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ABSTRACT: 
 
This paper presents smart buildings, a concept for ad-hoc creation and refinement of 3D building models. A smart building 
represents a building’s geometry and appearance on a per-floor basis. A building’s floor basically consists of a ground plan and 
walls, whereby each floor and its parts can be specified independently. In addition, smart buildings provide and maintain detailed 
building semantics and allow for attaching application-specific semantics not just to the whole building but also to specific floors 
and sections of façades. Smart buildings provide intuitive means for constructing, reshaping, and refining 3D building models. In 
particular, they provide an effective solution for integrating building models of different level-of-detail within a uniform framework. 
With smart buildings, authoring systems for 3D city models can implement cost-effective intuitive tools for the maintenance and 
incremental development of 3D city models. The concept can serve both as a schema for implementing 3D city model systems as 
well as provide a suggestion for further extensions to standards regarding 3D city models such as CityGML.  
 
 

1. INTRODUCTION 

1.1 Incremental Development of 3D City Models 

A growing number of cities and communities are building up 
geodata infrastructures, which manage and distribute 2D and 
3D geodata. 3D city models integrate 2D and 3D geodata using 
the paradigm of the virtual city. Important components of 
virtual 3D city models include models of buildings, 
transportation networks and systems, vegetation, and 
environment.  
 
After a long time of feasibility studies, prototypic 
implementations, and geo-specific uses, first domain-specific 
applications and systems appear that incorporate virtual 3D city 
models as essential parts such as in facility management 
applications, real estate portals as well as entertainment and 
education products. Hence, we can expect a large number of 
potential users and uses that require customized and specialized 
versions of 3D city models.  
 
The question arises how 3D city models can be maintained and 
how the process of authoring and customization can be defined. 
Consider the example where urban planners want to incorporate 
a new plan for the development of a district into an existing 3D 
city model. They have to rebuild and refine parts of the model. 
Therefore, 3D city models should facilitate the incremental 
development of their components.  
 
1.2 Creating 3D City Models 

The initial creation of 3D city models represents a technically 
challenging and economically cost-intensive task. Building 
models, the major components of 3D city models, can be 
systematically built based on a wide range of techniques for 
acquisition, classification, and analysis of urban data derived 
from, for example, laser scans, aerial photography, and cadastre 
information bases. For a detail overview of related methods, see 

Hu et al. (2003), Ribarsky et al. (2002), Bauer et al. (2002), and 
Förstner (1999).  
 
The geometric level-of-detail of building models derived by 
automatic techniques, however, is relatively low such as in the 
case of block models or models with approximated roof 
geometry. Most applications require more geometric details, 
which can be either created using semi-automatic techniques of 
photogrammetry (e.g., Ulm 2003; Karner 2004) or manual 
modeling based on CAD or 3D modeling tools.  
 
Complementary, procedural techniques for creating virtual 3D 
city models have emerged in the scope of computer graphics, 
intended for research, simulation, and educational purposes. In 
particular, specific markets such as the movie and game 
industry have a high demand for a cost and time-efficient 
creation of realistic, complex urban environments.  
 
Parish and Müller (2001) present a system that creates a 
complete 3D city model using a small set of statistical and 
geographical input data. The system provides tools for 
generating roads, allotments, buildings, and procedural textures. 
Wonka et al. (2003) introduce a concept for instant architectural 
building models. In their approach, building designs are derived 
using parametric set grammars, an attribute matching system, 
and a separate control grammar to derive buildings having a 
large variety of different styles and design ideas.  
 
1.3 City Model Representations 

Independent of the way of creation, 3D buildings traditionally 
are exported as 3D scenes in standard 3D formats, e.g., VRML, 
X3D, or 3D Studio Max. While scene description languages and 
scene graph systems offer a broad repertoire of generic graphics 
functionality, they do not provide specialized means for 3D 
geodata-based objects. Consequently, it is generally difficult to 
represent and to take advantage of object semantics.  
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The CityGML initiative (Kolbe et al. 2005) addresses the need 
for a domain-specific, semantics-preserving format for 3D city 
model components. CityGML supports different level-of-details 
of buildings (Altmaier and Kolbe 2003): block models (LOD-
1), simplified buildings including roof geometry (LOD-2), 
detailed buildings (LOD-3), and detailed buildings including 
indoor models (LOD-4). These categories refer to principal 
quality levels but do not imply a specific kind of representation 
or encoding technique.  
 
At the moment CityGML supports the four discrete levels of 
detail. However, an integral solution for a continuous modeling 
across these quality levels would enhance the expressivity, 
address practically important intermediate quality levels, and 
enable developing efficient cross-LOD rendering and 
interaction techniques. For example, in many application users 
want to smoothly transform an LOD-1 building into an LOD-4 
building during a refinement process.  
 
Conceptually, there is also no sharp (mathematical) distinction 
between LOD-2 and LOD-3 buildings: Even for LOD-2 
buildings, it can be necessary to add significant geometric 
details such as an entrance hall if these details are perceptually 
important – the corresponding quality level could be considered 
to be somewhere in the range of 2 and 3. Similarly, in modern 
architecture there the distinction between indoor and outdoor is 
softened, e.g., if large parts of a facade are made of glass, a 
minimal indoor model including floors and main walls is 
required – the corresponding quality level would be somewhere 
between 3 and 4.  
 
The concept of smart buildings extends the CityGML building 
model, providing a modeling schema for representing buildings 
at continuous level-of-detail. A smart building represents a 
building’s geometry and its texture-based appearance on a per-
floor basis. The scope of smart buildings encompasses simple 
block models, models with roof geometry, detailed geometric 
models, and architectural models including principal interior 
parts. Thereby, smart buildings facilitate the incremental 

development, and the ad-hoc refinement, that is, they enable a 
cost and time-effective management of 3D city models.  
 
1.4 Real-Time Rendering of 3D City Models 

The representation of building models should take into account 
that in most applications building models need to be displayed 
in real-time. Except for small 3D city models, an internal 
rendering-optimized representation will be required. In 
particular, each model must be decomposed into rendering 
primitives (e.g., triangle strips). Optimization strategies such as 
view-frustum culling, occlusion culling, and back-face culling 
(Akenine-Möller and Haines 2002; Schaufler 1998) operate on 
general graphics primitives. Out-of-core visualization 
techniques further improve the rendering process to cope with 
massive data sets accessed via external media (Davis et al. 
1999; Lindstrom and Pascucci 2002). Specialized strategies 
exist for large-scale virtual environments such as described by 
Willmott et al. (2001).  
 
Frequently, 3D models generated by architectural tools and 
systems are less suited for real-time rendering – the exported 
models have to be pre-processed first. The implementation of 
efficient rendering algorithms is simplified if a unified internal 
representation of buildings across all quality levels would be 
available. Smart buildings intend to supply such a framework.   
 
 

2. SMART BUILDING REPRESENTATION 

This section introduces the object-oriented model of smart 
buildings as illustrated by its UML class diagram in Figure 1. A 
smart building represents a single building entity of a 3D city 
model; it is implemented as a container object that aggregates 
floors, floor descriptions, and appearance information.  
 
2.1 Floors 

A SmartBuilding object is composed of one or more Floor 
objects, each of which defines the ground plan as well as the 
walls placed on top of it.  

 
Figure 1:  UML class diagram of the smart building concept. 

 



 

 
A Floor object always refers to a FloorPrototype object, which 
actually contains the floor specification. We introduce this 
indirection because the prototype concept compactly represents 
similar floors within a multi-storey building.  
 
Each floor prototype is defined by its GroundPlan object. It 
consists of one or more polygons that define the potential area 
on which walls may be constructed. Each polygon is defined by 
its outer loop and optionally inner loops that model holes (e.g., 
courtyards). We allow for multiple polygons since a floor may 
consist of several components not necessarily directly linked.  
 
A floor can also define roof geometry that is put onto the top of 
certain walls or onto the top of the whole floor. The roof 
geometry creaton is based on the straight-skeleton approach 
described by Felkel and Obdrmalek (1998) and implemented 
according to Laycock and Day (2003).  
 
A ground plan defines the base plate for walls and, therefore, it 
is a mandatory object for each floor. It additionally defines its 
height, that is, the thickness. The thickness can be zero in the 
case of an abstract floor plane or can be positive if the floor 
should be modeled as 3D solid object. For example, with solid 
ground plans terraces or similar protrusion building elements 
can be directly expressed with an appropriate 3D geometry.  
 
2.2 Walls 

On top of the ground plan we can place Wall objects. A wall 
represents a vertical, planar, finite polygon that is constrained to 
directly lie on top of its ground plan. By default, a wall has a 
thickness of zero, that is, it is represented as a single polygon. 
Those walls are sufficient if they form a closed surface and can 
therefore be seen only from outside. A specialized wall object 
of type ThickWall, however, defines a positive thickness. Here, 
the wall is geometrically instantiated as a 3D solid object.  
 
Walls are constrained to be non-intersecting in the same floor. 
If walls intersect, they have to be split into parts. Walls are not 
constrained with respect to their height, that is, a wall can have 
less height as the floor itself or can even be higher. For 
example, low walls can represent the fronts of a balcony, 
whereas the sides of a chimney starting at the basement floor 
can be extended above the roof.  
 
It is possible to specify the walls of a floor independently of 
other floors, that is, we do not constrain the wall structures 
across floors to keep the degrees of freedom high. There is no 
validation with respect to the statics of a building since smart 
buildings are primarily intended for representing building 
geometry delivered by CAD systems and authoring tools that 
may provide this kind of validation.  
 
With the two introduced building blocks, floors and walls, we 
are able to express frequently occurring geometric building 
characteristics such as protrusions, passages, terraces, 
penthouses, etc. This approach keeps the implementation as 
well as the usage of smart buildings simple.  
 
2.3 Floor Decoration 

FloorDecoration objects are responsible for specifying the 
appearance of smart buildings; they are parts of a floor 

prototype. The strategy of the floor decoration is to assign 
appearance information to sections of walls, identified by 
WallSection objects. These sections can refer to a whole wall or 
only to part of a wall.  
 
The appearance of a wall section can be defined by two types of 
WallSection objects: WindowSections and FacadeSections. A 
FacadeSection describes the overall appearance of a wall. One 
way to define a façade section is the assignment of a façade 
pattern texture containing windows as well as the surrounding 
surface material as a single image. The second, more flexible 
way, is to model the windows explicitly. In this case, the 
FacadeSection describes only the wall material, and an 
additional WindowSection defines the positions and appearance 
of all visible windows separately. 
 
2.4 Projective Textures  

A smart building can specify projective textures to specify its 
appearance. A ProjectedPhoto object refers to a texture, e.g., a 
photo taken from the building’s facades. This texture is 
projected into the 3D space using auxiliary “ghost-wall” that is 
independent of floors, ground plans, and walls.  
 
Projective textures represent an orthogonal approach for 
providing appearance of smart buildings. While floor 
decorations allow for a procedural modeling of facades, 
projective textures are intended for image data captured from 
real-world buildings. Both approaches can be combined.  
 
2.5 Application-Specific Building Data 

Application-specific data can be assigned to individual parts of 
smart buildings using FloorDescription objects. Any number of 
descriptions can be associated with a smart building. A generic 
attribute table stores key-value pairs of information.  
 
Specialized wall sections, MetaDataSections, are used to geo-
reference application-specific data. Geo-referencing is 
important because it allows us to assign information to specific 
parts of a building. There is no restriction with respect to 
overlapping and multiple meta-data sections. For example, a 
smart building may define multiple company addresses, each of 
which is assigned to a different floor, and a general building 
description assigned to the whole facade.  
 
 

3. EDITING SMART BUILDINGS 

The concept of smart buildings concentrates on principal parts 
of a building including roofs, floors, and facades. This allows us 
to capture a large bandwidth of building types and facilitates the 
design of intuitive authoring tools for creating, manipulating, 
and refining smart buildings.  
 
3.1 From Block Models to Smart Buildings  

To illustrate a typical use case, assume that an initial block 
model should be refined. First, it is transformed into a simple 
smart building by splitting the model into a number of floors 
having the same ground plans and outside walls. Figure 2 shows 
the refinement process of a block building into a smart building: 



 

1. The initial block model results from extruding 2D ground 
plans (Figure 2a).  

2. The model is subdivided into floors according to a list of 
floor heights (Figure 2b).  

3. The top floors are modified to distinguish different 
building parts, roof geometry is added to the top floor of 
the center building part, the basement floor is enhanced by 
columns, and a balcony is added to the left part 
(Figure 2c).  

4. Façade textures are added, which can be specified either 
by composing different texture patterns or as projective 
textures, e.g., using digital photography (Figure 2d). 

 
The example shows a frequent requirement in applications 
based on 3D city models: The existing 3D city model needs to 
be partially and incrementally developed according to current 
project goals or management decisions.  
 
3.2 Smart Building Editor 

For the design of the smart building editor we assume that non-
expert users (e.g., non-architects) should be able to construct 
and refine smart buildings. Since floors are the dominant 
conceptual elements, the 2D floor editor is the core component.  
 
Figure 3 shows a snapshot of the smart building editor of our 
implementation. The object tree (Figure 3 top-left) lists the 
Floor objects and indicates the corresponding floor prototypes. 
The selected floor prototype can be edited by the 2D editor 
widget (Figure 3 bottom-right). The user can directly 
manipulate ground plan polygons, walls, and wall sections. 
Changes are immediately reflected by the 3D view of the smart 
building.  
 
Most frequent operations include adding and modifying floors, 
walls, and wall sections. For instance, it is easily possible to 
extend a smart building by a penthouse by replicating its top 
floor and reshaping the ground plan of the new floor. A selected 

floor may also be enhanced by adding geometric details such as 
columns. To integrate application data, e.g., user can specify a 
shop window-texture as a section of a wall. To edit a wall 
section, the user specifies the start and end points of the section 
on the ground plan polygon.  
 
 
3.3 Editing Ground Plans and Walls 

In the simplest case, the base plate of a floor is completely 
hidden by surrounding walls. If a building contains a terrace or 
if two subsequent floors have different ground plans, the base 
platform becomes partially visible (such as in Figure 2c and 
2d).  
 
Walls are specified by polylines and height values. Singular line 
segments of a polyline can be replaced by arcs to model curved 
shapes. Most walls are only visible from outside and, therefore, 
do not need to be solid. Freestanding walls, however, such as 
the boundaries of a terrace, can be seen also from above or from 
an indoor perspective. In this case, thick walls are used. The 
special case of ColumnWalls allows for the alignment of a row 
of columns along the wall’s polyline. The height of walls can be 
automatically determined by the distance to the next floor or be 
specified explicitly.  
 
Walls together with appropriate textures can be 
instrumentalized to model railing, cutouts, or interior 
decorations such as paintings. In general, the textures applied to 
such a wall will be mostly transparent. Although walls are 
planar objects, it provides a straightforward method to 
incorporate those elements for visualization and illustration 
purposes.  
 
3.4 Editing Floor Decorations 

Smart buildings support two techniques of façade texturing: 
� Projective textures: These textures are orthogonally 

  

  

Figure 2: Transforming a block building into a smart building. a) Block building. b) Block building split into floors.  
c) Refined geometry. d) Added facade textures. 

a) b) 

c) d) 



 

projected onto a building regardless of the geometry 
structure of the building. Conceptually, for each projective 
texture we define an invisible ghost-wall, which serves as 
projector wall. Projective textures are effortless to assign 
for complex building shapes and, therefore, can be used for 
the rapid modeling of existing buildings.  

� Composition of texture patterns: For individual sections of 
a building façade, we can specify a material texture and a 
window texture using wall sections. Each wall section 
belongs to a certain wall object and specifies a range on 
this wall. Using catalogues of standard materials and 
window types, wall sections for a façade can be edited 
instantaneously. 

 
The advantage of projective textures is that they can directly 
map facade data captured by digital photography. In contrast, 
the composition of texture patterns frequently models typical, 
but non-authentic facades. It does not involve the problem of 
occluded facade parts, e.g., by trees in front of the facade, and 
allows for ad-hoc modeling of buildings that are only planned 
or proposed. 
 
3.5 Assigning Application-Specific Data 

Floor descriptions provide means to integrate application-
specific data into smart buildings. To represent the data, smart 
buildings use generic two-column, multi-row tables, called 
attribute tables. An attribute table stores key-value pairs. Both, 
keys and values, are formatted as strings, which can contain 
textual, categorical, and numerical contents.  
 
For a single smart building we can specify general attribute 
tables such as address, owner, usage, etc. for the whole 
building. In addition, attribute tables can be specified for 
individual floors and for individual wall sections.  
 
Meta-data sections are a special form of wall sections that 
specify attribute tables (instead of appearance attributes). In 
contrast to wall sections for textures, floor attribute tables and 
wall sections are not defined for floor prototypes but for each 

floor separately. For instance, in an office building, each floor 
could be rent by a different company although the appearance 
of all floors would be equal. 
 
 

4. CONCLUSIONS 

Smart buildings provide a concept for continuous level-of-detail 
modeling of building models and target at their incremental 
development. Due to their per-floor concept, they can be 
perfectly used by direct-manipulation interfaces, providing an 
intuitive tool for building refinement. Smart buildings aim at 
the main use case in 3D city model applications, the project-
driven and event-driven customization and reengineering of city 
model components.  
 
The smart building concept has been implemented as a part of 
the LandXplorer system, an authoring and presentation tool for 
3D city models and 3D landscape models. We observed in a 
variety of use cases that with smart buildings we can 
approximate complex building models in a time efficient way. 
Of course, smart buildings are not intended to substitute CAD 
models but provide a graphics-centered, application-centered 
modeling schema. They are also suited for large-scale 3D city 
models, and they can be mapped to an internal graphics 
representation that allows for real-time photorealistic and non-
photorealistic rendering (Döllner et al. 2005).  
 
One application example is a decision-support system in urban 
planning. Using smart buildings, proposed changes can be 
interactively performed within the geovirtual 3D environment, 
so that the effect of the modification can be evaluated and 
discussed immediately. Another application is concerned with 
managing interactive 3D location plans. Using smart buildings, 
building models that exhibit characteristic exterior and interior 
features are created and maintained by the smart-building 
editor.  
 
As next steps, we are working on analyzing and mapping 
arbitrary CityGML-based building models to smart buildings. 

 
Figure 3:  The smart-building editor of the LandXplorer 3D city model system. 

 



 

We also would like to investigate high-level operations for 
smart buildings (e.g., adding penthouses, constructing roofs; 
drilling courtyards, designing entrances, etc.) and using 
constraints to assist the construction and refinement process - 
the buildings would become smarter. We also expect the smart 
building could be a powerful intermediate representation for 
authoring tools based on CityGML. 
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Figure 4:  The Kollhoff building at the Potsdamer Platz, represented as smart building for the Berlin 3D city model. 




