
Sketchy Drawings

Marc Nienhaus
University of Potsdam
Hasso Plattner Institute

marc.nienhaus@hpi.uni-potsdam.de

Jürgen Döllner
University of Potsdam
Hasso Plattner Institute

juergen.doellner@hpi.uni-potsdam.de

Abstract

In non-photorealistic rendering sketchiness is essential to
communicate visual ideas and can be used to illustrate drafts and
concepts in, for instance, architecture and product design.
In this paper, we present a hardware-accelerated real-time
rendering algorithm for drawings that sketches visually important
edges as well as inner color patches of arbitrary 3D objects even
beyond the geometrical boundary. The algorithm preserves edges
and color patches as intermediate rendering results using textures.
To achieve sketchiness it applies uncertainty values in image-
space to perturb texture coordinates when accessing intermediate
rendering results. The algorithm adjusts depth information derived
from 3D objects to ensure visibility when composing sketchy
drawings with arbitrary 3D scene contents. Rendering correct
depth values while sketching edges and colors beyond the
boundary of 3D objects is achieved by depth sprite rendering.
Moreover, we maintain frame-to-frame coherence because
consecutive uncertainty values have been determined by a Perlin
noise function, so that they are correlated in image-space.
Finally, we introduce a solution to control and predetermine
sketchiness by preserving geometrical properties of 3D objects in
order to calculate associated uncertainty values. This method
significantly reduces the inherent shower-door effect.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation – Display Algorithms I.3.3

Keywords: Non-photorealistic rendering, sketching, real-time
rendering, image-space, hardware-acceleration, depth sprites.

1 Introduction
In non-photorealistic rendering (NPR), sketching is of vital
importance to express the preliminary state of a draft, concept, or
idea, especially in application areas such as architectural and
product designs [Schumann et al. 1996].
Common photorealistic renditions are often less efficient in
communicating ideas, outlines, and proposals, and they imply the
impression of finality. These photorealistic renderings reduce
one’s ability to rethink enhancements and modifications.

In contrast, NPR communicates visually and is, therefore, more
helpful when dealing with renditions. In particular, sketchy
drawings encourage the exchange of ideas when people are
reconsidering drafts and blueprints. Sketchy drawings express
uncertainty and suggest work in progress. In fact, hand-drawn
sketches are still an integral part of the development process in
architectural or product design; in the film making process
storyboards are still used to assist communication.

This paper presents a new general-purpose rendering algorithm to
generate sketchy drawings of 3D scene geometry. Visually
important edges and surface colors derived from the 3D object are
sketched non-uniformly beyond the boundary of the original
object. Generally speaking, our algorithm (1) sketches the outline
of 3D objects to imply vagueness and (2) crayons in inner color
patches exceeding the sketchy outline as though they have been
painted roughly (Fig. 1, 11). The algorithm is used most
importantly to express ideas using uncertainty. Moreover, it
supports variations in style.

The algorithm represents an image-space algorithm and is
designed to use the resources provided by modern graphics
accelerators. Furthermore, the output generated with the algorithm
is general with respect to real-time rendering using raster
graphics. Thus, the algorithm

� can process arbitrary 3D geometry

Figure 1: A sketchy drawing of a cloister generated with
our real-time rendering algorithm.

� runs in real-time
� gives results that can be combined with general 3D scene

contents
The remainder of this paper is structured as follows: Section 2
discusses related work. Section 3 describes the sketchy drawing
algorithm in detail. Section 4 presents an approach to control
uncertainty. Section 5 draws conclusions and discusses future
work.

2 Related Work
NPR has become a popular research topic in computer graphics
for the last decades. Non-photorealistic rendering styles include
painterly rendering [Hertzmann 1998], hatching [Praun et al.
2001], and edge-enhancement [Nienhaus and Döllner 2003]. A
number of non-photorealistic rendering algorithms focus on
conveying and illustrating 3D geometry [Gooch et al. 1998;
Gooch et al. 1999] while others concentrate on sketching [Curtis
1998; Haddon 2002].

An increasing number of conceptually new non-photorealistic
rendering algorithms are being designed to use the resources and
computational frequencies available in the rendering pipeline and
accessible via today’s graphics hardware. They achieve real-time
performance. Examples include the work of Freudenberg et al.
[2002], Praun et al. [2001], and Raskar [2001]. Our algorithm
represents one of the first algorithms of this category addressing
sketchy drawings of arbitrary 3D geometry. It takes advantage of
Higher-Level Shading Languages, but can not be implemented
using shaders only.

Decaudin [1996] introduces an image-space algorithm for
detecting edges of 3D geometry to achieve cartoon-style
depictions. His algorithm is based on the G-buffer concept
introduced by Saito and Takahashi [1990]. G-buffers are 2-
dimensional data structures that store geometrical properties of
3D geometry. Important G-buffers are the normal buffer, the z-
buffer, and the Id-buffer. Image processing operations are
provided with G-buffers to analyze their contents and produce
comprehensible images of 3D objects. Decaudin utilizes image-
processing techniques to extract discontinuities in the normal and
z-buffer that from the edges of 3D scene geometry. Since image
processing techniques are time consuming, his approach is not
processed in real-time.

Image-based rendering has been accelerated, now being usable for
real-time image processing operations even for non-photorealistic
rendering [Mitchell 2003]. Mitchell et al. [2002] present a
hardware-accelerated real-time image processing technique for
extracting edges and enhancing images on a per-scene basis.
Their technique renders fragment normals, z-values, and object
identifiers of 3D geometry into textures using a render-to-texture
implementation. It then detects discontinuities in these buffers
using graphics hardware and combines the resulting edges with
framebuffer contents. Edges of 3D scene geometry, regions in
shadow, and texture boundaries can be outlined using their
method.

Our sketchy drawing algorithm is based on our edge-enhancement
algorithm [Nienhaus and Döllner 2003] that also takes advantage
of hardware-acceleration. The edge-enhancement algorithm
determines edges on a per-object basis. It distinguishes between
profile edges and edges of inner forms by handling discontinuities
in the normal and z-buffer differently. The assembly of intensity
values constitutes edges that are rendered into a texture, called
edge map. The algorithm preserves the edge map, so that it can be
combined with manifold non-photorealistic rendering algorithms

[Praun et al. 2001; Gooch et al. 1998; Freudenberg et al. 2002]
and advanced multipass, real-time rendering algorithms [Blythe et
al. 1999]. The present work constructs the edge map in an
intermediate rendering pass and uses it as one ingredient for
generating a sketchy outline. In general, preserving intermediate
rendering results as textures on a per-object basis allows us to
restrict the effect to individual objects and to compose the effect
in a subsequent rendering pass of our multipass rendering
algorithm.

Strothotte et al. [1990] argue in favor of uncertainty when
visualizing ancient architecture. They implement a system for
visualizing and outlining ancient architecture using a sketch
renderer. Our work implements uncertainty to suggest the
preliminary state of a draft or idea. In order to do this, we
determine uncertainty values in image-space based on the Perlin
noise function [Ebert et al. 1998; Perlin 1985]. These are applied
to perturb intermediate rendering results in image-space. So our
sketchy drawings express “imprecision, incompleteness, and
vagueness” when rendering architecture or technical objects. By
means of correlated Perlin noise values our algorithm maintains
frame-to-frame coherence.

Curtis [1998] presents a Loose and Sketchy filter that sketches the
edges of 3D geometry using image processing. The filter uses a
depth map as input and converts it into a template image and into
a force field image. The template image determines the amount of
ink needed in the neighborhood of a pixel, whereas the force field
image affects the movement of particles along edges. To generate
sketches of various styles, particles are placed randomly in image-
space that move along edges, adding or erasing ink until they die.
Curtis’ loose and sketchy filter is not meant to run in real-time.

Northrup and Markosian [2000] introduce a real-time silhouette-
rendering algorithm using Artistic Strokes. Their hybrid algorithm
determines potential silhouette edges and computes their visibility
by sampling an ID reference image. Visible edges are then
inserted into the 3D scene as triangle strips using stylistic
variations. In this method the inserted geometry aligns loosely to
the original geometry. Artistic strokes are thus rendered beyond
3D geometry resulting in stylistic depictions. Artistic Strokes
have been elaborated by Kalnins et al. [2002]. They implemented
a WYSIWYG system that allows designers to annotate 3D objects
using brush strokes to generate aesthetic non-photorealistic
renderings. They also observed that the number of strokes
influences performance because of sampling the ID reference
image. Furthermore, Kalnins et al. [2003] provide a solution for
temporal coherence of stylistic silhouettes for objects of moderate
complexity.

Our algorithm also sketches edges beyond the boundary of 3D
scene geometry. The edges align loosely to the object. In fact, our
algorithm is one of the first image-space real-time rendering
algorithms that allows for stylized edges [Isenberg et al. 2003].
Furthermore, the sketches we propose are not limited to edges.
They also include inner color patches, which are derived from
surface colors provided with 3D geometry. Thus, color patches
are rendered beyond sketched edges that outline inner forms and
the boundary of the object. Sketching both edges and color
patches have rarely been addressed by previous work.
Furthermore, our image-space algorithm is, by its nature, both
almost independent of the complexity of the object, and totally
independent of the number of edges that are sketched. In addition,
it needs very few prerequisites from 3D geometry. Finally, our
algorithm both maintains frame-to-frame coherence and provides
a way of reducing the shower-door effect.

Silhouette edge

Crease edge

Figure 2: Sampling neighboring texels in textures representing
the normal-buffer and the z-buffer (left) allows for extracting
discontinuities resulting in edge intensities stored in the edge
map (right).

By means of depth sprites, our algorithm generates and adjusts
depth information. Hence, we can implement sketchiness by
rendering those parts of the 3D object that exceed its original
boundary. Depth sprites enable us to combine sketchy drawings
arbitrarily with further 3D scene geometry.

Due to its implementation and its per-object basis, sketchy
drawings can easily be integrated into any real-time graphics
applications such as CAD or storyboarding systems.

3 Sketchy Drawing
Our sketchy drawing algorithm considers visually important
edges and surface colors to sketch 3D scene geometry. Both are
sketched non-uniformly using uncertainty.

The algorithm proceeds as follows. (1) It generates intermediate
rendering results that represent the edges and surface colors of 3D
geometry. (2) It applies uncertainty values in image-space to
sketch intermediate rendering results non-uniformly. (3) It adjusts
depth information so that the resulting sketchy drawing can be
merged with general 3D scene contents.

3.1 Intermediate Rendering Results
We denote 2-dimensional data derived from 3D geometry and
rendered into textures as intermediate rendering results; they are
reused in subsequent rendering passes.

As ingredients for sketchy drawings we primarily consider (1)
visually important edges and (2) surface colors, both provided as
intermediate rendering results.

Visually important edges include silhouette, border, and crease
edges. We obtain these edges by extracting discontinuities in the
normal buffer and z-buffer (Fig. 2). To achieve this, encoded
normal and z-values of 3D geometry are rendered directly into 2D
textures. So, as a prerequisite, 3D geometry must provide per-
vertex normals. We then texture a screen-aligned quad that fits
completely into the viewport of the canvas using the preceding
textures. We calculate texture coordinates (s,t) of each fragment
produced for the quad in such a way that they correspond to
windows coordinates. Sampling neighboring texels allows us to
extract discontinuities that result in intensity values that constitute
the edges of 3D geometry. We render the assembly of edges into a
single texture, that we call edge map. Figure 2 depicts the normal
and z-buffer and the resulting edge map.

We render unlit 3D geometry while taking into account its color.
This results in striking color patches that appear flat, cover all
surface details, and emulate a cartoon-like style. We render the

color of 3D geometry directly into a texture. This texture
represents inner color patches of that geometry. We refer to that
texture as shade map (Fig. 3).

3.2 Sketching using Uncertainty Values
Sketchiness is managed by uncertainty values applied to the edges
and surface colors. We once again texture a screen-aligned quad
using edge and shade maps as textures. To simulate the effect of
“sketching on a flat surface” we apply uncertainty values in
image-space to perturb texture coordinates of each fragment of
that quad.

We thus apply an additional texture, whose texture values
represent uncertainty values. Since we want to achieve frame-to-
frame coherence, we opt for a noise texture whose texture values
have been determined by a Perlin function; thus neighboring
uncertainty values are correlated in image-space. Once created in
a preprocessing step, the noise texture serves as an offset texture
for accessing the edge and shade maps when rendering, i.e., its
texture values slightly perturb texture coordinates that access the
edge and shade maps.

Furthermore, we introduce a degree of uncertainty in order to
control the amount of offset when accessing the edge and shade
maps. To texture the quad, we multiply uncertainty values derived
from the noise texture by a predefined 2×2 matrix used to weight
these values. The result is an offset vector that translates texture
coordinates. Figure 4 illustrates the perturbation of the texture
coordinates accessing the shade map using the degree of
uncertainty.

To emphasize sketchiness, we perturb texture coordinates for
accessing the edge map and shade map differently. Thus, we
apply two different 2×2 matrices and this results in different
degrees of uncertainty. One degree of uncertainty shifts texture
coordinates of the edge map, and one shifts texture coordinates of
the shade map. Figure 3 illustrates the edge and shade maps after
uncertainty has been applied.

Figure 3: The edge map (upper left) and shade map (lower left) are
two ingredients for sketchy drawings. Applying uncertainty results
in perturbations of the edge map (upper right) and perturbations of
the shade map (lower right). A magnification of the perturbed
shade map illustrates spots produced beyond the boundary of 3D
scene geometry.

We classify texture values representing fragments of 3D geometry
as interior regions, and texture values that do not correspond to
fragments of 3D scene geometry as exterior regions.

Texturing a screen-aligned quad and perturbing the texture
coordinates using uncertainty values allows us to access the
interior regions of the edge and shade maps, whereas the initial
texture coordinates would access exterior regions and vice versa
(Fig. 4). The interior regions can thus be sketched beyond the
boundary of 3D scene geometry, and exterior regions can
penetrate interior regions. We can even produce spots beyond the
boundary of the 3D geometry. This effect can be observed in the
magnification in Figure 3.

Finally, we combine texture values of both the edge and the shade
map. Multiplying the intensity values derived from perturbing the
edge map with the color values derived from perturbing the shade
map forms the basis for our sketchy drawing.

The uncertainty values (offs,offt) generated for the sketchy
drawing in Figure 5 are calculated by the turbulence function,
which is based on a Perlin noise function:

offs ← turbulence(s,t);
offt ← turbulence(1-s, 1-t);

3.3 Adjusting Depth Information
So far we have generated sketchy drawings by texturing a screen-
aligned quad. This approach has significant shortcomings.

When rendering a screen-aligned quad textured with the texture of
3D geometry, (1) z-values of the original geometry are not
available. Moreover, (2) the depth information of the original
geometry is not available in the exterior regions when uncertainty
has been applied.

To overcome these shortcomings, we adjust z-values using depth
sprites. Conceptually, depth sprites are 2-dimensional images that
provide an additional z-value at each pixel. To facilitate depth
sprite rendering we implement a specialized fragment shader
[Kilgard 2003; Rost 2004].

In general, depth-sprite rendering works as follows:

1) We capture z-values of the 3D geometry into a high
precision depth texture, called depth map (Fig. 6).

2) We render a screen-aligned quad using the depth map as its
texture. In this way we replace fragment z-values (produced

by the rasterizer) with depth map values using the fragment
shader.

For sketchy drawings, we have to modify the fragment shader to
allow for the previous perturbations. So we access the high
precision depth map twice and perturb texture coordinates of the
quad. As first perturbation, we take the degree of uncertainty used
for accessing the edge map; as second perturbation we take the
degree of uncertainty used for accessing the shade map. The
minimum value of both these texture values is used as the final
fragment z-value for depth testing.

Figure 6 illustrates the combination of both perturbations applied
to the depth map. The interior region of the perturbed depth map
matches the combination of the interior regions of both the
perturbed edge map and the perturbed shade map. Even those
spots produced by perturbing the shade map (Fig. 3) appear in the
perturbation of the depth map, as can be observed in the
magnification.

The fragment shader calculates the modified z-values to render
the textured quad that represents the sketchy drawing using an
ordinary depth test. This way, the z-buffer remains in a correct
state, and sketchy drawings can be arbitrarily composed with
further (e.g., non-sketchy) 3D geometry. The accompanying
video illustrates this feature.

3.4 Variation in Style
In the following, we present two variations in style that
demonstrate the versatility of our algorithm. Minor changes to the
original algorithm allow us to vary the style of sketchy drawings.

Sketching Edges Repeatedly. A fundamental technique in hand
drawings is to repeatedly draw the edges in order to emphasizes

Figure 4: The uncertainty value (offs,offt) derived from the noise
texture multiplied with a 2×2 matrix (with weights a, b, c and d)
forms the degree of uncertainty that is applied to the texture
coordinates (s,t) of a fragment to shift texture coordinates in
image space. In this case, the perturbed texture coordinates
(s’,t’) access a texture value of the interior region of the shade
map even though the initial texture coordinates (s,t) would
access the exterior region.

Figure 5: Applying different degrees of uncertainty perturb the
edge and shade map non-uniformly in image-space. Combining
the results forms the final sketchy drawing. Depth sprites allow
sketchy drawings to be composed with a 3D scene.









⋅








+








=









t

s

off
off

dc
ba

t
s

t
s
'
'

InteriorExterior

the preliminary state of a draft [Cabarga 1993].

We can simulate this technique by sketching visually important
edges only. For that purpose, we exclude the shade map but apply
the edge map multiple times using different degrees of uncertainty
and possibly different edge colors. Edges thus overlap non-
uniformly as if the edges of 3D geometry have been sketched
repeatedly. Clearly, depth information must be adjusted by
accessing the depth map multiple times, using the correspondent
degrees of uncertainty. Figure 7 shows a sketchy drawing with
two repetitions.

Roughening Profiles and Color Transitions. Although visually
important edges and surface colors are sketched non-uniformly,
the profiles and the color transitions of a sketchy drawing are
exactly as if sketched with ink-pencils on a flat surface. We
roughen the profiles and color transitions to simulate different
drawing tools and media, for instance, chalk applied on a rough
surface.

We apply a noise texture whose consecutive texture values are
uncorrelated:

offs ← random();
offt ← random();

Thus, the degree of uncertainty applied to the texture coordinates
of consecutive fragments that access the edge and shade maps are
also uncorrelated.

This approach results in a sketchy drawing with softened and
frayed edges and color transitions as illustrated in Figure 8. It can
be observed that the roughness and granularity – especially for the
darker edges – varies as though the pressure had varied as it does
when drawing with chalk. This effect depends on the amount of
uncertainty applied in image-space. The sketchy drawing shown
in Figure 8 is still real-time capable.

3.5 Implementation Details and Performance
The rendering algorithm we have presented requires, in general, 4
passes: 2 rendering passes to render 3D objects into textures (1); 1
intermediate rendering pass to render a screen-aligned quad to
extract edge intensities (2); 1 final pass to render a screen-aligned
quad as a depth sprite for sketching in image-space (3).

In 1), 2), we capture the contents of a non-visible frame-buffer
into textures. To do so, a pbuffer can serve as a render-to-texture
implementation [Kilgard 2003].

1) In the first rendering pass our algorithm renders 3D
geometries with encoded per-fragment normals and z-values.
We capture the normal buffer in one texture and the z-buffer
in a high precision depth texture. In the second rendering
pass, we render the color values of the 3D geometries to
generate the shade map.

2) In the intermediate rendering pass the algorithm renders a
screen-aligned quad textured with the normal and depth
texture to extract edge intensities. The result directly
represents the edge map.

3) Finally, a screen-aligned quad is rendered as depth sprite into
the visible framebuffer to compose the sketchy drawing. Since
the high precision depth map has already been generated in
the first rendering pass, we can reuse it for sketching.

In an optimized version, our algorithm uses float-buffers to merge
the first and the second rendering pass. A float-buffer provides 32
bits precision for each RGBA channel, and its contents can be
reused as a float-texture with the very same precision [Kilgard
2003]. Fragment programming allows for packing and unpacking
ordinary 8 bit RGBA color values using just one channel of the
float-buffer or float-texture. Our algorithm packs encoded per-
fragment normals into the R-channel and the color values of the
3D objects into the G-channel, and finally, it directs the
uncompressed z-value into the B-channel of a 32-bit RGB float-
texture. Thus, one single texture contains the normal buffer, the
shade map, and the high precision depth map for further use.

We accelerate our algorithm slightly by rejecting unneeded
fragments produced by the rasterizer when rendering a screen-
aligned quad. If a fragment’s z-value derived from accessing the
depth map equals 1 – which denotes the depth of the back
clipping plane of the view frustum – the fragment shader rejects
that fragment in advance, so that we can optimize the fill rate.

Overall, the algorithm can take advantage of hardware-
acceleration such as render-to-texture, multi-texturing, fragment
shading, float-buffers, and float-textures. Hence we achieve real-

Figure 6: Depth sprites utilize the depth map (left) to adjust z-
values. To utilize depth sprites for sketchy drawings we
reproduce the degrees of uncertainty applied to the edge and
shade map to perturb the depth map (right). The profile in the
magnification illustrates spots resulting from the degree of
uncertainty applied the shade map.

Figure 7: A sketchy drawing generated by sketching visually
important edges repeatedly. The color value for each edge can
be chosen individually.

time frame rates. The model of the “Ogre” in the preceding
figures can be rendered at 20 fps at a window resolution of
800×800 using an NVIDIA GeForce FX 5600 graphics card. It
should be noted that this performance is almost independent of the
CPU.

4 Controlling Uncertainty
Controlling uncertainty values, in general, enables one to
configure and design the visual appearance of sketchy drawings.

In the previous chapter, we showed how we provide uncertainty
values based on a Perlin noise function for each pixel in image-
space. This has the following benefits:

� we achieve frame-to-frame coherence, for instance, when
interacting with the scene, since neighboring uncertainty
values are correlated

� we can access the interior region from beyond the exterior
region and vice versa. It thus allows sketching beyond the
boundary of the 3D object

However uncertainty values remain unchanged in image-space
and have no obvious correspondence with geometrical properties
of the targeted 3D geometry. So sketchy drawings tend to “swim”
in image-space (shower-door effect) and their visual appearance
cannot be predetermined.

To overcome these limitations, we have to accomplish both:

� preserve geometrical properties such as surface positions,
normals, or curvature information to determine uncertainty
values

� continue to provide uncertainty values in the exterior region,
at least close the 3D geometry

4.1 Preserving Geometrical Properties
The principle outline of our approach to the preservation of
geometrical properties to control uncertainty is as follows:
1) we render geometrical properties directly into a texture that

forms an additional G-buffer
2) we texture a screen-aligned quad with that texture, and access

geometrical properties via texture coordinates (s,t)
3) we calculate uncertainty values based on – to simplify matters

– a noise function using geometrical properties as parameters
These uncertainty values can then be used to determine different
degrees of uncertainty to generate perturbations that produce
texture coordinates (s’,t’). Mathematically, the algorithm
determines the perturbed texture coordinates (s’,t’) by the
following function:

)),(,,(),(
)','(),(:
tsgtsptsf

tstsf
=

→

where (s,t) are the texture coordinates of a fragment produced
when rasterizing the screen-aligned quad, g(·) corresponds to
geometrical properties available in the additional texture, and p(·)
determines the perturbation applied to (s,t) using g(·) as input.
Note that there are two functions f(s,t) to handle perturbations to
access the edge (fEdge(s,t)) and the shade (fShade(s,t)) maps
separately.

4.2 Expanding the Objects Boundary
We enlarge the original sized 3D geometry to generate geo-
metrical properties in the surrounding of the object. To do this we
slightly shift each vertex of the 3D geometry along its vertex
normal in object-space.

Figure 8: Sketchy drawing simulating chalk applied on a rough
surface. Variations in edges intensities let assume that the

pressure applied when drawing them has varied.

Figure 9: A sketchy drawing generated by using uncertainty
values that are based on geometrical properties of 3D scene

geometry.

For this to be possible, the 3D geometry must satisfy the
following requirements:
� the surface forms a connected component
� each shared vertex provides an interpolated normal
Enlarging the 3D geometry allows us to render geometrical
properties into a texture to calculate uncertainty values in the
interior regions as well as in the exterior regions. Again, the
interior regions can be sketched beyond the boundary of the 3D
geometry and the exterior regions can penetrate the interior
regions. But this time the perturbations are based on uncertainty
values that do have an obvious correspondence to the underlying
3D geometry.

4.3 Managing the Shower-Door Effect
The following example demonstrates how sketchiness can be
controlled to reduce the shower-door effect.
Enlarged 3D geometry is rendered with object-space positions as
color values into a texture. We achieve this by determining the
object-space position for each displaced vertex and providing
them as texture coordinates to the rasterization process. The
rasterizer produces interpolated object-space positions for each
fragment using barycentric coordinates. A specialized fragment
shader directs them as high precision color values to a targeted
float-buffer. Thus, g(s,t) preserves objects space positions as a
float-texture.
Based on g(s,t), the algorithm can determine texture coordinates
f(s,t) using p(·). In our example, the function p(·) processes the
perturbation using a predefined 2×2 matrix and a Perlin noise
function encoded into a 3D texture. Thus, p(·) accesses the 3D
texture using g(s,t) as texture coordinates. The resulting texture
value is multiplied by the 2×2 matrix to obtain a degree of

uncertainty. f(s,t) applies the degree of uncertainty to perturb (s,t)
resulting in (s’,t’).
Calculating fEdge(s,t) and fShade(s,t) using different matrices results
in the sketchy drawing (Fig. 9). The accompanying video
illustrates that the shower-door effect has been significantly
reduced.
In the first case, the example aims at reducing the shower-door
effect. But, in the second case, it gives a clue as to how to control
the appearance of sketchy drawings using geometrical properties.
By means of higher-level shading languages provided by OpenGL
2.0 [Rost 2004] or Cg [Mark 2003] one could design sketchy
drawings more intuitively.
The diagram in Figure 10 illustrates the process flow of our
algorithm for generating sketchy drawings by considering
geometrical properties.

5 Conclusion
We have presented a real-time rendering algorithm for generating
sketchy drawings of arbitrary 3D geometries. The results depict
imprecision, incompleteness, and vagueness to communicate
drafts, concepts and ideas.

Only minor changes to the general algorithm are needed in order
to produce variations in the visual appearance of sketchy
drawings. Examples include sketching edges repeatedly as well as
roughening profiles and color transitions.

We introduced perturbations applied to depth sprites to ensure a
correct depth behavior – particularly in the exterior regions. This
allows us to combine sketchy drawings with any kind of real-time
rendering application. Generally, operations applied to depth
textures for depth sprite rendering offer manifold applications
when combining image-based effects and arbitrary 3D geometry.
Thus the contribution of our algorithm is not limited to NPR.

Figure 10: The conceptual sketch illustrates buffers and intermediate rendering results involved in the process of generating sketchy
drawings. Furthermore, it clarifies the usage of f(s,t) when considering geometrical properties.

turbulence(g(s,t))
(uncertainty values)

g(s,t)
(object space pos)

shade map

normal buffer depth map edge map

Perturbations

Original 3D object Sketchy Drawing f(s,t) = p(s,t,g(s,t))
(perturbation)

fEdge(s,t)

fShade(s,t)

fShade(s,t) and fEdge(s,t)

Enlarge geometry

Technically, the algorithm represents a hardware-accelerated
algorithm designed for today’s graphics cards. Our algorithm
produces and accesses geometrical properties as well as
uncertainty values in the exterior regions using intermediate
rendering results to produce sketchy drawing effects. Therefore,
shaders written in Higher-Level Shading Languages cannot
substitute our sketchy drawings algorithm.

In our future work, we expect to produce sketchy drawings that
appear more artistically pleasing using texture lookups into brush
strokes. Furthermore, we aim at designing sketchy drawings
procedurally using Higher-Level Shading Languages to target
different applications areas such as storyboard depictions.

6 References
BLYTHE, D., GRANTHAM, B., KILGARD, M. J., MCREYNOLDS, T., AND

NELSON, S. R. 1999. Advanced Graphics Programming Techniques
Using OpenGL. In ACM SIGGRAPH 1999 Course Notes.

CABARGA. L. 1993. Dynamic Black & White Illustration – One Hundred
Years of Line Art 1900 - 2000. Art Direction Books, New York.

CURTIS, C. 1998. Loose and Sketchy Animation. In ACM SIGGRAPH
1998 Conference Abstracts and Applications, p. 317.

DECAUDIN, P. 1996. Rendu de scénes 3D imitant le style «dessin animé».
Rapport de Recherche 2919. Université de Technologie de
Compiègne, France.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY,
S. 1998. Texturing & Modeling – A Procedural Approach (Second
Edition), Academic Press Professional, Inc., San Diego, CA.

FREUDENBERG, B., MASUCH, M., AND STROTHOTTE, T. 2002. Real-Time
Halftoning: A Primitive For Non-Photorealistic Shading. 13th
Eurographics Workshop on Rendering. Pisa, Italy, pp. 1-4.

GOOCH, A., GOOCH, B., SHIRLY, P., AND COHEN, E. 1998. A Non-
Photorealistic Lighting Model for Automatic Technical Illustration. In
Proceedings of ACM SIGGRAPH 1998, ACM Press / ACM
SIGGRAPH, New York, Computer Graphics Proceedings, Annual
Conference Series, ACM, 447-452.

GOOCH, B., SLOAN, P. S., GOOCH, A., SHIRLEY, P., AND RIESENFELD, R.
1999. Interactive Technical Illustration. ACM Symposium on
Interactive 3D Graphics 1999, pp. 31-38.

HADDON, J. 2002. Sketchy Rendering. In ACM SIGGRAPH 2002
Conference Abstracts and Applications, New York.

HERTZMANN, A. 1998. Painterly Rendering with Curved Brush Strokes of
Multiple Sizes. In Proceedings of ACM SIGGRAPH 1998, ACM Press
/ ACM SIGGRAPH, New York, Computer Graphics Proceedings,
Annual Conference Series, ACM, 453-460.

ISENBERG, T., FREUDENBERG, B., HALPER, N., SCHLECHTWEG, S., AND
STROTHOTTE, T. 2003. A Developers’s Guide to Silhouette
Algorithms for Polygonal Models. IEEE Computer Graphics and
Applications, 23(4), 28-37.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., LEE, J.
C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND FINKELSTEIN, A.
2002. WYSIWYG NPR: Drawing Strokes Directly on 3D Models.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH
2002), 21(3), 755-762.

KALNINS, R. D. DAVIDSON, P. L., MARKOSIAN, L., AND FINKELSTEIN, A.
2003: Coherent Stylized Silhouette. ACM Transactions on Graphics,
22(3), 856-861.

KILGARD, M. (Ed.). 2003: NVIDIA OpenGL Extension Specifications.
NVIDIA Corporation, June 2003.
http://deveoper.nvidia.com/docs/IO/1174/ATT/nvOpenGLspecs.pdf

MARK, W. R., GLANVILLE, R. S, AKELEY, K., AND KILGARD, M. J. 2003:
Cg: A System for Programming Graphics Hardware in a C-like Lan-
guage. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003), 22(3), 896-907. Figure 11: Several sketchy drawings of a cloister

captured from different viewpoints.

MITCHELL, J. L. 2003: Real-Time 3D Scene Post-processing. Game
Developers Conference, San Diego, CA.
www.ati.com/developer/gdc/GDC2003_ScenePostprocessing.pdf

MITCHELL, J. L., BRENNAN, C., AND CARD, D. 2002: Real-Time Image
Space Outlining for Non-Photorealistic Rendering. In ACM
SIGGRAPH 2002 Conference Abstracts and Applications, 239.

NIENHAUS, M. AND DÖLLNER, J. 2003. Edge-Enhancement – An
Algorithm for Real-Time Non-Photorealistic Rendering. Journal of
WSCG’03, 346-353.

NORTHRUP, J. D. AND MARKOSIAN. L. 2000. Artistic Silhouettes: A
Hybrid Approach, In Proceedings of the First International
Symposium on Non-Photorealistic Animation and Rendering (NPAR
2000), 31-38.

PERLIN, K. 1985. An image synthesizer, In Computer Graphics, 19(3),
(Proceedings of ACM SIGGRAPH 1985), ACM, 287-296.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001: Real-Time
Hatching. Proceedings of ACM SIGGRAPH 2001, ACM Press / ACM
SIGGRAPH, New York, Computer Graphics Proceedings, Annual
Conference Series, ACM, 579-584.

RASKAR, R. 2001. Hardware Support for Non-photorealistic Rendering. In
Proceedings of ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware (2001), 41-46.

ROST, R. J. 2004: OpenGL® Shading Language. Addison-Wesley
Professional.

SAITO, T. AND TAKAHASHI, T. 1990: Comprehensible Rendering of 3-D
Shapes. In Computer Graphics (Proceedings of ACM SIGGRAPH
1990), 24(4), 197-206.

SCHUMANN, J., STROTHOTTE, T., RAAB, A., AND LASER, S. 1996.
Assessing the Effect of Non-photorealistic Rendered Images in CAD.
In Proceedings of SIGCHI 1996 Conference on Human Factors in
Computing Systems, 35-41.

STROTHOTTE, T., MASUCH, M., AND ISENBERG, T. 1990: Visualizing
Knowledge about Virtual Re-constructions of Ancient Architecture.
Proceedings of CGI 1999, 36-43.

