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Abstract: This paper presents a novel image-based approach to efficiently generate real-time non-planar projections of
arbitrary 3D scenes such as panorama and fish-eye views. The real-time creation of such projections has a
multitude of applications, e.g., in geovirtual environments and in augmented reality. Our rendering technique
is based on dynamically created cube map textures in combination with shader programs that calculate the
specific projections. We discuss two different approaches to create such cubemaps and introduce possible
optimizations. Our technique can be applied within a single rendering pass, is easy to implement, and exploits
the capability of modern programmable graphics hardware completely. Further, we present an approach to
customize and combine different planar as well as non-planar projections. We have integrated our technique
into an existing real-time rendering framework and demonstrate its performance on large scale datasets such
as virtual 3D city and terrain models.

1 INTRODUCTION
This work introduces a concept to compensate for the
field-of-view (FOV) limitations of the classical pin-
hole camera rendering pipeline. It has been developed
to enable the application of non-planar projection on
standard consumer graphics hardware in real-time.
Examples are omni-directional panorama for non-
planar screens or spherical dome projections (Bourke,
2004). This work focuses on real-time modifications
of perspective views that are possible due to the re-
cent hardware developments (Blythe, 2006).
The research in the field of non-planar or non-linear
projection distinguishes mainly between two different
projection types: projections with a single projection
center (SCOP) (Carlbom and Paciorek, 1978) or with
multiple projection centers (MCOP) (Rademacher
and Bishop, 1998). Our approach is limited to SCOP.
In spite of non-planar projections screens (Nelson,
1983), this technique can also be used for rendering
effects in games as well as to improve visibility if
used in virtual landscapes (Rase, 1997) or city en-
vironments. The user can benefit from extreme per-
spectives (Glaeserm, 1999) and large FOV angles by
having a reasonable survey of the scene (Glaeser and

Figure 1: A cylindrical projection with a horizontal FOV of
270◦ and a vertical FOV of 90◦.

Gröller, 1999) as well as a better size and depth per-
ception (Polack-Wahl et al., 1997). Our method ex-
ploits the technique of dynamic environment mapping
(in terms of cube map texturing) in combination with
the programmable GPU. The separation of projection
calculation and cube map texture creation enables a
broad range of optimization techniques.
Existing image based approaches for non-planar pro-



jections suffer mainly from the lack of interactive ca-
pabilities if used with complex geometric scenes such
as virtual 3D city models or for large viewports. This
can be explained by the trade-off between the gener-
ality of the proposed frameworks and their efficient
reproduction. Furthermore, the parameterizations are
complex and cannot be controlled by the user intu-
itively (Brosz et al., 2007).
Our approach was inspired by (van Oortmerssen,
2002). This CPU-based technique renders six views
of FOV 90 in each direction. Afterwards, a table is
used to transform these pixels to one single view ac-
cording to fisheye and panorama projections.
Our main contribution consists of a simple parame-
terizable approach to combine planar as well as non-
planar projections seamlessly via so-called projection
tiles. Therefore we introduce an efficient image-based
creation method for non-planar projections that can
be applied in a single rendering pass. Our rendering
technique fully exploits current programmable con-
sumer graphics hardware. The presented concept is
easy to implement into existing rendering real-time
frameworks and can be combined with other tech-
niques that modify the image synthesis.
The paper is structured in the following way: Section
2 describes the related work. Chapter 3 describes the
basic concept of our approach whilst Section 4 intro-
duces a novel generalization schema for non-planar
projections. Section 5 explains the implementation
details. Section 6 presents possible results and appli-
cations as well as discusses the performance and lim-
itations of our rendering technique. Section 7 shows
ideas for future work and Section 8 draws some con-
clusions.

2 RELATED WORK
This section gives an overview of research in the fields
of SCOP and MCOP projections. There is a vast
amount of literature covering foundations and appli-
cations of non-planar as well as non-linear projec-
tions. In (Brosz et al., 2007) a sophisticated overview
is presented.

2.1 SCOP Approaches
To achieve distortions or special projections of the
3D scene, the pinhole camera is extended in several
ways. In (Bayarri, 1995) a procedure is proposed that
is based on the computation of new absolute coordi-
nates to be transformed through an adaptive projec-
tion matrix. A flexible adaptive projection framework
is described by Brosz et.al. (Brosz et al., 2007) that
enables the modeling the modeling of linear, non-
linear, and hand-tailored artistic projections. It uses

ray-casting and scanline rendering algorithm where
polygonal coordinates are changed by a vertex shader.
The generality of the framework makes efficient pro-
jection difficulty, especially for large scale scenes.
Distortions as sub-category of geometric registration
or image warping are discussed in (Gustafsson, 1993)
and (Glasbey and Mardia, 1989). A warping func-
tion is applied to each pixel to determine its new color
value.
An image stitching approach for panorama image
generation can be found in (Szeliski and Shum,
1997). In (Turkowski, 1999) a method is demon-
strated to generate environment maps from fisheye
photographs. Besides the issues of nonlinear perspec-
tive deformation described in (Yang et al., 2005; H.
et al., 1999; Yang et al., 2003; Bourke, 2000; Swami-
nathan et al., 2003) we find also lens taxonomies
(Neumann and Carpendale, 2003; Leung and Apper-
ley, 1994). These approaches use a regular mesh tex-
tured with a 2D texture that contains the rendered
scene or an image. The displacement of the mesh ver-
tices together with the texture mapping process gener-
ates the particular distortion effect. These approaches
are limited regarding the FOV which can be achieved.
Carpendale researched the usage of image defor-
mation in the context of information visualization
(Carpendale and Montagnese, 2001). The application
of fisheye views in information visualization is dis-
cussed in (Rase, 1997). Applications for view distor-
tions in ray-tracing software are described in (Gröller
and Acquisto, 1993; Coleman and Singh, 2004).

2.2 MCOP Approaches
Additional to SCOP imaging there are non-planar
projection surfaces that require multiple perspectives,
e.g., a number of images from different center of pro-
jections (Wood et al., 1997). The goal is to keep
qualities of global scene coherence, local distortions,
and shading results from the changes in perspective
of each projection. View-independent rendering, ex-
pressive CG imagery or animation are just a few ap-
plications for this area of scientific research.
Apart from slit cameras, (Glassner, 2000) introduced
the Cubist Camera that presents many interpretations
and points of view simultaneously. The technique
uses nonlinear ray tracing that handles lighting but
can cause artifacts.
Given a scene geometry and an UI to position local
and master cameras (Agrawala et al., 2000), Artis-
tic Multiprojection Rendering provides a tool for cre-
ating multi-projection images and animations. The
principal item is the algorithm that solves occlusions
of the scene objects, each rendered by a local cam-
era. This is able to handle fixed distortions and cre-
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Figure 2: Comparison between a classical perspective projection with a FOV of 45◦ (A) and a spherical projection with a
FOV of 260◦ (B). Sub-figure (C) shows the same projection with an off-axis vector O = (0.8,0,0).

ates surrealistic, toony styles but cannot solve lighting
and shadow problems.
A fresh Perspective (Singh, 2002) introduces also an
interactive approach that does neither handle illumi-
nation issues nor control global scene coherence. The
difference: the resulting nonlinear perspective image
of an object is potentially influenced by all cameras.
Constitutive on that is RYAN (Coleman and Singh,
2004). This interactive system integrates into the con-
ventional animation work flow. It distorts the scene
geometry prior to the linear perspective transforma-
tion. The result will appears nonlinearly projected.
Just like (Agrawala et al., 2000), it uses two kinds
of cameras: boss (traditional linear perspective) and
lackey (represent local linear views). The illumina-
tion is done by blending illumination of boss and
lackey cameras or setting a single view point for light-
ing.

3 BASIC CONCEPT
The concept of our approach is based on two com-
ponents: a dynamic environment map (Heidrich
and Seidel, 1998) and fragment shader functionality
(NVIDIA, 2005). First, the virtual environment is
rendered into a cube map texture. The cube map tex-
ture is a fully hardware accelerated feature (NVIDIA,
2004) and can be constructed by using single or multi-
pass rendering (see Section 5.1).
To derive a non-planar projection, we have to deter-
mine a cube map sampling vector S = (x,y,z) ∈ D3

for each fragment Fst = (s, t) ∈ D2. Formally, we de-
fine a projection function δP (Fst) = S for a projection
P as:

δP : D2 −→ D3 (s, t) 7−→ (x,y,z)

Where D = [−1;1] ⊂ R is a normalized coordinate
space. For example, a horizontal cylindrical projec-
tion C can be formulated as instance δC (Fst ,α,β) = S
with an horizontal FOV of 2 ·α and a vertical FOV of
2 ·β :

x = cos(s ·α) y = t · tan(β) z = sin(s ·α)

Further, a spherical projection S with an FOV of γ can
be expressed as δS (Fst ,γ) = S with:

x = sin(θ) · cos(φ)
y = sin(θ) · sin(φ)
z = cos(θ)

φ = arctan(t,s)
θ =

√
s2 + t2 · γ/2

This procedure assumes an user orientation towards
the negative z-axis. If the cube map texture is created
in the standard orientation (Figure 3.A), we would
have to correct S by transforming it with respect to
the current camera parameters. The transformation
matrix C is an orthonormal base constructed from the
current look-to vector LT = (xT ,yT ,zT )∈D3, look-up
vector LU = (xU ,yU ,zU ) ∈ D3 and the cross product
LC = (xC,yC,zC) = LT ×LU so that:

C =

xT yT zT
xU yU zU
xC yC zC

⇐⇒ LT •LU 6= 0

Following this, the final sampling vector V for a pro-
jection P and a fragment Fst is calculated via:

V =
(
C ·δP (Fst · s)

)
−O

The vector O ∈ D3 is denoted as off-axis vector
(Bourke, 2004). Figure 2.C demonstrates an exam-
ple for an off-axis projection. The scalar term s ∈ D
can be interpreted as a zooming parameter.
To avoid unnecessary calculations at runtime, the dis-
tortion vector V can be stored into a high-precision
floating-point normal map (Kilgard, 2004). This re-
duces the shader execution costs for projection calcu-
lation to two texture look-up operations and enables a
new technique for combining different projection us-
ing projection tiles.

Figure 3: Standard cube map orientation used by our con-
cept and implementation.
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Figure 4: Elaborated conceptual pipeline to render combinations of planar and non-planar projections defined by projection
tiles. A tile screen (A) is transformed into an angle map (B) from which a normal map (C) is derived that contains the cube
map sampling vector to create the final rendering (D).

4 PROJECTION TILES
This method enables the combination of planar pro-
jections and different non-planar derivatives as well as
it facilitates the creation of custom projections which
are hard to describe analytically. In this context, pro-
jection tiles are a generalization of the concepts de-
scribed in Section 3. They enable control over differ-
ent projection types as well as add a smooth transition
of their parameters. A projection tile defines the area
of a specific projection in relation to the viewport.
Projection tiles are organized in a projection tile
screen (PTS) (Figure 4.A). It is represented by a spe-
cific feature set T mn defined as follows:

T mn =

E0n · · · Emn
...

. . .
...

E00 · · · Em0


A component Ei j of T mn is denoted as tile feature.
It basically describes a view direction for a specific
point on the screen. To enable a more intuitive way to
describe a tile screen, we have chosen spherical po-
lar coordinates φ and θ to express the view direction
instead of a normalized direction vector. Thus, we
define a feature Ei j as a 6-tupel:

Ei j = (xi j,yi j,eA(φi j),eA(θi j),si j, fi j)
xi j,yi j,si j, fi j ∈ [0;1]⊂ R

φi j,θi j ∈ [−360;360]⊂ R

that contains the feature position (xi j,yi j) and the par-
ticular horizontal and vertical view angles (φi j,θi j).
The parameter si j is the respective scaling factor while
the variable fi j can be used to bind custom parameters
to each feature. Figure 5 demonstrates this by adjust-
ing the image saturation according to the respect value
of f . The function eA(x) = (x + 360)/720 is used to
encode an angle into a range of [0;1].
The PTS is transformed into a feature map (Figure
4.B) by rendering its respective tiles Tkl with k =
0 . . .m−1, l = 0 . . .n−1:

Tkl = (E(k,l),E(k+1,l),E(k+1,l+1),E(k,l+1))

into a texture using render-to-texture (Wynn, 2002).
The components xi j and yi j are interpreted as the 2D
vertices of a quad in standard orthographic parallel
projection (Woo et al., 1999). The angles and the
scale factor are encoded into a per-vertex RGBA color
value. The hyperbolic interpolation (Blinn, 1992) be-
tween these values is performed by graphics hard-
ware.
The rendered feature map stores the interpolated hor-
izontal and vertical angles Ast = (φst ,θst) for each
fragment Fst . The normal Nst can be calculated by:

Nst = fnormal(Ast)

= Rx
(
e−1

A (θst)
)Ry

(
e−1

A (φst)
)0

0
1

+

s
t
0


Where Rx and Ry denote the 3D rotation around the
respective axis. For each Nst in the resulting normal
map (Figure 4.C) a sampling vector S can be calcu-
lated by setting δT mn(Fst · sst) = Nst . The result is
shown in Figure 4.D.

5 IMPLEMENTATION
The rendering of non-planar projections is performed
in two steps per frame:

1. Create or update dynamic cube map as described
in Section 5.1. During this phase, optimization
methods as described in Section 5.2 can be uti-
lized.

2. Apply projections by exploiting programmable
graphics hardware (see Section 5.3) This step is
applied in postprocessing and requires an addi-
tional rendering of the scene geometry.

The exemplary implementation was done by us-
ing OpenGL (Segal and Akeley, 2004) in combina-
tion with GLSL (John Kessenich, 2004). It uses
framebuffer objects, floating point textures, and mip-
mapped cube maps for dynamic texturing (Harris,
2004).
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Figure 5: Examples for combining planar and non-planar projections within a single rendering using projection tile screens.
Sub-figure A is composed of a planar projection in the center and cylindrical projections left and right. Sub-figure B shows the
same scene with two planar projections for each cathedral. The saturation falloff is controlled by the respective tile features.

5.1 Cube Map Creation
An advantage of our image-based concept is the appli-
cation of dynamic cube map textures (Greene, 1986).
The creation of those can be optimized depending on
the respective projections. This can be achieved using
two techniques:

Single-Pass Creation: On current hardware, it is
possible to create cube map textures within a single
pass by utilizing geometry shaders (Microsoft, 2007).
This render-to-cube-map technique duplicates each
input triangle six times and applies a separate model-
view transformation for each face of the cube. Each
of the resulting triangles is directed to the appropriate
element of a render target array view of the cube map
(Blythe, 2006)

Multi-Pass Creation: One can create a cube map
texture using multi-pass rendering in combination
with render-to-texture (Göddeke, 2005). Given a
reference camera position, we can construct six local
virtual cameras with a FOV of 90 degrees, an aspect
ratio of 1, and render the scene into the respective
cube map texture targets.

We have two alternatives to construct these virtual lo-
cal cameras: 1) by rotating the reference camera or 2)
by using fixed cube map orientation (Figure 3). The
latter demands for a look-to correction as described in
Section 3 and is necessary for a simple implementa-
tion of projection tiles.

5.2 Optimization Techniques
Depending on the scene complexity, the creation of a
cube map texture can become costly. Usually, the cre-
ation is fill-limited due to the increased rasterization
effort as well as bandwidth-limited due to the number

of rendering passes. In our application, it is not pos-
sible to use proxy geometry to speed up the creation
process or distribute the rendering of each cube map
face to different frames. We have implemented two
main optimization techniques that are able to com-
pensate this problem.

CMF Optimization: This optimization omits the
update of cube map faces (CMF) that are not visible
in the generated projection. To determine which cube
map faces have to be updated, we calculate 360 de-
gree spherical coordinates for each corner vertex of
the unit cube and the current look-to vector LT . Then,
we define a non-planar view frustum (NVF) by off-
setting the spherical coordinates of LT with the hori-
zontal and vertical angle of the current projection. If
one of the face vertices is inside the projection region,
the associated face will be updated. Figure 6 demon-
strates this by considering the lower vertices of the
unit cube only. For the current look-to vector LT the
update of CMFback is omitted.
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Figure 6: Parameter space for CMF-Optimization. The
cube map is displayed from the positive y-axis. The gray
area represents the non-planar view frustum of a non-planar
projection.



Figure 7: Example for applying postprocessing filters to the
output of our projection technique. Together with a wide
angle projection, the radial blur emphasizes the impression
of speed.

Look-To Optimization: Another optimization
method would omit the update of the cube map
texture if the camera position is not changed.
A further optimization method can orient the cube
map in such way that an optimal coverage for the
respective projection region can be achieved. This
includes changes in the projection function and is left
for future work.

5.3 Applying Projections
The projection is rendered in a post-processing pass
subsequent to the cube map creation pass(es). It can
be performed according to the following steps:

1. Setup a standard 2D orthographic parallel projec-
tion with le f t = bottom = 0 and right = top = 1.
The camera is set to the standard orientation with
a look-to vector LT = (0,0,−1).

2. Activate a specific fragment program that imple-
ments the mathematical concepts as described in
Sections 3 and 4. Then, the shader program per-
forms cube map texture lookups or outputs the
calculated normal vectors for later re-use.

3. Render a screen aligned quad with standard tex-
ture coordinates that covers the entire screen. To
apply the described concepts, the fragment posi-
tion (s, t) must be normalized in D.

6 RESULTS
Figures 1 and 2 show the application of our approach
for the interactive visualization of large scale datasets
such as 3D virtual city models. Currently, we did not
apply our method to scenes made of real-world im-
ages. However, this is possible because our technique
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Figure 8: Performance measurements for different models
and cube map texture resolutions.

is independent from the scene representation. Fig-
ure 7 demonstrates the combination of our rendering
technique together with color post-processing filters.
Figure 9 shows the application to projection systems.
Here, the pincushion distortion is compensated by the
projectors.

Performance: Figure 8 shows the measured frame
rate for 3 models of different polygon counts. The
measurements were taken on NVIDIA GeForce 8800
GTX GPU with 786MB RAM and AthlonTM62 X2
Dual Core 4200+ with 2.21 GHz and 2 GB of main
memory at a viewport resolution of 1600x1200 pixel.
It uses multi-pass rendering to create the cube map
texture. The test application does not utilize the sec-
ond CPU core. The most complex sample dataset
(Model 1) comprises the inner city of Berlin with
about 16,000 generically textured buildings, about
100 landmarks, and a 3 GB color aerial photo on top
of a digital terrain model.

Limitations: The observable subside of the frame
between the cube map resolution 512 and 1024 pixel
is caused by a fill limitation of the used graphics hard-
ware and can vary. The necessary resolution of the
cube map texture depends on the resolution of the
viewport and the used projection. For high horizon-
tal and vertical FOV, a cube map resolution of 10242

pixels is sufficient in most cases.
The quality of the feature map depends on the res-
olution of the PTS. If the resolution is too low, the
feature interpolation can cause artifacts for tiles with
acute angles. We obtained blurred output images for
extreme FOV. This is the key disadvantage of our ap-
proach and is caused by texture sampling artefacts.



Figure 9: This is an example for the application of our ren-
dering technique to a cylindrical projection wall with a di-
ameter of 4 meters. It uses a static, pre-rendered cube map
texture.

7 FUTURE WORK

Although our approach performs as expected, there
are still possibilities for further improvements. The
adaption of cube map optimization techniques to the
single pass creation technique as well as experiments
with irregular texture resolutions are left for future
work. To compensate for unsharp output images we
are up to develop custom filtering methods for cube
map textures.
We are particularly interested in supporting other
SCOP projections as described in (Margaret, 1995).
The representation of standard non-planar projections
using tile screens enables the combination of non-
planar projections with the 2D lens metaphor as de-
scribed in (Spindler et al., 2006; Carpendale and
Montagnese, 2001) as well as (Bier et al., 1993).
Therefore, a authoring tool for PTS is necessary. Fur-
ther, we try to adapt our rendering technique to gen-
erate non-planar for 3D anaglyph images.
Additionally, we can apply the isocube approach
(Wan et al., 2007) to compensate cube map sampling
artifacts for lower resolutions. Finally, a comparative
performance evaluation concerning time efficiency of
our concept compared to other approaches is left for
future work.

8 CONCLUSIONS

We have presented an approach to generate non-
planar projections for real-time applications. We sug-
gested optimization methods to accelerate the cre-
ation of dynamic environment maps and introduced a
novel approach for creating combined SCOP projec-
tions. We demonstrated the results and performance
of our rendering technique by integrating it into an
existing rendering framework (3Dgeo, 2007).
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