
SMART BUILDINGS – A CONCEPT FOR AD-HOC CREATION AND REFINEMENT OF
3D BUILDING MODELS

J. Döllner, H. Buchholz, F. Brodersen, T. Glander, S. Jütterschenke, A. Klimetschek

University of Potsdam, Hasso-Plattner-Institut, 14482 Potsdam, Germany
(juergen.doellner, henrik.buchholz, tassilo.glander, sascha.juetterschenke, alexander.klimetschek)@hpi.uni-potsdam.de

florian.brodersen@t-systems.com

KEY WORDS: Architecture, Cartography, Modeling, Reconstruction, Visualization, Building, City, Virtual Reality

ABSTRACT:

This paper presents smart buildings, a concept for ad-hoc creation and refinement of 3D building models. A smart building
represents a building’s geometry and appearance on a per-floor basis. A building’s floor basically consists of a ground plan and
walls, whereby each floor and its parts can be specified independently. In addition, smart buildings provide and maintain detailed
building semantics and allow for attaching application-specific semantics not just to the whole building but also to specific floors
and sections of façades. Smart buildings provide intuitive means for constructing, reshaping, and refining 3D building models. In
particular, they provide an effective solution for integrating building models of different level-of-detail within a uniform framework.
With smart buildings, authoring systems for 3D city models can implement cost-effective intuitive tools for the maintenance and
incremental development of 3D city models. The concept can serve both as a schema for implementing 3D city model systems as
well as provide a suggestion for further extensions to standards regarding 3D city models such as CityGML.

1. INTRODUCTION

1.1 Incremental Development of 3D City Models

A growing number of cities and communities are building up
geodata infrastructures, which manage and distribute 2D and
3D geodata. 3D city models integrate 2D and 3D geodata using
the paradigm of the virtual city. Important components of
virtual 3D city models include models of buildings,
transportation networks and systems, vegetation, and
environment.

After a long time of feasibility studies, prototypic
implementations, and geo-specific uses, first domain-specific
applications and systems appear that incorporate virtual 3D city
models as essential parts such as in facility management
applications, real estate portals as well as entertainment and
education products. Hence, we can expect a large number of
potential users and uses that require customized and specialized
versions of 3D city models.

The question arises how 3D city models can be maintained and
how the process of authoring and customization can be defined.
Consider the example where urban planners want to incorporate
a new plan for the development of a district into an existing 3D
city model. They have to rebuild and refine parts of the model.
Therefore, 3D city models should facilitate the incremental
development of their components.

1.2 Creating 3D City Models

The initial creation of 3D city models represents a technically
challenging and economically cost-intensive task. Building
models, the major components of 3D city models, can be
systematically built based on a wide range of techniques for
acquisition, classification, and analysis of urban data derived
from, for example, laser scans, aerial photography, and cadastre
information bases. For a detail overview of related methods, see

Hu et al. (2003), Ribarsky et al. (2002), Bauer et al. (2002), and
Förstner (1999).

The geometric level-of-detail of building models derived by
automatic techniques, however, is relatively low such as in the
case of block models or models with approximated roof
geometry. Most applications require more geometric details,
which can be either created using semi-automatic techniques of
photogrammetry (e.g., Ulm 2003; Karner 2004) or manual
modeling based on CAD or 3D modeling tools.

Complementary, procedural techniques for creating virtual 3D
city models have emerged in the scope of computer graphics,
intended for research, simulation, and educational purposes. In
particular, specific markets such as the movie and game
industry have a high demand for a cost and time-efficient
creation of realistic, complex urban environments.

Parish and Müller (2001) present a system that creates a
complete 3D city model using a small set of statistical and
geographical input data. The system provides tools for
generating roads, allotments, buildings, and procedural textures.
Wonka et al. (2003) introduce a concept for instant architectural
building models. In their approach, building designs are derived
using parametric set grammars, an attribute matching system,
and a separate control grammar to derive buildings having a
large variety of different styles and design ideas.

1.3 City Model Representations

Independent of the way of creation, 3D buildings traditionally
are exported as 3D scenes in standard 3D formats, e.g., VRML,
X3D, or 3D Studio Max. While scene description languages and
scene graph systems offer a broad repertoire of generic graphics
functionality, they do not provide specialized means for 3D
geodata-based objects. Consequently, it is generally difficult to
represent and to take advantage of object semantics.

juergen.doellner
1st International Workshop on "Next Generation 3D City Models", Bonn, June 2006. In print.

juergen.doellner
1. International Workshop on "Next Generation 3D City Models". Bonn, June 2006. In print.

The CityGML initiative (Kolbe et al. 2005) addresses the need
for a domain-specific, semantics-preserving format for 3D city
model components. CityGML supports different level-of-details
of buildings (Altmaier and Kolbe 2003): block models (LOD-
1), simplified buildings including roof geometry (LOD-2),
detailed buildings (LOD-3), and detailed buildings including
indoor models (LOD-4). These categories refer to principal
quality levels but do not imply a specific kind of representation
or encoding technique.

At the moment CityGML supports the four discrete levels of
detail. However, an integral solution for a continuous modeling
across these quality levels would enhance the expressivity,
address practically important intermediate quality levels, and
enable developing efficient cross-LOD rendering and
interaction techniques. For example, in many application users
want to smoothly transform an LOD-1 building into an LOD-4
building during a refinement process.

Conceptually, there is also no sharp (mathematical) distinction
between LOD-2 and LOD-3 buildings: Even for LOD-2
buildings, it can be necessary to add significant geometric
details such as an entrance hall if these details are perceptually
important – the corresponding quality level could be considered
to be somewhere in the range of 2 and 3. Similarly, in modern
architecture there the distinction between indoor and outdoor is
softened, e.g., if large parts of a facade are made of glass, a
minimal indoor model including floors and main walls is
required – the corresponding quality level would be somewhere
between 3 and 4.

The concept of smart buildings extends the CityGML building
model, providing a modeling schema for representing buildings
at continuous level-of-detail. A smart building represents a
building’s geometry and its texture-based appearance on a per-
floor basis. The scope of smart buildings encompasses simple
block models, models with roof geometry, detailed geometric
models, and architectural models including principal interior
parts. Thereby, smart buildings facilitate the incremental

development, and the ad-hoc refinement, that is, they enable a
cost and time-effective management of 3D city models.

1.4 Real-Time Rendering of 3D City Models

The representation of building models should take into account
that in most applications building models need to be displayed
in real-time. Except for small 3D city models, an internal
rendering-optimized representation will be required. In
particular, each model must be decomposed into rendering
primitives (e.g., triangle strips). Optimization strategies such as
view-frustum culling, occlusion culling, and back-face culling
(Akenine-Möller and Haines 2002; Schaufler 1998) operate on
general graphics primitives. Out-of-core visualization
techniques further improve the rendering process to cope with
massive data sets accessed via external media (Davis et al.
1999; Lindstrom and Pascucci 2002). Specialized strategies
exist for large-scale virtual environments such as described by
Willmott et al. (2001).

Frequently, 3D models generated by architectural tools and
systems are less suited for real-time rendering – the exported
models have to be pre-processed first. The implementation of
efficient rendering algorithms is simplified if a unified internal
representation of buildings across all quality levels would be
available. Smart buildings intend to supply such a framework.

2. SMART BUILDING REPRESENTATION

This section introduces the object-oriented model of smart
buildings as illustrated by its UML class diagram in Figure 1. A
smart building represents a single building entity of a 3D city
model; it is implemented as a container object that aggregates
floors, floor descriptions, and appearance information.

2.1 Floors

A SmartBuilding object is composed of one or more Floor
objects, each of which defines the ground plan as well as the
walls placed on top of it.

Figure 1: UML class diagram of the smart building concept.

A Floor object always refers to a FloorPrototype object, which
actually contains the floor specification. We introduce this
indirection because the prototype concept compactly represents
similar floors within a multi-storey building.

Each floor prototype is defined by its GroundPlan object. It
consists of one or more polygons that define the potential area
on which walls may be constructed. Each polygon is defined by
its outer loop and optionally inner loops that model holes (e.g.,
courtyards). We allow for multiple polygons since a floor may
consist of several components not necessarily directly linked.

A floor can also define roof geometry that is put onto the top of
certain walls or onto the top of the whole floor. The roof
geometry creaton is based on the straight-skeleton approach
described by Felkel and Obdrmalek (1998) and implemented
according to Laycock and Day (2003).

A ground plan defines the base plate for walls and, therefore, it
is a mandatory object for each floor. It additionally defines its
height, that is, the thickness. The thickness can be zero in the
case of an abstract floor plane or can be positive if the floor
should be modeled as 3D solid object. For example, with solid
ground plans terraces or similar protrusion building elements
can be directly expressed with an appropriate 3D geometry.

2.2 Walls

On top of the ground plan we can place Wall objects. A wall
represents a vertical, planar, finite polygon that is constrained to
directly lie on top of its ground plan. By default, a wall has a
thickness of zero, that is, it is represented as a single polygon.
Those walls are sufficient if they form a closed surface and can
therefore be seen only from outside. A specialized wall object
of type ThickWall, however, defines a positive thickness. Here,
the wall is geometrically instantiated as a 3D solid object.

Walls are constrained to be non-intersecting in the same floor.
If walls intersect, they have to be split into parts. Walls are not
constrained with respect to their height, that is, a wall can have
less height as the floor itself or can even be higher. For
example, low walls can represent the fronts of a balcony,
whereas the sides of a chimney starting at the basement floor
can be extended above the roof.

It is possible to specify the walls of a floor independently of
other floors, that is, we do not constrain the wall structures
across floors to keep the degrees of freedom high. There is no
validation with respect to the statics of a building since smart
buildings are primarily intended for representing building
geometry delivered by CAD systems and authoring tools that
may provide this kind of validation.

With the two introduced building blocks, floors and walls, we
are able to express frequently occurring geometric building
characteristics such as protrusions, passages, terraces,
penthouses, etc. This approach keeps the implementation as
well as the usage of smart buildings simple.

2.3 Floor Decoration

FloorDecoration objects are responsible for specifying the
appearance of smart buildings; they are parts of a floor

prototype. The strategy of the floor decoration is to assign
appearance information to sections of walls, identified by
WallSection objects. These sections can refer to a whole wall or
only to part of a wall.

The appearance of a wall section can be defined by two types of
WallSection objects: WindowSections and FacadeSections. A
FacadeSection describes the overall appearance of a wall. One
way to define a façade section is the assignment of a façade
pattern texture containing windows as well as the surrounding
surface material as a single image. The second, more flexible
way, is to model the windows explicitly. In this case, the
FacadeSection describes only the wall material, and an
additional WindowSection defines the positions and appearance
of all visible windows separately.

2.4 Projective Textures

A smart building can specify projective textures to specify its
appearance. A ProjectedPhoto object refers to a texture, e.g., a
photo taken from the building’s facades. This texture is
projected into the 3D space using auxiliary “ghost-wall” that is
independent of floors, ground plans, and walls.

Projective textures represent an orthogonal approach for
providing appearance of smart buildings. While floor
decorations allow for a procedural modeling of facades,
projective textures are intended for image data captured from
real-world buildings. Both approaches can be combined.

2.5 Application-Specific Building Data

Application-specific data can be assigned to individual parts of
smart buildings using FloorDescription objects. Any number of
descriptions can be associated with a smart building. A generic
attribute table stores key-value pairs of information.

Specialized wall sections, MetaDataSections, are used to geo-
reference application-specific data. Geo-referencing is
important because it allows us to assign information to specific
parts of a building. There is no restriction with respect to
overlapping and multiple meta-data sections. For example, a
smart building may define multiple company addresses, each of
which is assigned to a different floor, and a general building
description assigned to the whole facade.

3. EDITING SMART BUILDINGS

The concept of smart buildings concentrates on principal parts
of a building including roofs, floors, and facades. This allows us
to capture a large bandwidth of building types and facilitates the
design of intuitive authoring tools for creating, manipulating,
and refining smart buildings.

3.1 From Block Models to Smart Buildings

To illustrate a typical use case, assume that an initial block
model should be refined. First, it is transformed into a simple
smart building by splitting the model into a number of floors
having the same ground plans and outside walls. Figure 2 shows
the refinement process of a block building into a smart building:

1. The initial block model results from extruding 2D ground
plans (Figure 2a).

2. The model is subdivided into floors according to a list of
floor heights (Figure 2b).

3. The top floors are modified to distinguish different
building parts, roof geometry is added to the top floor of
the center building part, the basement floor is enhanced by
columns, and a balcony is added to the left part
(Figure 2c).

4. Façade textures are added, which can be specified either
by composing different texture patterns or as projective
textures, e.g., using digital photography (Figure 2d).

The example shows a frequent requirement in applications
based on 3D city models: The existing 3D city model needs to
be partially and incrementally developed according to current
project goals or management decisions.

3.2 Smart Building Editor

For the design of the smart building editor we assume that non-
expert users (e.g., non-architects) should be able to construct
and refine smart buildings. Since floors are the dominant
conceptual elements, the 2D floor editor is the core component.

Figure 3 shows a snapshot of the smart building editor of our
implementation. The object tree (Figure 3 top-left) lists the
Floor objects and indicates the corresponding floor prototypes.
The selected floor prototype can be edited by the 2D editor
widget (Figure 3 bottom-right). The user can directly
manipulate ground plan polygons, walls, and wall sections.
Changes are immediately reflected by the 3D view of the smart
building.

Most frequent operations include adding and modifying floors,
walls, and wall sections. For instance, it is easily possible to
extend a smart building by a penthouse by replicating its top
floor and reshaping the ground plan of the new floor. A selected

floor may also be enhanced by adding geometric details such as
columns. To integrate application data, e.g., user can specify a
shop window-texture as a section of a wall. To edit a wall
section, the user specifies the start and end points of the section
on the ground plan polygon.

3.3 Editing Ground Plans and Walls

In the simplest case, the base plate of a floor is completely
hidden by surrounding walls. If a building contains a terrace or
if two subsequent floors have different ground plans, the base
platform becomes partially visible (such as in Figure 2c and
2d).

Walls are specified by polylines and height values. Singular line
segments of a polyline can be replaced by arcs to model curved
shapes. Most walls are only visible from outside and, therefore,
do not need to be solid. Freestanding walls, however, such as
the boundaries of a terrace, can be seen also from above or from
an indoor perspective. In this case, thick walls are used. The
special case of ColumnWalls allows for the alignment of a row
of columns along the wall’s polyline. The height of walls can be
automatically determined by the distance to the next floor or be
specified explicitly.

Walls together with appropriate textures can be
instrumentalized to model railing, cutouts, or interior
decorations such as paintings. In general, the textures applied to
such a wall will be mostly transparent. Although walls are
planar objects, it provides a straightforward method to
incorporate those elements for visualization and illustration
purposes.

3.4 Editing Floor Decorations

Smart buildings support two techniques of façade texturing:
� Projective textures: These textures are orthogonally

Figure 2: Transforming a block building into a smart building. a) Block building. b) Block building split into floors.
c) Refined geometry. d) Added facade textures.

a) b)

c) d)

projected onto a building regardless of the geometry
structure of the building. Conceptually, for each projective
texture we define an invisible ghost-wall, which serves as
projector wall. Projective textures are effortless to assign
for complex building shapes and, therefore, can be used for
the rapid modeling of existing buildings.

� Composition of texture patterns: For individual sections of
a building façade, we can specify a material texture and a
window texture using wall sections. Each wall section
belongs to a certain wall object and specifies a range on
this wall. Using catalogues of standard materials and
window types, wall sections for a façade can be edited
instantaneously.

The advantage of projective textures is that they can directly
map facade data captured by digital photography. In contrast,
the composition of texture patterns frequently models typical,
but non-authentic facades. It does not involve the problem of
occluded facade parts, e.g., by trees in front of the facade, and
allows for ad-hoc modeling of buildings that are only planned
or proposed.

3.5 Assigning Application-Specific Data

Floor descriptions provide means to integrate application-
specific data into smart buildings. To represent the data, smart
buildings use generic two-column, multi-row tables, called
attribute tables. An attribute table stores key-value pairs. Both,
keys and values, are formatted as strings, which can contain
textual, categorical, and numerical contents.

For a single smart building we can specify general attribute
tables such as address, owner, usage, etc. for the whole
building. In addition, attribute tables can be specified for
individual floors and for individual wall sections.

Meta-data sections are a special form of wall sections that
specify attribute tables (instead of appearance attributes). In
contrast to wall sections for textures, floor attribute tables and
wall sections are not defined for floor prototypes but for each

floor separately. For instance, in an office building, each floor
could be rent by a different company although the appearance
of all floors would be equal.

4. CONCLUSIONS

Smart buildings provide a concept for continuous level-of-detail
modeling of building models and target at their incremental
development. Due to their per-floor concept, they can be
perfectly used by direct-manipulation interfaces, providing an
intuitive tool for building refinement. Smart buildings aim at
the main use case in 3D city model applications, the project-
driven and event-driven customization and reengineering of city
model components.

The smart building concept has been implemented as a part of
the LandXplorer system, an authoring and presentation tool for
3D city models and 3D landscape models. We observed in a
variety of use cases that with smart buildings we can
approximate complex building models in a time efficient way.
Of course, smart buildings are not intended to substitute CAD
models but provide a graphics-centered, application-centered
modeling schema. They are also suited for large-scale 3D city
models, and they can be mapped to an internal graphics
representation that allows for real-time photorealistic and non-
photorealistic rendering (Döllner et al. 2005).

One application example is a decision-support system in urban
planning. Using smart buildings, proposed changes can be
interactively performed within the geovirtual 3D environment,
so that the effect of the modification can be evaluated and
discussed immediately. Another application is concerned with
managing interactive 3D location plans. Using smart buildings,
building models that exhibit characteristic exterior and interior
features are created and maintained by the smart-building
editor.

As next steps, we are working on analyzing and mapping
arbitrary CityGML-based building models to smart buildings.

Figure 3: The smart-building editor of the LandXplorer 3D city model system.

We also would like to investigate high-level operations for
smart buildings (e.g., adding penthouses, constructing roofs;
drilling courtyards, designing entrances, etc.) and using
constraints to assist the construction and refinement process -
the buildings would become smarter. We also expect the smart
building could be a powerful intermediate representation for
authoring tools based on CityGML.

ACKNOWLEDGMENTS

We would like to thank our colleagues of the LandXplorer
system (www.3dgeo.de), which has been used as
implementation platform. We also would like to thank Falko
Liecke, Senate of Economy Berlin, and Takis Sgouros, Senate
of Urban Development Berlin, for their collaboration within the
Berlin 3D City Model project. We would like to thank the
German environmental foundation Deutsche Bundesstiftung
Umwelt for supporting our work within the Lenné-3D research
project (www.lenne3d.de).

REFERENCES

Akenine-Möller, T., Haines, E., 2002. Real-Time Rendering. A
K Peters Ltd, 2nd Ed.

Altmaier A., Kolbe, T.H., 2003. Applications and Solutions for
Interoperable 3D Geo-Visualization. Proceedings of the
Photogrammetric Week 2003, Wichmann Verlag.

Bauer J., Klaus A., Karner K., Schindler K., Zach C., 2002.
MetropoGIS: A Feature based City Modeling System, Proc.
Photogrammetric Computer Vision 2002 (PCV02) - ISPRS
Comission III Symposium, Graz, Austria.

Davis, D., Ribarsky, W., Jiang, T.Y., Faust, N., Ho, S., 1999.
Real-Time Visualization of Scalably Large Collections of
Heterogeneous Objects. IEEE Visualization 1999, 437-440.

Döllner, J., Buchholz, H., Nienhaus, M., Kirsch, K., 2005:
Illustrative Visualization of 3D City Models, Proceedings of
SPIE - Visualization and Data Analysis 2005 (VDA), San Jose,
CA, USA, 42-51.

Felkel, P., Obdrmalek, S. 1998. Straight Skeleton
Implementation. 14th Spring Conference on Computer

Graphics, 210-218.

Förstner, W. 1999. 3D City Models: Automatic and
Semiautomatic Acquisition Methods. Proceedings
Photogrammetric Week, University of Stuttgart, 291-303.

Hu, J., You, S., Neumann, U. 2003. Approaches to Large-Scale
Urban Modeling. IEEE Computer Graphics and Applications,
23(6):62-69.

T. H. Kolbe, G. Gröger, and L. Plümer: CityGML –
Interoperable Access to 3D City Models. First International
Symposium on Geo-Information for Disaster Management
GI4DM, 2005.

Laycock, R.G., Day, A.M. Automatically Generating Roof
Models from Building Footprints. Proceedings of WSCG,
Poster Presentation, 2003.

Lindstrom, P., Pascucci, V., 2002. Terrain Simplification
Simplified: A General Framework for View-Dependent Out-of-
Core Visualization, IEEE Transactions on Visualization and
Computer Graphics, 8(3):239-254.

Parish, Y., Müller, P. 2001. Procedural Modeling of Cities.
Computer Graphics (Proceedings of SIGGRAPH 2001), 301-
308.

Ribarsky, W., Wasilewski, T., Faust N. 2002. From Urban
Terrain Models to Visible Cities. IEEE Computer Graphics and
Applications, 22(4):10-15.

Schaufler, G. 1998. Rendering Complex Virtual Environments.
Dissertation, University of Linz.

Willmott, J., Wright, L.I., Arnold, D.B., Day, A.M. 2001.
Rendering of Large and Complex Urban Environments for
Real-Time Heritage Reconstructions. Proceedings VAST 2001:
The International Symposium on VR, Archaeology, and
Cultural Heritage, 111-120.

Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W. 2003. Instant
Architecture. Computer Graphics (Proceedings of SIGGRAPH),
669-677.

Figure 4: The Kollhoff building at the Potsdamer Platz, represented as smart building for the Berlin 3D city model.

