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Abstract 
 
In non-photorealistic rendering sketchiness is essential to 
communicate visual ideas and can be used to illustrate drafts and 
concepts in, for instance, architecture and product design.  
In this paper, we present a hardware-accelerated real-time 
rendering algorithm for drawings that sketches visually important 
edges as well as inner color patches of arbitrary 3D objects even 
beyond the geometrical boundary. The algorithm preserves edges 
and color patches as intermediate rendering results using textures. 
To achieve sketchiness it applies uncertainty values in image-
space to perturb texture coordinates when accessing intermediate 
rendering results. The algorithm adjusts depth information derived 
from 3D objects to ensure visibility when composing sketchy 
drawings with arbitrary 3D scene contents. Rendering correct 
depth values while sketching edges and colors beyond the 
boundary of 3D objects is achieved by depth sprite rendering. 
Moreover, we maintain frame-to-frame coherence because 
consecutive uncertainty values have been determined by a Perlin 
noise function, so that they are correlated in image-space.  
Finally, we introduce a solution to control and predetermine 
sketchiness by preserving geometrical properties of 3D objects in 
order to calculate associated uncertainty values. This method 
significantly reduces the inherent shower-door effect. 

CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation – Display Algorithms I.3.3  

Keywords: Non-photorealistic rendering, sketching, real-time 
rendering, image-space, hardware-acceleration, depth sprites. 

 

1 Introduction 
In non-photorealistic rendering (NPR), sketching is of vital 
importance to express the preliminary state of a draft, concept, or 
idea, especially in application areas such as architectural and 
product designs [Schumann et al. 1996]. 
Common photorealistic renditions are often less efficient in 
communicating ideas, outlines, and proposals, and they imply the 
impression of finality. These photorealistic renderings reduce 
one’s ability to rethink enhancements and modifications. 

In contrast, NPR communicates visually and is, therefore, more 
helpful when dealing with renditions. In particular, sketchy 
drawings encourage the exchange of ideas when people are 
reconsidering drafts and blueprints. Sketchy drawings express 
uncertainty and suggest work in progress. In fact, hand-drawn 
sketches are still an integral part of the development process in 
architectural or product design; in the film making process 
storyboards are still used to assist communication. 

This paper presents a new general-purpose rendering algorithm to 
generate sketchy drawings of 3D scene geometry. Visually 
important edges and surface colors derived from the 3D object are 
sketched non-uniformly beyond the boundary of the original 
object. Generally speaking, our algorithm (1) sketches the outline 
of 3D objects to imply vagueness and (2) crayons in inner color 
patches exceeding the sketchy outline as though they have been 
painted roughly (Fig. 1, 11). The algorithm is used most 
importantly to express ideas using uncertainty. Moreover, it 
supports variations in style. 

The algorithm represents an image-space algorithm and is 
designed to use the resources provided by modern graphics 
accelerators. Furthermore, the output generated with the algorithm 
is general with respect to real-time rendering using raster 
graphics. Thus, the algorithm  

� can process arbitrary 3D geometry 

Figure 1: A sketchy drawing of a cloister generated with 
our real-time rendering algorithm. 



� runs in real-time 
� gives results that can be combined with general 3D scene 

contents 
The remainder of this paper is structured as follows: Section 2 
discusses related work. Section 3 describes the sketchy drawing 
algorithm in detail. Section 4 presents an approach to control 
uncertainty. Section 5 draws conclusions and discusses future 
work. 

2 Related Work 
NPR has become a popular research topic in computer graphics 
for the last decades. Non-photorealistic rendering styles include 
painterly rendering [Hertzmann 1998], hatching [Praun et al. 
2001], and edge-enhancement [Nienhaus and Döllner 2003]. A 
number of non-photorealistic rendering algorithms focus on 
conveying and illustrating 3D geometry [Gooch et al. 1998; 
Gooch et al. 1999] while others concentrate on sketching [Curtis 
1998; Haddon 2002]. 

An increasing number of conceptually new non-photorealistic 
rendering algorithms are being designed to use the resources and 
computational frequencies available in the rendering pipeline and 
accessible via today’s graphics hardware. They achieve real-time 
performance. Examples include the work of Freudenberg et al. 
[2002], Praun et al. [2001], and Raskar [2001]. Our algorithm 
represents one of the first algorithms of this category addressing 
sketchy drawings of arbitrary 3D geometry. It takes advantage of 
Higher-Level Shading Languages, but can not be implemented 
using shaders only. 

Decaudin [1996] introduces an image-space algorithm for 
detecting edges of 3D geometry to achieve cartoon-style 
depictions. His algorithm is based on the G-buffer concept 
introduced by Saito and Takahashi [1990]. G-buffers are 2-
dimensional data structures that store geometrical properties of 
3D geometry. Important G-buffers are the normal buffer, the z-
buffer, and the Id-buffer. Image processing operations are 
provided with G-buffers to analyze their contents and produce 
comprehensible images of 3D objects. Decaudin utilizes image-
processing techniques to extract discontinuities in the normal and 
z-buffer that from the edges of 3D scene geometry. Since image 
processing techniques are time consuming, his approach is not 
processed in real-time. 

Image-based rendering has been accelerated, now being usable for 
real-time image processing operations even for non-photorealistic 
rendering [Mitchell 2003]. Mitchell et al. [2002] present a 
hardware-accelerated real-time image processing technique for 
extracting edges and enhancing images on a per-scene basis. 
Their technique renders fragment normals, z-values, and object 
identifiers of 3D geometry into textures using a render-to-texture 
implementation. It then detects discontinuities in these buffers 
using graphics hardware and combines the resulting edges with 
framebuffer contents. Edges of 3D scene geometry, regions in 
shadow, and texture boundaries can be outlined using their 
method.  

Our sketchy drawing algorithm is based on our edge-enhancement 
algorithm [Nienhaus and Döllner 2003] that also takes advantage 
of hardware-acceleration. The edge-enhancement algorithm 
determines edges on a per-object basis. It distinguishes between 
profile edges and edges of inner forms by handling discontinuities 
in the normal and z-buffer differently. The assembly of intensity 
values constitutes edges that are rendered into a texture, called 
edge map. The algorithm preserves the edge map, so that it can be 
combined with manifold non-photorealistic rendering algorithms 

[Praun et al. 2001; Gooch et al. 1998; Freudenberg et al. 2002] 
and advanced multipass, real-time rendering algorithms [Blythe et 
al. 1999]. The present work constructs the edge map in an 
intermediate rendering pass and uses it as one ingredient for 
generating a sketchy outline. In general, preserving intermediate 
rendering results as textures on a per-object basis allows us to 
restrict the effect to individual objects and to compose the effect 
in a subsequent rendering pass of our multipass rendering 
algorithm.  

Strothotte et al. [1990] argue in favor of uncertainty when 
visualizing ancient architecture. They implement a system for 
visualizing and outlining ancient architecture using a sketch 
renderer. Our work implements uncertainty to suggest the 
preliminary state of a draft or idea. In order to do this, we 
determine uncertainty values in image-space based on the Perlin 
noise function [Ebert et al. 1998; Perlin 1985]. These are applied 
to perturb intermediate rendering results in image-space. So our 
sketchy drawings express “imprecision, incompleteness, and 
vagueness” when rendering architecture or technical objects. By 
means of correlated Perlin noise values our algorithm maintains 
frame-to-frame coherence.  

Curtis [1998] presents a Loose and Sketchy filter that sketches the 
edges of 3D geometry using image processing. The filter uses a 
depth map as input and converts it into a template image and into 
a force field image. The template image determines the amount of 
ink needed in the neighborhood of a pixel, whereas the force field 
image affects the movement of particles along edges. To generate 
sketches of various styles, particles are placed randomly in image-
space that move along edges, adding or erasing ink until they die. 
Curtis’ loose and sketchy filter is not meant to run in real-time. 

Northrup and Markosian [2000] introduce a real-time silhouette-
rendering algorithm using Artistic Strokes. Their hybrid algorithm 
determines potential silhouette edges and computes their visibility 
by sampling an ID reference image. Visible edges are then 
inserted into the 3D scene as triangle strips using stylistic 
variations. In this method the inserted geometry aligns loosely to 
the original geometry. Artistic strokes are thus rendered beyond 
3D geometry resulting in stylistic depictions. Artistic Strokes 
have been elaborated by Kalnins et al. [2002]. They implemented 
a WYSIWYG system that allows designers to annotate 3D objects 
using brush strokes to generate aesthetic non-photorealistic 
renderings. They also observed that the number of strokes 
influences performance because of sampling the ID reference 
image. Furthermore, Kalnins et al. [2003] provide a solution for 
temporal coherence of stylistic silhouettes for objects of moderate 
complexity. 

Our algorithm also sketches edges beyond the boundary of 3D 
scene geometry. The edges align loosely to the object. In fact, our 
algorithm is one of the first image-space real-time rendering 
algorithms that allows for stylized edges [Isenberg et al. 2003]. 
Furthermore, the sketches we propose are not limited to edges. 
They also include inner color patches, which are derived from 
surface colors provided with 3D geometry. Thus, color patches 
are rendered beyond sketched edges that outline inner forms and 
the boundary of the object. Sketching both edges and color 
patches have rarely been addressed by previous work. 
Furthermore, our image-space algorithm is, by its nature, both 
almost independent of the complexity of the object, and totally 
independent of the number of edges that are sketched. In addition, 
it needs very few prerequisites from 3D geometry. Finally, our 
algorithm both maintains frame-to-frame coherence and provides 
a way of reducing the shower-door effect.  



Silhouette edge 

Crease edge 

Figure 2: Sampling neighboring texels in textures representing 
the normal-buffer and the z-buffer (left) allows for extracting 
discontinuities resulting in edge intensities stored in the edge
map (right). 

By means of depth sprites, our algorithm generates and adjusts 
depth information. Hence, we can implement sketchiness by 
rendering those parts of the 3D object that exceed its original 
boundary. Depth sprites enable us to combine sketchy drawings 
arbitrarily with further 3D scene geometry. 

Due to its implementation and its per-object basis, sketchy 
drawings can easily be integrated into any real-time graphics 
applications such as CAD or storyboarding systems.  

3 Sketchy Drawing 
Our sketchy drawing algorithm considers visually important 
edges and surface colors to sketch 3D scene geometry. Both are 
sketched non-uniformly using uncertainty.  

The algorithm proceeds as follows. (1) It generates intermediate 
rendering results that represent the edges and surface colors of 3D 
geometry. (2) It applies uncertainty values in image-space to 
sketch intermediate rendering results non-uniformly. (3) It adjusts 
depth information so that the resulting sketchy drawing can be 
merged with general 3D scene contents. 

3.1 Intermediate Rendering Results 
We denote 2-dimensional data derived from 3D geometry and 
rendered into textures as intermediate rendering results; they are 
reused in subsequent rendering passes. 

As ingredients for sketchy drawings we primarily consider (1) 
visually important edges and (2) surface colors, both provided as 
intermediate rendering results.  

Visually important edges include silhouette, border, and crease 
edges. We obtain these edges by extracting discontinuities in the 
normal buffer and z-buffer (Fig. 2). To achieve this, encoded 
normal and z-values of 3D geometry are rendered directly into 2D 
textures. So, as a prerequisite, 3D geometry must provide per-
vertex normals. We then texture a screen-aligned quad that fits 
completely into the viewport of the canvas using the preceding 
textures. We calculate texture coordinates (s,t) of each fragment 
produced for the quad in such a way that they correspond to 
windows coordinates. Sampling neighboring texels allows us to 
extract discontinuities that result in intensity values that constitute 
the edges of 3D geometry. We render the assembly of edges into a 
single texture, that we call edge map. Figure 2 depicts the normal 
and z-buffer and the resulting edge map. 

We render unlit 3D geometry while taking into account its color. 
This results in striking color patches that appear flat, cover all 
surface details, and emulate a cartoon-like style. We render the 

color of 3D geometry directly into a texture. This texture 
represents inner color patches of that geometry. We refer to that 
texture as shade map (Fig. 3). 

3.2 Sketching using Uncertainty Values 
Sketchiness is managed by uncertainty values applied to the edges 
and surface colors. We once again texture a screen-aligned quad 
using edge and shade maps as textures. To simulate the effect of 
“sketching on a flat surface” we apply uncertainty values in 
image-space to perturb texture coordinates of each fragment of 
that quad. 

We thus apply an additional texture, whose texture values 
represent uncertainty values. Since we want to achieve frame-to-
frame coherence, we opt for a noise texture whose texture values 
have been determined by a Perlin function; thus neighboring 
uncertainty values are correlated in image-space. Once created in 
a preprocessing step, the noise texture serves as an offset texture 
for accessing the edge and shade maps when rendering, i.e., its 
texture values slightly perturb texture coordinates that access the 
edge and shade maps.  

Furthermore, we introduce a degree of uncertainty in order to 
control the amount of offset when accessing the edge and shade 
maps. To texture the quad, we multiply uncertainty values derived 
from the noise texture by a predefined 2×2 matrix used to weight 
these values. The result is an offset vector that translates texture 
coordinates. Figure 4 illustrates the perturbation of the texture 
coordinates accessing the shade map using the degree of 
uncertainty. 

To emphasize sketchiness, we perturb texture coordinates for 
accessing the edge map and shade map differently. Thus, we 
apply two different 2×2 matrices and this results in different 
degrees of uncertainty. One degree of uncertainty shifts texture 
coordinates of the edge map, and one shifts texture coordinates of 
the shade map. Figure 3 illustrates the edge and shade maps after 
uncertainty has been applied.  

Figure 3: The edge map (upper left) and shade map (lower left) are 
two ingredients for sketchy drawings. Applying uncertainty results 
in perturbations of the edge map (upper right) and perturbations of 
the shade map (lower right). A magnification of the perturbed 
shade map illustrates spots produced beyond the boundary of 3D 
scene geometry. 



We classify texture values representing fragments of 3D geometry 
as interior regions, and texture values that do not correspond to 
fragments of 3D scene geometry as exterior regions. 

Texturing a screen-aligned quad and perturbing the texture 
coordinates using uncertainty values allows us to access the 
interior regions of the edge and shade maps, whereas the initial 
texture coordinates would access exterior regions and vice versa 
(Fig. 4). The interior regions can thus be sketched beyond the 
boundary of 3D scene geometry, and exterior regions can 
penetrate interior regions. We can even produce spots beyond the 
boundary of the 3D geometry. This effect can be observed in the 
magnification in Figure 3. 

Finally, we combine texture values of both the edge and the shade 
map. Multiplying the intensity values derived from perturbing the 
edge map with the color values derived from perturbing the shade 
map forms the basis for our sketchy drawing. 

The uncertainty values (offs,offt) generated for the sketchy 
drawing in Figure 5 are calculated by the turbulence function, 
which is based on a Perlin noise function: 

offs ← turbulence(s,t); 
offt ← turbulence(1-s, 1-t); 

 

3.3 Adjusting Depth Information 
So far we have generated sketchy drawings by texturing a screen-
aligned quad. This approach has significant shortcomings. 

When rendering a screen-aligned quad textured with the texture of 
3D geometry, (1) z-values of the original geometry are not 
available. Moreover, (2) the depth information of the original 
geometry is not available in the exterior regions when uncertainty 
has been applied.  

To overcome these shortcomings, we adjust z-values using depth 
sprites. Conceptually, depth sprites are 2-dimensional images that 
provide an additional z-value at each pixel. To facilitate depth 
sprite rendering we implement a specialized fragment shader 
[Kilgard 2003; Rost 2004].  

In general, depth-sprite rendering works as follows: 

1) We capture z-values of the 3D geometry into a high 
precision depth texture, called depth map (Fig. 6).  

2) We render a screen-aligned quad using the depth map as its 
texture. In this way we replace fragment z-values (produced 

by the rasterizer) with depth map values using the fragment 
shader. 

For sketchy drawings, we have to modify the fragment shader to 
allow for the previous perturbations. So we access the high 
precision depth map twice and perturb texture coordinates of the 
quad. As first perturbation, we take the degree of uncertainty used 
for accessing the edge map; as second perturbation we take the 
degree of uncertainty used for accessing the shade map. The 
minimum value of both these texture values is used as the final 
fragment z-value for depth testing. 

Figure 6 illustrates the combination of both perturbations applied 
to the depth map. The interior region of the perturbed depth map 
matches the combination of the interior regions of both the 
perturbed edge map and the perturbed shade map. Even those 
spots produced by perturbing the shade map (Fig. 3) appear in the 
perturbation of the depth map, as can be observed in the 
magnification. 

The fragment shader calculates the modified z-values to render 
the textured quad that represents the sketchy drawing using an 
ordinary depth test. This way, the z-buffer remains in a correct 
state, and sketchy drawings can be arbitrarily composed with 
further (e.g., non-sketchy) 3D geometry. The accompanying 
video illustrates this feature. 

3.4 Variation in Style 
In the following, we present two variations in style that 
demonstrate the versatility of our algorithm. Minor changes to the 
original algorithm allow us to vary the style of sketchy drawings. 

Sketching Edges Repeatedly. A fundamental technique in hand 
drawings is to repeatedly draw the edges in order to emphasizes 

Figure 4: The uncertainty value (offs,offt) derived from the noise
texture multiplied with a 2×2 matrix (with weights a, b, c and d)
forms the degree of uncertainty that is applied to the texture
coordinates (s,t) of a fragment to shift texture coordinates in
image space. In this case, the perturbed texture coordinates
(s’,t’) access a texture value of the interior region of the shade
map even though the initial texture coordinates (s,t) would 
access the exterior region. 

Figure 5: Applying different degrees of uncertainty perturb the 
edge and shade map non-uniformly in image-space. Combining 
the results forms the final sketchy drawing. Depth sprites allow 
sketchy drawings to be composed with a 3D scene. 
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the preliminary state of a draft [Cabarga 1993].  

We can simulate this technique by sketching visually important 
edges only. For that purpose, we exclude the shade map but apply 
the edge map multiple times using different degrees of uncertainty 
and possibly different edge colors. Edges thus overlap non-
uniformly as if the edges of 3D geometry have been sketched 
repeatedly. Clearly, depth information must be adjusted by 
accessing the depth map multiple times, using the correspondent 
degrees of uncertainty. Figure 7 shows a sketchy drawing with 
two repetitions. 

Roughening Profiles and Color Transitions. Although visually 
important edges and surface colors are sketched non-uniformly, 
the profiles and the color transitions of a sketchy drawing are 
exactly as if sketched with ink-pencils on a flat surface. We 
roughen the profiles and color transitions to simulate different 
drawing tools and media, for instance, chalk applied on a rough 
surface.  

We apply a noise texture whose consecutive texture values are 
uncorrelated:  

offs ← random(); 
offt ← random(); 

 

Thus, the degree of uncertainty applied to the texture coordinates 
of consecutive fragments that access the edge and shade maps are 
also uncorrelated.  

This approach results in a sketchy drawing with softened and 
frayed edges and color transitions as illustrated in Figure 8. It can 
be observed that the roughness and granularity – especially for the 
darker edges – varies as though the pressure had varied as it does 
when drawing with chalk. This effect depends on the amount of 
uncertainty applied in image-space. The sketchy drawing shown 
in Figure 8 is still real-time capable. 

3.5 Implementation Details and Performance 
The rendering algorithm we have presented requires, in general, 4 
passes: 2 rendering passes to render 3D objects into textures (1); 1 
intermediate rendering pass to render a screen-aligned quad to 
extract edge intensities (2); 1 final pass to render a screen-aligned 
quad as a depth sprite for sketching in image-space (3).  

In 1), 2), we capture the contents of a non-visible frame-buffer 
into textures. To do so, a pbuffer can serve as a render-to-texture 
implementation [Kilgard 2003]. 

1) In the first rendering pass our algorithm renders 3D 
geometries with encoded per-fragment normals and z-values. 
We capture the normal buffer in one texture and the z-buffer 
in a high precision depth texture. In the second rendering 
pass, we render the color values of the 3D geometries to 
generate the shade map. 

2) In the intermediate rendering pass the algorithm renders a 
screen-aligned quad textured with the normal and depth 
texture to extract edge intensities. The result directly 
represents the edge map. 

3) Finally, a screen-aligned quad is rendered as depth sprite into 
the visible framebuffer to compose the sketchy drawing. Since 
the high precision depth map has already been generated in 
the first rendering pass, we can reuse it for sketching. 

In an optimized version, our algorithm uses float-buffers to merge 
the first and the second rendering pass. A float-buffer provides 32 
bits precision for each RGBA channel, and its contents can be 
reused as a float-texture with the very same precision [Kilgard 
2003]. Fragment programming allows for packing and unpacking 
ordinary 8 bit RGBA color values using just one channel of the 
float-buffer or float-texture. Our algorithm packs encoded per-
fragment normals into the R-channel and the color values of the 
3D objects into the G-channel, and finally, it directs the 
uncompressed z-value into the B-channel of a 32-bit RGB float-
texture. Thus, one single texture contains the normal buffer, the 
shade map, and the high precision depth map for further use. 

We accelerate our algorithm slightly by rejecting unneeded 
fragments produced by the rasterizer when rendering a screen-
aligned quad. If a fragment’s z-value derived from accessing the 
depth map equals 1 – which denotes the depth of the back 
clipping plane of the view frustum – the fragment shader rejects 
that fragment in advance, so that we can optimize the fill rate. 

Overall, the algorithm can take advantage of hardware-
acceleration such as render-to-texture, multi-texturing, fragment 
shading, float-buffers, and float-textures. Hence we achieve real-

Figure 6: Depth sprites utilize the depth map (left) to adjust z-
values. To utilize depth sprites for sketchy drawings we
reproduce the degrees of uncertainty applied to the edge and
shade map to perturb the depth map (right). The profile in the
magnification illustrates spots resulting from the degree of
uncertainty applied the shade map. 

Figure 7: A sketchy drawing generated by sketching visually 
important edges repeatedly. The color value for each edge can 
be chosen individually. 

 



time frame rates. The model of the “Ogre” in the preceding 
figures can be rendered at 20 fps at a window resolution of 
800×800 using an NVIDIA GeForce FX 5600 graphics card. It 
should be noted that this performance is almost independent of the 
CPU. 

4 Controlling Uncertainty 
Controlling uncertainty values, in general, enables one to 
configure and design the visual appearance of sketchy drawings.  

In the previous chapter, we showed how we provide uncertainty 
values based on a Perlin noise function for each pixel in image-
space. This has the following benefits: 

� we achieve frame-to-frame coherence, for instance, when 
interacting with the scene, since neighboring uncertainty 
values are correlated  

� we can access the interior region from beyond the exterior 
region and vice versa. It thus allows sketching beyond the 
boundary of the 3D object  

However uncertainty values remain unchanged in image-space 
and have no obvious correspondence with geometrical properties 
of the targeted 3D geometry. So sketchy drawings tend to “swim” 
in image-space (shower-door effect) and their visual appearance 
cannot be predetermined. 

To overcome these limitations, we have to accomplish both: 

� preserve geometrical properties such as surface positions, 
normals, or curvature information to determine uncertainty 
values 

� continue to provide uncertainty values in the exterior region, 
at least close the 3D geometry 

4.1 Preserving Geometrical Properties 
The principle outline of our approach to the preservation of 
geometrical properties to control uncertainty is as follows: 
1) we render geometrical properties directly into a texture that 

forms an additional G-buffer 
2) we texture a screen-aligned quad with that texture, and access 

geometrical properties via texture coordinates (s,t) 
3) we calculate uncertainty values based on – to simplify matters 

– a noise function using geometrical properties as parameters  
These uncertainty values can then be used to determine different 
degrees of uncertainty to generate perturbations that produce 
texture coordinates (s’,t’). Mathematically, the algorithm 
determines the perturbed texture coordinates (s’,t’) by the 
following function: 

)),(,,(),(
)','(),(:
tsgtsptsf

tstsf
=

→
 

where (s,t) are the texture coordinates of a fragment produced 
when rasterizing the screen-aligned quad, g(·) corresponds to 
geometrical properties available in the additional texture, and p(·) 
determines the perturbation applied to (s,t) using g(·) as input.  
Note that there are two functions f(s,t) to handle perturbations to 
access the edge (fEdge(s,t)) and the shade (fShade(s,t)) maps 
separately. 

4.2 Expanding the Objects Boundary 
We enlarge the original sized 3D geometry to generate geo-
metrical properties in the surrounding of the object. To do this we 
slightly shift each vertex of the 3D geometry along its vertex 
normal in object-space.  

Figure 8: Sketchy drawing simulating chalk applied on a rough 
surface. Variations in edges intensities let assume that the 

pressure applied when drawing them has varied. 

Figure 9: A sketchy drawing generated by using uncertainty 
values that are based on geometrical properties of 3D scene 

geometry. 



For this to be possible, the 3D geometry must satisfy the 
following requirements: 
� the surface forms a connected component  
� each shared vertex provides an interpolated normal  
Enlarging the 3D geometry allows us to render geometrical 
properties into a texture to calculate uncertainty values in the 
interior regions as well as in the exterior regions. Again, the 
interior regions can be sketched beyond the boundary of the 3D 
geometry and the exterior regions can penetrate the interior 
regions. But this time the perturbations are based on uncertainty 
values that do have an obvious correspondence to the underlying 
3D geometry. 

4.3 Managing the Shower-Door Effect 
The following example demonstrates how sketchiness can be 
controlled to reduce the shower-door effect.  
Enlarged 3D geometry is rendered with object-space positions as 
color values into a texture. We achieve this by determining the 
object-space position for each displaced vertex and providing 
them as texture coordinates to the rasterization process. The 
rasterizer produces interpolated object-space positions for each 
fragment using barycentric coordinates. A specialized fragment 
shader directs them as high precision color values to a targeted 
float-buffer. Thus, g(s,t) preserves objects space positions as a 
float-texture.  
Based on g(s,t), the algorithm can determine texture coordinates 
f(s,t) using p(·). In our example, the function p(·) processes the 
perturbation using a predefined 2×2 matrix and a Perlin noise 
function encoded into a 3D texture. Thus, p(·) accesses the 3D 
texture using g(s,t) as texture coordinates. The resulting texture 
value is multiplied by the 2×2 matrix to obtain a degree of 

uncertainty. f(s,t) applies the degree of uncertainty to perturb (s,t) 
resulting in (s’,t’). 
Calculating fEdge(s,t) and fShade(s,t) using different matrices results 
in the sketchy drawing (Fig. 9). The accompanying video 
illustrates that the shower-door effect has been significantly 
reduced. 
In the first case, the example aims at reducing the shower-door 
effect. But, in the second case, it gives a clue as to how to control 
the appearance of sketchy drawings using geometrical properties. 
By means of higher-level shading languages provided by OpenGL 
2.0 [Rost 2004] or Cg [Mark 2003] one could design sketchy 
drawings more intuitively. 
The diagram in Figure 10 illustrates the process flow of our 
algorithm for generating sketchy drawings by considering 
geometrical properties. 

5 Conclusion 
We have presented a real-time rendering algorithm for generating 
sketchy drawings of arbitrary 3D geometries. The results depict 
imprecision, incompleteness, and vagueness to communicate 
drafts, concepts and ideas.  

Only minor changes to the general algorithm are needed in order 
to produce variations in the visual appearance of sketchy 
drawings. Examples include sketching edges repeatedly as well as 
roughening profiles and color transitions.  

We introduced perturbations applied to depth sprites to ensure a 
correct depth behavior – particularly in the exterior regions. This 
allows us to combine sketchy drawings with any kind of real-time 
rendering application. Generally, operations applied to depth 
textures for depth sprite rendering offer manifold applications 
when combining image-based effects and arbitrary 3D geometry. 
Thus the contribution of our algorithm is not limited to NPR. 

Figure 10: The conceptual sketch illustrates buffers and intermediate rendering results involved in the process of generating sketchy 
drawings. Furthermore, it clarifies the usage of f(s,t) when considering geometrical properties. 
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Technically, the algorithm represents a hardware-accelerated 
algorithm designed for today’s graphics cards. Our algorithm 
produces and accesses geometrical properties as well as 
uncertainty values in the exterior regions using intermediate 
rendering results to produce sketchy drawing effects. Therefore, 
shaders written in Higher-Level Shading Languages cannot 
substitute our sketchy drawings algorithm. 

In our future work, we expect to produce sketchy drawings that 
appear more artistically pleasing using texture lookups into brush 
strokes. Furthermore, we aim at designing sketchy drawings 
procedurally using Higher-Level Shading Languages to target 
different applications areas such as storyboard depictions. 
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