EUROGRAPHICS 2008 / K. Mania and E. Reinhard

Short Papers

Real-Time Volumetric Tests Using Layered Depth Images

Matthias TrappT & Jirgen Déllner?

Hasso-Plattner-Institute, University of Potsdam, Germany

Abstract

This paper presents a new approach for performing efficiently 3D point-in-volume tests for solid and arbitrary
complex shapes. It classifies a 3D point as inside or outside of a solid specified by 3D polygonal geometry. Our
technique implements a basic functionality that offers a wide range of applications such as clipping, collision
detection, interactive rendering of multiple 3D lenses as well as rendering using multiple styles. It is based on an
extension of layered depth images (LDI) in combination with shader programs. An LDI contains layers of unique
depth complexity and is represented by a 3D volume texture. The test algorithm transforms a 3D point into an LDI
texture space and, then, performs ray marching through the depth layers to determine its classification. We show
how to apply real-time volumetric tests to implement 3D clipping and rendering using multiple styles. In addition,
we discuss limitations and possible improvements.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics processors;
1.3.5 [Computer Graphics]: Boundary representations; 1.3.6 [Computer Graphics]: Graphics data structures and

data types;

1 Introduction

There is a need for basic 3D geometric operations that can
be performed in real-time for input data that shows high ge-
ometric complexity or is large in size. A point-in-volume
test is such kind of operation that offers a broad range of
applications in computer graphics and visualization. For ex-
ample, for rendering 3D volumetric lenses [VCWP96] it
is necessary to decide which fragment or vertex is inside
the lens volume. Current rendering techniques [RHO04] en-
able such functionality using expensive image-based mul-
tipass rendering algorithms executed per rendering frame.
Further, despite image-based Constructive Solid Geometry
(CSG) [KDO05], there is currently no approach that performs
fast pixel-precise clipping against multiple arbitrary shaped
meshes.

To enable such general functionality within a single render-
ing pass, we present a volumetric test algorithm that tar-
gets real-time rendering applications in particular. This test
is easy to implement and can be used in all programmable
pipeline stages.

T matthias.trapp@hpi.uni-potsdam.de
¥ doellner@hpi.uni-potsdam.de

(© The Eurographics Association 2008.

For this purpose, we research an adequate data structure for
the volumetric representation of static, solid meshes with
arbitrary shapes that facilitates an efficient volumetric test.
Since this representation can be created in pre-processing,
no additional rendering pass at runtime is necessary.

Figure 1: An example for using volumetric tests to perform
pixel-precise clipping against two complex 3D shapes in a
single rendering pass.

mailto:matthias.trapp@hpi.uni-potsdam.de
mailto:doellner@hpi.uni-potsdam.de

Matthias Trapp & Jiirgen Déllner / Real-Time Volumetric Tests Using Layered Depth Images

This paper is structured as follows. Section 2 gives an
overview of the related work. Section 3 presents the method
of our volumetric test. Section 4 sketches the implementa-
tion and Section 5 discusses the results. In Section 6 we give
conclusions and ideas for future work.

2 Related Work

The idea of LDIs is presented in [SGwWHS98]. An LDI is a
view of the scene from a single input camera view but with
multiple pixels along each line of sight. The size of the repre-
sentation grows only linearly with the observed depth com-
plexity in the scene.

The depth peeling algorithm for order-independent trans-
parency was introduced by [CasO1]. It uses a second depth
test to extract layers of unique depth complexity from an ar-
bitrary scene. It is possible to re-use this layers by perform-
ing a render-to-volume technique [Dro07]. In [Lef03] vari-
ous memory layout options and optimizations are discussed.
In this context, ray marching is a well known algorithm for
interactive volume rendering [ZRL*07].

A dynamic approach for slice-based object voxelization is
presented in [Eis06]. It can be applied in a single rendering
pass but lacks accuracy.

3 Concept

To perform the proposed test in real-time, our approach con-
sists of two components: a data structure that is fully acceler-
ated by graphics hardware and an algorithm that operates on
instances of these. The algorithm is implemented in a shader
program. The components are used in the following manner:

1. Creation of an image-based representation of the shapes
volume that stores only its depth values along a viewing
ray that is aligned towards the negative z-axis. We denote
this representation as Volumetric Depth Sprite (VDS).
This step is performed during pre-processing and its re-
sult is stored by using high precision textures (see Section
3.1).

2. At shader runtime, we perform a Volumetric Parity Test
(VPT) for each point. Therefore, a point is transformed
into the specific VDS coordinate system and, then, is
tested against all depth values stored in the particular
VDS (see Section 3.2).

This approach requires solid shapes and, since this step is
performed in pre-processing, we claim the shapes represen-
tation to be a static, non-animated mesh. Due to the recently
established Unified Shader Model, which uses a consistent
instruction set across all shader types, it became possible to
apply the VPT in all programmable pipeline stages.

3.1 Volumetric Depth Sprite

A VDS extends the concept of LDIs [SGwHS98]. LDIs can
be represented on graphics hardware via a 3D texture or a 2D
texture array [Bly06]. For our application, they contain lay-
ers of unique depth complexity. Figure 2 shows an example

Complex Geometry S
| - |
c 7,

o

Depth Layers LDI

o
\ Depth-Peeling
—_—

x s
L | L
3D Model Space

3D Texture Space

Figure 2: An example of a complex geometric shape and the
generated depth layers of the associated volumetric depth
sprite. The shape has a maximal depth complexity of 6.

of a VDS derived from a complex 3D shape. A VDS repre-
sentation of a shape S consists of the following components:

VDSS = (PS7MS7LD[S7dS)

Where Pg € R? denotes the position of the sprite in world co-
ordinates. The matrix Mg represents linear transformations
such as rotation and scaling of the VDS. The depth complex-
ity of S is denoted as ds € N/ ¢q 13-

To obtain a depth value d; € [0;1] CR,0<i<d—1in the
i""_depth layer for the 2D point (s,), we sample the 3D tex-
ture in LDI texture space with the coordinate (s,z,(1/d)-i).

3.2 Volumetric Parity Test

Given a VDS, the VPT classifies a point P € R? with respect
to its position in relation to the shape’s volume. It can be
either inside or outside the volume. For reasons of precision,
we do not consider the case that the coordinate can be on the
border of the shape.

Before testing the parity of P, it must be transformed into the
specific LDI texture space of the VDS. For example, if P is
a fragment in clip space, this transformation can be obtained
by:

T =(T,T;,T;) = M- ((o—1 .p> _ps)

Where O denotes the current orientation matrix. At first, P is
transformed into world coordinates, then, translated into the
LDI texture space and finally adjusted by the VDS model
matrix. The volumetric test can be formulated as follows:

1, 3d;€LDIs:d; <T, <dj

VPT(T,VDSs) = pr = { 0, otherwise

To model the above test, we introduce a Boolean coordinate
paritypr € {0,1}. Starting with a initial parity, the ray R =
[(T,T,0)(Ty, Tz, 1)] marches through the depth layers of the
LDI, compares T, with the stored depth values d;, and swaps
pr every time it crosses a layer of unique depth complexity
(see Figure 4).

(© The Eurographics Association 2008.

Matthias Trapp & Jiirgen Déllner / Real-Time Volumetric Tests Using Layered Depth Images

Figure 3: Possible application of the volumetric test.
Blueprint rendering is combined with X-Ray shading and
Gouraud shading.

4 Implementation

Our implementation is based on OpenGL [Mar(06] in combi-
nation with GLSL [Kes06]. For render-to-texture (RTT), we
use framebuffer objects, high precision 32bit float textures,
and floating point depth buffer precision.

4.1 Depth Peeling to 3D Texture

The creation of a VDS is performed within a pre-processing
step using multipass RTT. Given a shape S, we generate the
associated LDIg by performing the following steps:

1. Transformation of the shape into the unit volume [0;1]3.
An orthogonal projection is set that covers this unit vol-
ume. The near and far clipping planes are adjusted ac-
cordingly.

2. Determine depth complexity dg and create a 3D texture
with a certain width w, height A, and depth ds. To en-
able precise sampling results, we setup nearest neighbor
interpolation. The border of the the texture is set 1 for
each color component and the texture wrap mode is set to
clamp to border. To keep the texture size of the 3D tex-
ture within bounds, our implementation uses a luminance
texture format with a single 32bit floating point channel.

3. Depth-peel [CasO1] the solid S using RTT for each slice
of a 3D texture separately. It is necessary to linearize the
depth values using inverse W-buffer [LJ99].

4.2 Ray-Marching Shader Implementation

Our implementation of the ray-marching algorithm needs to
iterate over the number of texture slices in the 3D texture.
Therefore, it demands a shader model 3.0 compliant graph-
ics hardware. Figure 5 shows the GLSL source code that im-
plements the VPT.

(© The Eurographics Association 2008.

A[
1.0 (s.1,1)
Outside
pr=0 pr=1 pr=0 pr=1 (T, T,,1) o
(T.T.0) | |4, d; d 4| RayR
S Inside
p
A .
(5,0,0) T. .01

Figure 4: Ray marching in 3D LDI texture space seen from
the s-axis. The parity of the coordinate T swaps if the ray R
passes a depth layer. S has a depth complexity of 4.

5 Results

Our technique has been implemented based on the Virtual
Rendering System VRS, which was used to create the pre-
sented figures. Despite collision detection, our approach has
a number of applications in real-time rendering. Figure 1
shows pixel-precise clipping against multiple complex vol-
umes performed in a single rendering pass. Figure 3 demon-
strates the binding of different visual appearances to dif-
ferent VDS. It uses a combination of blueprint-rendering
[NDO04], X-Ray shading, and Gouraud shading.

5.1 Performance

Our test platform is a GeForce 8800 GTS with 640 MB video
memory. We are able to render the depicted scenes at in-
teractive frame rates. Table 1 displays the frames per sec-
onds (FPS) for each scene. The achieved frame rates depend

bool volumetricParityTest (

in vec4 T, // coordinate in LDI-space
in sampler3D LDI, // layered depth image LDI
in int depth, // depth complexity d;

in bool initParity) // initial parity p

// initial parity; true = outside
bool parity = initParity;
// calculate offset to address texture slices
float offset = 1.0 / float(depth);
// for each texture layer do
for(float i = 0.0; i < float(depth); i++)
{ // perform depth test
if(T.r < texture3D(LDI, vec3(T.st, offset * i)) .x)
{
parity = l!parity; // swap parity
}
}
return parity;

}

Figure 5: GLSL implementation of the volumetric parity
test. It exploits dynamic flow control features.

Matthias Trapp & Jiirgen Déllner / Real-Time Volumetric Tests Using Layered Depth Images

Table 1: Comparative performance evaluation of the volu-
metric test for different scenes and volumetric depth sprites.

Model #Samples w/o Test with Test
House 10 74.4 73.2
Crank 80 8.6 7.5

on the number of VDS used, thus the number of samples
(#Samples) the VPT has to perform. The presented volume
test consists of less than 20 assembler instructions per exe-
cuted loop. The time consumption for pre-processing a shape
depends on its depth complexity and the desired texture di-
mension. For our test cases the VDS creation takes up to two
seconds per shape.

5.2 Limitations

The key drawback of our method is the high space complex-
ity of an LDI. However, tests for different resolutions of the
3D texture exposed that a texture size of 10242 pixels deliver
results of fairly high quality. Larger texture resolution does
not improve the quality significantly. When using complex
non-convex solids, the VPT might fail for too low resolu-
tions (1282 pixels). The presented figures use an LDI reso-
lution of 10242 pixels.

Further, undersampling can be a problem for planes nearly
parallel to the LDI direction. This produces artifacts such as
fuzzy edges. To compensate this drawback one could apply
multisampling that increases the number of samples at the
same time.

Performing depth peeling with high texture resolution for a
number of complex shapes cannot be done in real-time. Due
to this, our approach is limited to static meshes because ani-
mated shapes require a re-computation of its VDS.

6 Conclusions & Future Work

We presented an approach for performing fast point-in-
volume tests for arbitrary 3D solids in real-time. It employs
an image-based representation of shape’s volume as well as
a parity test that can be implemented on modern GPU effi-
ciently. We demonstrated the flexibility of our approach in
different application examples.

The key problem concerns the precision of the LDI. The ac-
curacy of the volume test depends on the used texture reso-
Iution and depth precision. Increasing the texture resolution
leads to a high spatial complexity of the VDS. Therefore, it
is necessary to research a lossless compression scheme for
3D textures containing depth information.

Further, it is possible to perform an optimal viewpoint selec-
tion for VDS creation to determine the viewing parameters
that will result in a minimal depth complexity. Additionally,
it is desirable to obtain not only a boolean value but also the
distances of the point with respect to the shape border in re-
lation to the unit volume. This can be achieved by adding an
additional pre-processing step that encodes this information
into each texel in the VDS.

Acknowledgments

This work has been funded by the German Federal Ministry
of Education and Research (BMBF) as part of the InnoPro-
file research group "3D Geoinformation"’ (www.3dgi.de).

References

[Bly06] BLYTHE D.: The Direct3D 10 System. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Papers (New York,
NY, USA, 2006), ACM Press, pp. 724-734.

[CasO1] CAss EVERITT: Interactive Order-Independent
Transparency. Tech. rep., NVIDIA Corporation, 2001.

[Dro07] DRONE S.: Real-Time Particle Systems On the
GPU in Dynamic Environments. In SIGGRAPH "07 (New
York, NY, USA, 2007), ACM, pp. 80-96.

[Eis06] EISEMANN, ELMAR AND DECORET, XAVIER:
Fast Scene Voxelization and Applications. In ACM
SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2006), ACM SIGGRAPH, pp. 71-78.

[KDO5] KIRSCH F., DOLLNER J.: OpenCSG: A Library
for Image-Based CSG Rendering. In Proceedings of
USENIX 2005 (2005), pp. 129-140.

[Kes06] KESSENICH J.: The OpenGL Shading Language
Language Version: 1.20 Document Revision: 8, Septem-
ber 2006.

[Lef03] LEFOHN A.: Interactive Visualization of Volu-
metric Data on Consumer PC Hardware. In Tutorial,
IEEE Visualization (2003).

[LI99] Lapipous E., J1A0 G.: Optimal Depth Buffer for
Low-Cost Graphics Hardware. In HWWS ’99 (New York,
NY, USA, 1999), ACM, pp. 67-73.

[Mar06] MARK J. KILGARD: NVIDIA OpenGL Extension
Specifications. Tech. rep., NVIDIA, November 2006.

[NDO4] NIENHAUS M., DOLLNER J.: Blueprints: Illus-
trating Architecture and Technical Parts Using Hardware-
Accelerated Non-Photorealistic Rendering. In GI 2004
(2004), pp. 49-56.

[RHO4] RopriNskI T., HINRICHS K.: Real-Time Render-
ing of 3D Magic Lenses Having Arbitrary Convex Shapes.
In WSCG (February 2004), vol. 12, pp. 379-386.

[SGwHS98] SHADE J., GORTLER S., WEI HE L.,
SZELISKI R.: Layered Depth Images. In SIGGRAPH
"98 (New York, NY, USA, 1998), ACM, pp. 231-242.

[VCWP96] VIEGA J., CONWAY M. J., WILLIAMS G.,
PAuscH R.: 3D Magic Lenses. In UIST '96 (New York,
NY, USA, 1996), ACM Press, pp. 51-58.

[ZRL*07] ZHou K., REN Z., LIN S., BA0o H., GUO B.,
SHUM H.-Y.: Real-Time Smoke Rendering Using Com-
pensated Ray Marching. Tech. Rep. MSR-TR-2007-142,
Microsoft Research, September 2007.

(© The Eurographics Association 2008.

file:www.3dgi.de

