
Multiscale Visualization of 3D Geovirtual Environments Using
View-Dependent Multi-Perspective Views

Sebastian Pasewaldt Matthias Trapp Jürgen Döllner
Hasso-Plattner-Institut, University of Potsdam, Germany

{sebastian.pasewaldt|matthias.trapp|juergen.doellner}@hpi.uni-potsdam.de

ABSTRACT

3D geovirtual environments (GeoVEs), such as virtual 3D city models or landscape models, are essential visualization tools for
effectively communicating complex spatial information. In this paper, we discuss how these environments can be visualized using
multi-perspective projections [10, 13] based on view-dependent global deformations. Multi-perspective projections enable 3D
visualization similar to panoramic maps, increasing overview and information density in depictions of 3D GeoVEs. To make
multi-perspective views an effective medium, they must adjust to the orientation of the virtual camera controlled by the user and
constrained by the environment. Thus, changing multi-perspective camera configurations typically require the user to manually
adapt the global deformation — an error prone, non-intuitive, and often time-consuming task. Our main contribution comprises
a concept for the automatic and view-dependent interpolation of different global deformation preset configurations (Fig. 1).
Applications and systems that implement such view-dependent global deformations, allow users to smoothly and steadily interact
with and navigate through multi-perspective 3D GeoVEs.

Keywords: multi-perspective views, view-dependence, global space deformation, realtime rendering, virtual 3D environments,
geovisualization.

1 INTRODUCTION

3D GeoVEs, such as virtual 3D city and landscape mod-
els, represent efficient tools for fields such as geogra-
phy or cartography, in particular if their visualization
and knowledge can be transferred to the 3D visualiza-
tion domain [9]. Previous work has shown that global
deformation applied to such environments can be used
to assist wayfinding and navigation by making effective
use of the available image space [10,13] and by reducing
occlusions [18]. Grabler et al. [2009] demonstrate that
the usage of multi-perspective views in combination with
cartographic generalization techniques such as simplifi-
cation and deformation is suitable to convey important
information with in 3D tourist maps.

In the context of interactive global deformations
and multi-perspective views, existing visualization
techniques and systems are most effective for specific
settings of a virtual camera, i.e., Fig. 2. The virtual
camera must be near the ground (pedestrian view) or at
a certain height (birds-eye view), in order to exploit the
full potential of these visualization techniques. Usually,
in a 3D GeoVE the user wants to interact and navigate
freely. This would require the manual adaptation of
the visualization parameters during interaction and

Please note, that this is a draft version. The final pa-
per has been published as part of the Journal of WSCG
2011, volume 19, number 3, page 111-118.

Figure 1: Conceptional sketch of the interpolation of
global deformations and different geometric representa-
tions based on the viewing angle of the virtual camera.

navigation. In general, this task is complex, error-prone,
and time-consuming. In this paper we develop a concept
that delivers a suitable visualization for a camera setting
via automatic view-dependent interpolation of global
deformations that are represented by parametric curves.

Further, a drawback of 3D GeoVEs are the multiple
geometric scales [9], introduced by the perspective pro-
jection of the camera, because they lead to small scales
in the more distant parts of the scene. Consequently,
the depiction of objects only have limited image space
(e.g. only one pixel) and cannot be distinguished by a
viewer (pixel noise). To overcome this problem in the do-
main of paper maps, cartographers apply generalization
techniques to minimize visual complexity and to improve
comprehension. A similar concept is used in most of the
current multi-perspective techniques. Instead of using a
photo-realistic style, a map-based style is applied to re-
gions of small scales. We generalize the style concept

Figure 2: Exemplary results of our visualization system that enables the view-dependent interpolation of the de-
picted scenes: progressive perspective (A), degressive perspective (B), and a hybrid perspective (C) using different
generalization levels of a 3D virtual city model of Berlin.

by letting the user define multiple geometric representa-
tions, e.g., obtained from cell-based generalization [8],
to sections of the curve (Fig. 2). Further, these ex-
plicit geometric representations enable more design free-
dom then automatically derived style variations such as
in [10]. Jobst and Döllner (2008) further suggest to sub-
divide the visualization into zones where a constant scal-
ing and thus a constant generalization is applied per zone.
An exemplary visualization can be seen in Fig. 7.

Möser et al. [13] generalize the concept introduced
in [10] by using Hermite curves for the parameterization
of global deformations, which can be easily manipulated
by the user. However, the application of standard param-
eterized curves for such a visualization introduces addi-
tional geometric distortions. We compensate these by an
arc-length parameterization [14].

In this work we present a concept and system that
addresses the above challenges with respect to realtime
raster-based graphics synthesis. To summarize, this work
makes the following contribution:

1. It describes a concept for the automated and view-
dependent interpolation of global deformations based
on the viewing angle of the user’s virtual camera with
respect to a reference plane.

2. It further presents an extension to global deformations
that enables a user to define different geometric rep-
resentations for different sections along a deformation
curve and enables their image-based interpolation.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work. Section 3 introduces the
concept of view-dependent global deformations. Section
4 describes steps to prepare the visualization. Section 5
outlines how to implement the concept as a realtime ren-
dering technique. Section 6 consists of a performance
evaluation, a preliminary user study, discusses problems
and limitations, and presents ideas for future work. Sec-
tion 7 concludes this paper.

2 RELATED WORK
Panoramic Imaging
Panoramic maps were introduced by H.C. Berann [3].
He combined handcrafted geographic with terrestrial de-
pictions and different projection techniques to generate

a new kind of map, which assists the user in the orien-
tation task. This work was time-consuming and tedious.
Premoze introduced a framework for the computer aided
generation of panoramic maps [17]. It offers tools to as-
sist the map-maker in the work flow of the hand-tailored
maps. A semi-automatic approach to generate panoramic
maps, which relies on global deformations, is presented
in [24]. Falk et al. introduced a semi-automatic tech-
nique based on a force field that is extracted from the ter-
rain surface [7]. Degener & Klein concentrate on param-
eters like occlusion and feature visibility in their auto-
matic generation of panoramic maps [6]. All approaches
combine non-linear perspectives in one final image, but
rely on different techniques.

Non-linear Perspectives

Non-linear Perspectives can be achieved with different
techniques: (1) Using non-standard, non-linear projec-
tion to produce a non-linear perspective image, or com-
bine several images taken from different perspectives
([1], [23]). (2) Reflection on non planar surfaces and (3)
Local or global space deformation [26]. The combina-
tion of different images to one final image as used in [1]
and [23] can also be expressed by a space-deformation
as introduced in [2]. The Single Camera Flexible Pro-
jection Framework of [4] is capable of combining linear,
non-linear and handmade projections in realtime. The
projections are described by a deformed viewing volume.
Similar to free-form deformation (FFD [22]), the view
frustum serves as lattice. Objects or viewing rays are de-
formed according to the deformation of the lattice. For
the occlusion free visualization of driving routes Taka-
hashi et al. rely on global space deformation [25].

On the one hand the mentioned techniques offer a
broad and flexible definition of the projections, which
enables the user to control nearly every facet of the final
perspective. On the other hand a large number of non-
intuitive parameters have to be controlled. Brosz et al.
[2007] abstracts from these parameter by using a lattice.
Similarly, we rely on a 2D B-Spline curve to control the
3D curve-based deformation.

Global Deformations

The work of Lorenz et al. [10] uses global deformation
to generate non-linear perspectives. The geometry is
mapped on two different planes, which are connected by
a Bézier surface. The planes may vary in tilt, allowing
for a combination of two different perspectives. Simi-
lar to panoramic maps, a mixture of cartographic maps
and aerial images is used. The different stylization are
seamlessly blended in the transition between the planes.
Möser et al. [2008] extend this idea by using a more flex-
ible Hermite curve to control the deformation. They also
rely on a combination of aerial and cartographic images
to apply a kind of generalization in the more distant parts
of the scene.

Our approach is based on parametric curves, too. In-
stead of using a Hermite curve, we decided to use a B-
Spline curve, because it offers more flexibility without
the need of combining several curves. Furthermore, an
arbitrary number of stylizations can be defined, which
are not restricted to textures. Instead, we exploit the pos-
sibility of blending between different geometric repre-
sentations generated by the generalization of 3D virtual
city models as introduced in [8]. We introduce a view-
dependent variation based on the work of Rademacher
[19]. He defines key-deformation with associated key
viewing points. Depending on the current viewpoint the
key-deformations are interpolated. A similar approach is
used by [5] for interactive stylized camera control. An-
other view-dependent variation of deformations is dis-
cussed in [12]. Here the global deformation is modified
by a view or distant-dependent control function that can
depend on a virtual camera.

3 VIEW-DEPENDENT GLOBAL
DEFORMATIONS

Our approach consists of two main phases: (1) Rigging
Visualization Presets: The user prepares discrete presets
of the visualization. One visualization preset includes
a deformation curve, the assignment of geometric rep-
resentations to curve sections (tagging), and the defini-
tion of a viewing angle for which the preset is valid. (2)
Realtime Visualization: During runtime the presets are
interpolated using the camera parameters, which are ma-
nipulated during navigation or interaction with the 3D
GeoVE.

3.1 Preliminaries
For our visualization we assume that a 3D GeoVE can
be approximated by a 3D reference plane R = (N,O) ∈
R3×R3 defined by a normal vector N and a position vec-
tor O. Thus, and because of the isotropy of the global
deformation variants used in this paper, a view setting
for a virtual camera can be described by a viewing angle
φ = cos(90−CD ·N) (Fig. 4).

To implement progressive or degressive perspectives
[10] or hybrid forms [13], our approach uses B-Splines

curves [20] instead of Hermite curves. In our experi-
ments we use cubic B-Splines curves (k = 4) with four or
six control points. In [9] it is argued that a smaller tran-
sition zone and linear segments would benefit the com-
prehension of such a visualization. This specific con-
figuration is hard to implement using a single Hermite
curve, but can be easily achieved using B-Splines curves
with six control points, by setting two consecutive con-
trol points to the same position (Fig. 7).

R
RS

RC

RE

s e

V'

N(t)

V''C
P

t

V'T

z
V

L

CD

Figure 3: The reference plane R is separated by the pa-
rameter s and e into three sections: RS, RS and RC. Based
on the depth zV ′ of the vertex V along the camera direc-
tion CD, the vertex is deformed onto one of the sections.

3.2 Application of Deformation Curves
We apply a global space deformation based on paramet-
ric curves, where the curve defines the deformation be-
havior. Therefore, R is subdivided into three sections
(Fig. 3): (1) the curve-controlled section RC, (2) a planar
extension at the start RS, and (3) a second planar exten-
sion at the end RE . The deformation of RC is controlled
by a B-Spline curve C(t) with a static open knot vec-
tor. Assuming that the control points Bi are fixed for
a specific B-Spline, the position vector in curve-space
C(t) ∈ [0,1]× [1,−1] only depends on the parameter t.
To deform an input vertex V = (x,y,z,w) ∈ R4 we need
to establish a mapping between V and t.

To establish the mapping, we first aligned V along the
z-axis of the camera space V ′ = V ·RA. RA rotates V
around O by φ . After the rotation, every vertex is aligned
along the viewing direction CD of the virtual camera. The
depth of V ′ is linearized between the user defined scalars
for the start s and end e of the curve in camera space to
compute t ∈ [0,1]. To account to the varying arc length L
of the B-Spline curve in curve space, we perform a sec-
ond normalization of t by L (Fig. 3). The rotation during
the mapping is necessary, since otherwise a change of φ

would lead to a different depth value of V and thus to
a different mapping between V and t. Finally, the de-
formed vertex V ′′ is computed as follows:

V ′′ =


V ′ ·MS t < 0
V ′ ·ME t > L
V ′ ·MC(t) otherwise

t =
zV ′ − s
e− s

· 1
L

The deformation matrix MC(t) consists of two separate
translations TC(t) and DC(t), which are applied to V ′ se-

quentially. TC(t) translates the vertex according to its po-
sition on the curve: Based on t a position vector C(t) in
curve space is computed. C(t) is mapped back to camera
space and used to translate V ′ onto RC, yielding V ′T . Af-
terwards DC(t) translates the vertex along the normal of
the curve as follows: Based on the bi-normal Bx and the
tangent C′(t) the normal N(t) =C′(t)×Bx is computed.
V ′T is translated along N(t) by a distance d. Here, d de-
notes the distance of V ′ to its projection onto R. We just
translate the position of the input vertex, because our de-
formation is a space deformation only. Operations which
depends on vertex attributes, e.g. normals, are applied to
the undeformed scene.

Figure 4: Exemplary parameterization of a deformation
curve preset using four tag points (ui).

To handle the cases of t /∈ [0,1] the deformation ma-
trices MS and ME are applied accordingly to transform
V ′ on RS or RE : If the extension plane is parallel to R
the matrix is a translation matrix. Otherwise the matrix
rotates V ′ on RS or RE . RS is defined by the normal and
position vector of the last B-Spline pont (C(1)) and RE
by the first point (C(0)).

Depending on the distribution of the control vertices
and the knot vector of a B-Spline curve, a sampling with
equidistant values t1, t2 and t3 may not yield an equidis-
tant distribution of points P(t1), P(t2) and P(t3), because
a B-Spline curve is not arc-length preserving. This is dis-
tracting, since it will lead to a scaling error introduced by
a straining or stretching of the geometric representation.

To guarantee a correct deformation behavior the curves
must be re-parameterized. The approaches of [21] and
[15] are not suited for our purposes because they either
globally distribute the scaling error or are computational
expensive. Instead, we decided to re-parameterize the
parameter t similar to the method described in [14]. We
sample the B-Spline curve in equidistant intervals and
compute the arc-length of these segments. Based on the
sampled length L and the according parameter t, the arc-
length preserving parameter t ′ is computed by linear in-
terpolation and stored in a lookup table.

3.3 Visualization Presets
Before we describe the tagging and interpolation of de-
formation curves, it is necessary to introduce the concep-
tual term visualization preset. As a preset we consider

a single perspective (e.g., degressive or progressive). A
preset P consists of the following components:

P = (C(t),T ,G ,φ ,τ,s,e,a,b)

The set of all presets is denoted as P , with |P| = m.
Besides a B-Spline curve C(t) that is used to modify
the global deformation, it contains an ordered list of tag
points T , a list of geometric representations G and the
following scalar parameters (Fig. 4):

• φ : a camera angle, defined through the virtual camera
and the reference plane R.

• τ: an angle interval around φ , where a preset is valid,
i.e., no interpolation of the preset will occur.

• s,e: start and end of the deformation in eye-space.
The interval is used to widen or narrow the curve-
spaced deformation in camera-direction.

• a,b ∈ [0,1]: start and end of the geometry interpola-
tion. This enables the user to define the geometry in-
terpolation independent from the interpolation of the
multi-perspective view.

3.4 Tagging of Deformation Curves
Our system enables the user to associate curve sections
with different geometric representations. This can be
useful for increasing or decreasing the visual complexity
with respect to parts of the visualization. In [10], this was
implied by blending between different type of textures
within the transition zone and by omitting unimportant
buildings. We extend this idea by blending between 3D
geometry assigned to consecutive sections of a deforma-
tion curve (see Section 5.2). In our examples (Fig. 2 and
7) we use different levels of abstraction (LoA) automati-
cally derived from the virtual city model of Berlin [8].

We can partition a deformation curve C(t) into a num-
ber l ≥ 2 of consecutive styling sections as part of the
global set of sections S :

Si = (Ti,Ti+1,G), Si ∈S G ∈ G

Here, i = 0, . . . , l− 1 represents an index into the list of
tag-points T = T0, . . . ,Tl assigned to every preset P. The
geometric representation for a section is denoted as G. A
tag point Ti is further defined as follows:

Ti = (u,δ) u,δ ∈ [0,1], i = 0, . . . , l Ti ∈T

The position of the tag point on the curve is controlled
via the parameter u. δ describes the length of the transi-
tion zone between two consecutive sections and is used
for blending (see Section 5.2). We assume implicit fixed
start and end tag points T0 = (0,0) at the curves start and
Tl = (1,0) at the curves end. Fig. 5 shows the different
variants of a terrain model of the grand canyon and the
associated active curve preset (inset).

Figure 5: Styling section of a deformation curve with different models of the grand canyon. The inset shows the
associated tag point and sections of the curve: The control points are depicted in red and the tag points are depicted
green. The grid overlay was added to illustrate the deformation.

3.5 View-Dependent Curve Interpolation

The view-dependent curve interpolation, based on the
camera angle φ , consists of two main steps: the preset
selection and the preset interpolation. Given the view-
ing angle of the current virtual camera φa and the set of
all presets P , a selection function s(P,φa) = (PS,PT)
delivers two presets as follows:

s(P,φa)= (PS,PT)=

 (Pi,Pi+1) φa ≥ φi∧φa < φi+1
(P1,P2) φa ≤ φ1

(Pm−1,Pm) φa > φm

for all i = 1, . . . ,m. This requires an ascending ordering
of P by φ performed at the end of the rigging process.
Given the viewing angle φa of the virtual camera and two
presets PS and PT , the weighting factor σ is calculated as
follows:

σ = clamp
(

φa−φS

φT −φS
,0,1

)
Given σ ∈ [0,1], the source PS and target preset PT , the
interpolation PI = p(PS,PT ,σ) of the current preset PI is
performed by a linear interpolation of all control points:
Bi,I = Bi,PS +σ · (Bi,PT −Bi,PS) as well as the respective
tag points: Ti,I = Ti,PS +σ · (Ti,PT −Ti,PS).

Beside interpolating the curve related parameters, the
geometric representations must also be interpolated.
First the geometric representations of PS and PT are
rendered into two texture-arrays, which are later blended
according a factor β ∈ [0,1], which is calculated as
follows:

β = clamp
(

σ −aPS

bPS −aPS

,0,1
)

The interval
[
aPS ,bPS

]
defines in which section of the

curve interpolation the geometric representations should
be blended.

4 AUTHORING WORKFLOW

Our system supports interactive editing of the complete
deformation curve parameterization and preset configu-
ration at run time. To create a visualization, the user has
to perform two steps: 1) adjust global settings required
for every preset and 2) create or modify presets. Ac-
cording to Section 3.3 the user is required to select the
number of control points and set the global number of
tag points l, which are equally distributed over the length
of the curve initially. This defines the number of styling
sections implicitly.

After the global settings are defined, the user can mod-
ify the position and orientation of the virtual camera (φ)
using standard interaction metaphors and edit the defor-
mation curve parameters using direct manipulation of
the curve control points. Further, the tag points can be
moved along the deformation curve (which alters u) and
the size of transition zone between two sections can be
adjusted by altering δ . The user directly manipulates the
tag points and the B-Spline control points using an in-
teractive 2D widget (inset in Fig. 5). The scene models
G can be loaded and assigned to the respective styling
sections by dragging a geometric representation instance
G to a respective styling section S. If the geometric rep-
resentations of the different presets should not be inter-
polated over the complete interpolation interval, the user
can adjust the parameters a and b. Finally, the start s and
the end e parameters may be adjusted. These steps are
then repeated for every preset.

Once all presets are prepared, the user can fine tune
φ and τ to achieve the desired transitions. In terms of
authoring effort, none of the depicted visualizations took
more than three minutes to prepare. In all cases, the most
time-consuming steps were the fine-tuning of the tran-
sition behavior and the modulation of the blending be-
tween the styling sections.

5 INTERACTIVE RENDERING

Our interactive visualization prototype is based on multi-
pass rendering using OpenGL and OpenGL Shading lan-
guage (GLSL). During multi-pass rendering, for each
section the global space deformation is applied in the ver-
tex shader. Each deformed geometric representation is
written to an off-screen buffer, using Render-To-Texture
(RTT) [16]. Finally the textures are composed. Details
on the implementation are given in this section.

5.1 Global Deformation Computation

As described in Section 3.2 the deformation can be sub-
divided into two steps. First, every vertex V is aligned
parallel to the camera viewing angle φa. To achieve this
the viewing angle is recomputed on a per frame basis and
the according rotation matrix RA is passed to the vertex
shader. Multiplying V with RA yields V ′, which is pro-
jected on the reference plane R. Its initial distance d is
stored in a shader variable. Second, the control point and
tangent vector of the B-Spline curve is evaluated per ver-
tex, to setup MC(t). One possibility is to evaluate the B-
Spline in the vertex shader. This implies, that the specific
formulas to evaluate the parametric curves are known at
compilation time and are fixed in the vertex shader code.
A change of the parametric curve would lead to a change
of the shader code. Instead, we decided to compute the
position and tangent vector of the B-Spline curve off-line
on the CPU. Thus, the B-Spline curve must be evaluated
once a frame instead of once a vertex.

As mentioned in Section 3.2 the B-Spline must be arc-
length parametrized. The lookup table is precomputed
on the CPU and passed to the vertex shader, for the com-
position of styling sections, using a 32bit luminance tex-
ture. The texture lookup is performed by the parameter t,
yielding the arc-length corrected values. The quality of
the arc-length approximation depends on the number of
precomputed samples. The bilinear interpolation during
texture filtering provides a second parameter interpola-
tion. This enables us to reduce the number of samples,
without loosing precision. Experiments have shown that
2000 samples are sufficient for an arc-length preserving
parametrization.

During the algorithm for arc-length parameterization
we further compute the corrected position and tangent
vectors of the B-Spline curve on the CPU. These values
are stored in a texture that is later used as a lookup ta-
ble in the vertex shader. The 2D-vectors C(t) and C′(t)
are encoded in a 32-bit RGBA texture. The lookup table
must be recomputed, if the setup of the parametric curve,
e.g. the number or the position of the control points,
changes. Thus, for a static curve setup, e.g. the user
does not change the viewing angle of the virtual camera,
no overhead is introduced. During view-dependent pre-
set interpolation, the lookup table may be updated once
per frame.

5.2 Compositing of Styling Sections
The composition consists of two steps: (1) Multipass
RTT and (2) image-based composition in the fragment
shader. To compose the potential different geometric
representations of PS and PT , we choose an image-based
compositing method, because it is generic and does not
require knowledge of the underlying geometric represen-
tation. Every styling section of the presets is rendered
into separate textures using RTT. Each texture contains
RGBA information at viewport resolution. During ren-
dering, a fragment shader adjust the α-value of a frag-
ment according to the styling section boundaries defined
by Ti and Ti+1, so that:

α =


1 uTi +δTi ≤ t ≤ uTi+1 −δTi+1

(uTi+1+δTi+1)−t
2·δTi+1

uTi+1 −δTi+1 < t ≤ uTi+1 +δTi+1

0 otherwise

After RTT is performed, the 2 · (l−1) textures (l−1 tex-
tures per preset) are blended into the frame buffer. The
blending of the layers is performed as follows: The first
(l − 1) textures, encoding PS, are blended based on α

starting with the most distant styling section. The result-
ing fragment color is temporally stored. This procedure
is repeated for the styling sections of PE . Finally the two
colors are blended based on β (see Section 3.5).

In addition thereto, Fig. 6 shows an application ex-
amples of the used stylization algorithms. In a prepro-
cessing step, we compute light maps (ambient occlusion
term only) for the complete model. At runtime, during
the compositing step, we apply edge-detection based on
normal and depth information of a fragment and we fur-
ther unsharp-mask the depth buffer [11] to improve the
perception of complex scenes by introducing additional
depth cues.

6 RESULTS & DISCUSSION

6.1 Application Examples
We have tested our visualizations using different data
sets. Besides photo realistic 3D city models, our ap-

A B

Figure 6: Comparison of applied stylization techniques
for generalized virtual city models. A: Directional light-
ing and edge-enhancement. B: Precomputed ambient oc-
clusion and edge-enhancement.

A B C

Figure 7: Exemplary visualization using B-Spline curves with six control points to enable hard transitions between
three planar regions.

proach is in particular suitable for the depiction of dif-
ferent versions of generalized city models [8] (Fig. 2,
Fig. 7). Despite the reduction of geometric complexity,
the cell-based generalization also reduces the cognitive
load of the user by displaying higher levels of abstrac-
tion. In comparison to the map-based stylization (Fig.
5), the generalized geometry is less expressive. The ge-
ometry must be enhanced, e.g., with labels, or textures, to
communicate additional information to the user. Further,
we use two model versions of the Grand Canyon with
524,288 triangles each. The first version uses a height-
map as well as an aerial image, while the second version
represents a flat terrain with a tourist map applied. Fig. 5
shows the application of the model with a grid applied to
emphasize the deformation.

During our experiments, we observed that the usage of
more than three styling sections is rather distracting than
informative to the user. A high number of sections also
reduces the available space for each section. Thus, the
amount of objects that can be visualized within a single
section decreases. A similar effect arises if the transition
zone between two sections (controlled by δ) is chosen
to large. Further, the interval [aPS ,bPS], which control
the blending of the geometric representations of PS and
PT , should be set to initiate the blending briefly after the
beginning or before the end of the curve interpolation.

To have a good control over the view-dependent be-
havior of the global deformation three visualization pre-
sets are sufficient, e.g., for a low, a medium and a high
viewing angle. To gain more control or to fine tune the
interpolation behavior we recommend to use more visu-
alization presets.

6.2 Preliminary User Evaluation
We performed a preliminary user evaluation with 44 par-
ticipants. The task is to navigate along a route with the
help of a static image from a mobile navigation device.
Therefore, we prepared 10 routes with a different com-
plexity that partially contained landmarks. For each route
we generated 4 visualizations using different perspec-
tives: (1) orthographic (2D), (2) central (3D),(3) pro-
gressive and (4) degressive perspective. We presented
the participants 26 image pairs. Each pair depicted the
same route using two different perspectives. The user
were asked which visualization they favor.

The results show that 80,7% of the participants favor
the orthographic perspective instead of a central perspec-
tive. This is reasonable since a 2D map is a very estab-
lished mean for navigation. Furthermore we observed
that 76,1% prefer the degressive perspective instead of a
central perspective. This indicates a demand for multi-
perspective views for navigation. With our technique it
becomes possible to combine the progressive perspective
for a low viewing angle with the orthographic perspective
for large viewing angles and thus provide the benefits of
both visualization in one navigation tool.

6.3 Performance Evaluation

The performance tests are conducted using a NVIDIA
GeForce GTX 285 GPU with 2048 MB video RAM on
a Intel Xeon CPU with 2.33 GHz and 3 GB of main
memory. The tests are performed at a viewport resolu-
tion of 1600× 1200 pixels. Table 1 shows the results of
our performance evaluation. All models are rendered us-
ing in-core rendering techniques with 8 × anti-aliasing.
The performance mainly depends on the number of tag

Table 1: Comparative performance evaluation for differ-
ent test scenes (in frames-per-second). The abbreviation
LoA 0/1 names the configuration of a preset with two
different models (LoA 0 and LoA 1) assigned to the two
styling sections.

Preset config. #Vertex #Face FPS

LoA 0/1 1,219,884 477,437 21
LoA 1/2 380,689 364,500 39

LoA 0/1/2 1,443,895 720,587 17

sections, thus the number of required rendering passes,
and the geometrical complexity of the scenes attached to
them. Due to the heavy usage of render-to-texture in the
compositing steps, the performance also depends on the
size of viewport. Here, the additional amount of graphics
memory O(l) required for a number of global styling sec-
tion l can be estimated by: O(l) = 2 · l ·w ·h ·4 · p bytes.
Our prototype uses a precision p = 2 byte per channel,
which is sufficient for post-processing stylization.

6.4 Limitations and Future Work
The presented approach implies a number of conceptual
limitations. First, the number of control and tag points
must be the same for each preset in a visualization. Fur-
ther the visual quality of our approach relies on a suf-
ficient vertex density of the geometric representations.
We strive towards the application of hardware tessella-
tion shader units to ensure this property for general scene
geometry. Furthermore, the rendering concept is not op-
timized. At the moment each styling sections requires
a single rendering pass. If two or more styling sections
contain the same geometric representation, they can be
treated as one single styling section reducing the number
of rendering passes. The same applies for the geometry
interpolation. The number of vertices can be further re-
duced by a culling algorithm based on the boundaries of
the styling sections.

7 CONCLUSIONS
This paper presents a concept and interactive rendering
technique for view-dependent global deformations that
can be used for the effective visualization of 3D geovir-
tual environments, such as virtual 3D city and landscape
models. It presents an approach for a view-dependent
parameterization and interpolation of global deforma-
tions based on B-Spline curves. The application of such
parametrized curves offers the possibility to customize
or extend traditional perspectives, e.g. degressive or pro-
gressive perspectives, in a comprehensible and flexible
way. Further, the definition of camera-dependent presets
and their automatic interpolation overcomes the restric-
tion of existing multi-perspective visualization. In ad-
dition, we provide a concept for assigning different ge-
ometric representations to specific sections of a curve,
which offers more freedom of design. We further present
a prototypical implementation that enables hardware-
accelerated realtime image synthesis as discussed in our
performance evaluation.

ACKNOWLEDGMENTS
This work has been funded by the German Federal Min-
istry of Education and Research (BMBF) as part of the
InnoProfile research group "3D Geoinformation". The
authors like to thank Tassilo Glander for providing the
data sets of the generalized city model of Berlin and Haik
Lorenz for his support and critical comments.

REFERENCES
[1] Maneesh Agrawala, Denis Zorin, and Tamara Munzner. Artis-

tic multiprojection rendering. In Proc. of the EG Workshop on
Rendering Techniques, pages 125–136, 2000.

[2] Alan H. Barr. Global and local deformations of solid primitives.
In SIGGRAPH ’84, pages 21–30, New York, NY, USA, 1984.
ACM.

[3] Heinrich Caesar Berann. The world of h.c. berann. web site.

[4] John Brosz, Faramarz F. Samavati, M. T. Carpendale Sheelagh,
and Mario Costa Sousa. Single camera flexible projection. In
NPAR ’07, pages 33–42, New York, NY, USA, 2007. ACM.

[5] Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin Bal-
akrishnan, and Gordon Kurtenbach. Stylecam: interactive styl-
ized 3d navigation using integrated spatial & temporal controls.
In UIST ’02, pages 101–110, New York, NY, USA, 2002. ACM.

[6] Patrick Degener and Reinhard Klein. A variational approach for
automatic generation of panoramic maps. ACM Trans. Graph.,
28(1):1–14, 2009.

[7] Martin Falk, Tobias Schafhitzel, Daniel Weiskopf, and Thomas
Ertl. Panorama maps with non-linear ray tracing. In GRAPHITE
’07, pages 9–16, New York, NY, USA, 2007. ACM.

[8] Tassilo Glander and Jürgen Döllner. Abstract representations for
interactive visualization of virtual 3d city models. Computers,
Environment and Urban Systems, 33(5):375 – 387, 2009.

[9] Markus Jobst and Jürgen Döllner. Better perception of 3d-spatial
relations by viewport variations. In VISUAL ’08, pages 7–18,
Berlin, Heidelberg, 2008. Springer-Verlag.

[10] Haik Lorenz, Matthias Trapp, Jürgen Döllner, and Markus Jobst.
Interactive multi-perspective views of virtual 3d landscape and
city models. In AGILE Conf., pages 301–321, 2008.

[11] Thomas Luft, Carsten Colditz, and Oliver Deussen. Image en-
hancement by unsharp masking the depth buffer. ACM Trans.
Graph., 25(3):1206–1213, 2006.

[12] D. Martín, S. García, and J. C. Torres. Observer dependent de-
formations in illustration. In NPAR ’00, pages 75–82, New York,
NY, USA, 2000. ACM.

[13] Sebastian Möser, Patrick Degener, Roland Wahl, and Reinhard
Klein. Context aware terrain visualization for wayfinding and
navigation. Computer Graphics Forum, 27(7):1853–1860, 2008.

[14] Qunsheng Peng, Xiaogang Jin, and Jieqing Feng. Arc-length-
based axial deformation and length preserved animation. In CA
’97, page 86, Washington, DC, USA, 1997.

[15] John W. Peterson. Abstract arc length parameterization of spline
curves.

[16] Matt Pharr and Randima Fernando. GPU Gems 2. Addison-
Wesley Professional, 2005.

[17] Simon Premoze. Computer generated panorama maps. In ICA
Mountain Cartography Workshop, 2002.

[18] Huamin Qu, Haomian Wang, Weiwei Cui, Yingcai Wu, and
Ming-Yuen Chan. Focus+context route zooming and informa-
tion overlay in 3d urban environments. IEEE TVCG, 15(6):1547–
1554, 2009.

[19] Paul Rademacher. View-dependent geometry. In SIGGRAPH
’99, pages 439–446, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[20] Richard Franklin Riesenfeld. Applications of b-spline approxi-
mation to geometric problems of computer-aided design. PhD
thesis, Syracuse, NY, USA, 1973.

[21] David F. Rogers. An Introduction to NURBS: With Historical
Perspective. Morgan Kaufmann, 2000.

[22] Thomas W. Sederberg and Scott R. Parry. Free-form deformation
of solid geometric models. SIGGRAPH, 20(4):151–160, 1986.

[23] Karan Singh. A fresh perspective. In Proc. Graphics Interface,
pages 17–24, May 2002.

[24] Shigeo Takahashi, Naoya Ohta, Hiroko Nakamura, Yuriko
Takeshima, and Issei Fujishiro. Modeling surperspective projec-
tion of landscapes for geographical guidemap generation. Com-
puter Graphics Forum, 21:2002, 2002.

[25] Shigeo Takahashi, Kenichi Yoshida, Kenji Shimada, and To-
moyuki Nishita. Occlusion-free animation of driving routes for
car navigation systems. IEEE TVCG, 12:1141–1148, 2006.

[26] Scott Vallance and Paul Calder. Multi-perspective images for vi-
sualisation. In VIP ’01, pages 69–76, Darlinghurst, Australia,
Australia, 2001. Australian Computer Society, Inc.

