achieve compression ratios of
1:2-3 which is usual for lossless compression [DL01]. Com-
pression should be avoided for symmetric convex meshes
or meshes with dmin = 2 since the compressed texture size
Mcomp is always larger than the cropped size Mcrop.

The runtime performance tview, tpeel , tcrop and tcomp de-
pends on the geometrical complexity of the input mesh (#Ver-
tex) and the initial resolution wi,hi of the LDI. The readback
of the 3D texture from video memory to perform cropping
and compression can become costly for large resolutions. To
speed up the viewpoint selection, it can be performed with
a lower resolution than the resolution needed for the actual
bounding representation.

Volumetric Depth Test: We are able to render the depicted
scenes at interactive frame rates (>15 FPS). The rendering
performance depend on the number and depth complexity
of the used LDIs, thus the number of samples the VPT has
to perform, and the geometrical complexity of the rendered

scene. Performance tests point out that using compressed
VDS is slower than using uncompressed ones. This can be ex-
plained by the calculation costs for the sampling coordinates
of the depth ranges. Although, the computational complexity
for the VPT reduces from O(d) to O(d/2) for compressed
LDIs.

5.2 Limitations

Both, the concept of volumetric depth sprites and the pro-
posed compression algorithm possess limitations that con-
strain their application.

Volumetric Depth Sprites: Figure 14 illustrates aliasing
and undersampling artifacts that can occur during the VPT.
They can be caused by low LDI resolutions and depend

Undersampling

Aliasing

Figure 14: Occurring
artifacts during VPT.

on the texture precision. Un-
dersampling occurs for planes
nearly parallel to the LDI di-
rection. To compensate this
drawback, one could apply
multi-sampling but that in-
creases the number of sam-
ples at the same time. Per-
forming depth peeling with
a high texture resolution for
a number of complex shapes
with d > 7 can hardly be done
in real-time. Due to this, our
approach is limited to static
meshes because animating the
shapes would require a re-
computation of its VDS.

Compression Algorithm: The introduced depth range com-
pression algorithm works only for LDIs that contain depth
maps. If the user wants to incorporate additional per-text data,

c© The Eurographics Association 2008.
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such as normal or color, perfect spatial hashing [LH06] can
be used.

Viewpoint Selection: Due to the regular step size for the
alteration of the camera parameter, it cannot be guaranteed,
that an orientation with a minimal depth complexity can be
found for every shape.

6 Conclusions & Future Work

In this paper we have extended the concept of volumetric tests
for real-time rendering purposes. We provided application
examples as well as detailed sources for shader implementa-
tions of algorithms which based on this representation. Fur-
thermore, we have presented three algorithms to facilitate the
efficient storage of LDIs on GPU. We are able to minimize
to space complexity for representing complex, non-convex
polygonal meshes with a high depth complexity. So, we were
able to compensate one of the key drawbacks of LDIs using
raster data to represent complex volumes. The performance
evaluation of these methods indicates a classical trade-off
between space and time complexity.

We are heading to move the complete preprocessing phase
of an LDI onto the GPU to avoid texture readback. This in-
cludes the AABB calculation, cropping, and the compression
algorithm. Our main goal is to improve the preprocessing
speed to be performed in real-time. This can enable the usage
of animated meshes for the volume representation. Further,
we research possibilities to perform an LDI-ray intersection
test that allow line clipping and the calculation of intersection
points. Furthermore, we will apply 3D noise to the LDI and
border sizes to produce a sketchy impression [ND04] of the
clipped areas.
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