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Abstract—Reengineering complex software systems represents
a non-trivial process. As a fundamental technique in software
engineering, reengineering includes (a) reverse engineering the
as-is system design, (b) identifying a set of transformations to the
design, and (c) applying these transformations. While methods
a) and c) are widely supported by existing tools, identifying
possible transformations to improve architectural quality is not
well supported and, therefore, becomes increasingly complex in
aged and large software systems.

In this paper we present a novel visual analysis and design
tool to support software architects during reengineering tasks
in identifying a given software’s design and in visually planning
quality-improving changes to its design. The tool eases estimating
effort and change impact of a planned reengineering. A prototype
implementation shows the proposed technique’s feasibility. Three
case studies conducted on industrial software systems demon-
strate usage and scalability of our approach.

I. INTRODUCTION

Reengineering and refactoring are crucial engineering meth-
ods in software development and software maintenance pro-
cesses. They are applied to an existing software system to
alter its representation without changing its behavior [1]–
[3]. The desired result is typically an improvement of a
system’s architectural and/or code quality, e.g., in terms of
better comprehensibility and maintainability. Both methods are
considered vital activities in particular for large systems. In
fact, numerous agile software development methods include
specific refactoring phases to ensure code quality [1], [4], [5].

Murphy-Hill and Black distinguish two types of refactoring
using a dental metaphor [6]: Floss refactoring stands for small
changes such as ‘extract method’ and is typically applied as
drive-by action by developers. Root-canal refactoring (i.e.,
reengineering), in contrast, targets a larger set of changes,
including major revisions of a software system’s design,
and is mostly planned by software architects. Studies show
that floss refactoring is far more common than root-canal
refactoring [7], [8]. Nevertheless, experience from industry has
proven that numerous aged and grown software systems are
exhibiting major design flaws [9], [10]. Although performing
a root-canal refactoring is considered critical since meanwhile
existing functionality may break, the long-term perspective
of saving major expenses through less complex and better
comprehensible design is reason enough for industry to take
the risk [11], [12].

A typical root-canal refactoring scenario [13] includes the
following steps (Fig. 1): (S1) the as-is source design is
assessed and understood (program comprehension, reverse
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Fig. 1. Typical reengineering scenario within the software maintenance cycle:
(S1) Understand the source design of a software system, (S2) assess design
flaws therein and (S3) plan modifications to the design, and (S4) transform
a system’s artifacts from the source design into the desired target design.
Finally, other maintenance activities involve modifications to the system’s
artifacts (and design) that potentially introduce new design flaws.

engineering [2]), (S2) potential problems in the source design,
design flaws, are identified, (S3) the desired target design
is planned (forward engineering), and (S4) a set of actions
to transform the source design into the target design are
determined. While S1 through S3 are rather straight-forward
for small systems, they become increasingly difficult in larger
systems: Deciding which possible target design will actually
improve the code’s comprehensibility and maintainability is
considered a complex task [12], [14], [15].

Existing refactoring tools and techniques [11], [16], [17]
can, in general, cope with complex systems by providing ab-
stractions and visual representations. However, they typically
ignore that more complex refactoring tasks, in particular in
terms of root-canal, require a significant amount of exploratory
work beforehand for finding a proper transformation of a
system’s design. As a result, it is often impossible to determine
reliable estimations of the required effort and the change
impact of reengineering tasks, e.g., because of unknown de-
pendencies.

The main contributions of this paper are (a) a novel concept
for visual analysis and design that supports assessment of
the as-is design (hierarchy and dependencies) and exploratory
identification of potential transformations to it. By that, soft-
ware architects are assisted in estimating effort and change
impact of identified transformations. (b) We demonstrate the
concept’s feasibility by a prototype implementation. (c) The
technique’s use and scalability are shown by three case studies
conducted on complex software systems.



II. RELATED WORK

Whereas most approaches target floss refactoring, only a
few target root-canal refactoring. By contrast to the former
ones, our approach aims at supporting root-canal refactoring.

A. Root-Canal Refactoring

Literature on root-canal refactoring can be separated into
three categories: (1) Visual assessment tools focus on cap-
turing and representing a system’s design while (2) tools for
quality assessment and (3) recommendation systems use a
system design as input to compute their output.

Techniques of category (1) and (2) take a rather passive
role in reengineering tasks in that they solely represent the
as-is state of a software system. Our technique, in contrast,
primarily targets a software architect’s activities after assessing
the as-is design.

1) Visual Assessment of Software Designs: Telea and
Voinea [11] report results from a case study in which they
analyzed the reasons for a software project not staying on
time. Using bundled edges [18], they identified architecture
violations. Although their approach does not support software
architects in manipulating analyzed data, they applied it to the
same domain as we do. Bourquin and Keller [12] present ex-
periences from refactoring tasks in several industrial projects.
Similar to our approach, they describe architecture violations
as indicators on which subsequent reengineering can base on.

Lanza and Ducasse [16] project multiple metrics onto a
system’s structure or hierarchy using polymetric views. They
argue that such combination of metrics can be used to identify
refactoring opportunities. Wettel and Lanza [17] present a
similar approach that projects metrics onto 3-dimensional
treemaps. By that, design flaws measurable by metrics can
be identified visually. Bohnet and Döllner [19] propose an
extended, also treemap-based, approach that visually connects
code metrics and a software system’s evolution. Thereby,
current and past development activities as well as design flaws
can be assessed. Lewerentz and Noack [20] use clustered
graphs with force-directed layouts to depict a software sys-
tem’s structure. Code metrics are mapped to visual properties
of nodes and edges to support structure analysis and iden-
tification of code smells. Schwanke [21] introduces ARCH,
a collection of tools for restructuring software. Since their
visualization approach is based on graphs, it is inherently
prone to scalability problems and is thus rather suited for floss-
refactoring than for larger design adaptations.

2) Quality Assessment of Software Designs: Bengtsson and
Bosch [22] use multiple quality attributes for assessing a soft-
ware architecture’s properties, such as modularity. They argue
that software architects can iteratively improve an architecture
using these quality attributes. Kang and Bieman [23] show
how metrics for measuring design-level cohesion can be used
to restructure software. While they propose a process template,
it is rather coarse-grained and does not tackle the problem of
identifying necessary changes to a system’s design.

Marinescu [24] proposed detection strategies based on
software metrics to identify design flaws in object-oriented

systems. Ratiu et al. [25] propose an extension to Marinescu’s
approach that joins ‘traditional’ software metrics with code
evolution data to classify code smells into ‘good’ or ‘bad’
ones. That is, code smells that are present for a long period of
time and are touched frequently (‘bad’ ones), are more likely
to be responsible for high maintenance effort and should be
fixed prior to others. As orthogonal approach to ours, it could
complement our technique by providing a ranking of the ‘most
expensive code smells’.

3) Recommendation Systems: Schwanke and Hanson [26]
propose a tool for improving a software system’s modulariza-
tion using neural networks. The tool solely focuses on moving
modules and does not consider other actions for improving
modularization. In addition, scalability for larger systems is
not evaluated. Hutchens and Basili [27] use clustering al-
gorithms to recommend a partitioning of a subject software
system into modules. A comparison of this recommendation
with the given partitioning of a current design can then indicate
potential problems therein. However, these recommendations
have to be interpreted with care since selecting the optimal
clustering algorithm depends on the scenario, and no rules for
its selection are given. Choi and Scacchi [28] propose a reverse
engineering technique that captures an existing system’s de-
sign using a module intercommunication language. While their
technique further provides recommendations for restructuring
modules, it considers a system as a whole. Consequently, the
technique does not support partial restructuring.

B. Floss Refactoring

The majority of floss-refactoring techniques focuses on
fixing code smells mentioned in Fowler’s book [1]. While
this approach works well for code smells that are easy to
fix, limitations of these tools become visible when more
complex code smells of the book are concerned [6]. Hence, our
approach could as well provide inspiration for improvements
to floss refactoring tools.

1) Interactive Floss-Refactoring: Murphy-Hill and
Black [29] present an add-in for the Eclipse IDE that
provides users with an interactive indicator for specific code
smells. In contrast to our approach, their tool does not include
previews for change impacts of a refactoring. Müller and
Klashinsky [30] introduce an approach for visual exploration
and editing of source code as well as dependencies and
structure of software systems. By contrast, this approach
lacks sufficient scalability for large data sets.

2) Semi-Automatic Floss-Refactoring: Mayer et al. [31]
propose a visual approach for supporting type-related refactor-
ing (e.g., replace if-else by type hierarchy) in object-oriented
systems. Similar to that, Tsantalis and Chatzigeorgiou [32]
present a recommendation system as Eclipse add-in for identi-
fying refactoring opportunities related to polymorphism. Con-
trary to our approach, both techniques rely on code smells as
indicators for possible refactoring and thus lack scalability for
root-canal refactoring.

Hayashi et al. [33] use a collection of previous user-
interactions with an IDE to rank and recommend possible



refactoring activities related to these interactions. In contrast,
this approach only works if previous user-interactions are
available and thus does not work when applied to pre-existing
software systems. Simon et al. [14] propose to use cohesion
metrics to derive a geometric distance of two software arti-
facts. A visual representation of a software system based on
measured distance values can then be used as indicator for
refactoring opportunities. Their approach is orthogonal to ours
and their distance measure could be used to further support
root-canal refactoring by providing recommendations.

III. VISUAL ANALYSIS AND DESIGN FOR
SOFTWARE REENGINEERING

When starting an explicit reengineering phase, architects
typically have in mind one of two main tasks: Either they plan
to improve a software system’s overall code quality or they
have a specific reengineering goal but with unknown feasibility
and time consumption.

To improve the overall quality of a software system’s archi-
tecture and design, potential flaws and issues have to be iden-
tified first. Typically, architects want to remove unnecessary
complexity from a system, disentangle module dependencies
or clarify responsibilities within its code. These goals are best
practices and follow common sense [4], [13], [34].

On the other hand, architects may have in mind specific
reengineering tasks such as “Remove all dependencies from
module A to module B”. Frequently, these tasks are a result
of a previous architecture quality analysis. In general, as
neither software architects nor developers have full system
knowledge, such reengineering tasks may imply unknown
risks. For example, a misestimation of required effort may
lead to time consuming reengineering phases. During these
reengineerings, developers may even notice that a specific
planned reengineering is not feasible in practice. Therefore, it
is important to check feasibility of reengineerings and required
effort beforehand and, thereby, prevent excessive cost increase.

For both refactoring tasks, we propose a visual and in-
teractive design tool to support architects. It consists of a
visualization depicting a software system’s structure with
embedded inner relationships, as well as interaction metaphors
enabling virtual manipulation of software entities. Architects
can identify architecture violations, cluttered module depen-
dencies or other design flaws. Visual manipulation enables
them to plan alterations of a system’s structure and to quickly
see the results of planned modifications such as resolved
indirect module dependencies. As the underlying source code
is not changed, this concept facilitates experimentation and
testing of reengineering hypotheses.

A. Data Model

To cover a broad range of distinct software systems, in
particular aged and legacy systems, our concept abstracts from
specific programming languages. Instead, a generic model of
a software’s structure is required to support multiple program-
ming paradigms and intermixed software systems.

Fig. 2. Conceptual representation of both software hierarchy and dependency
relations in one unified view. The software hierarchy graph consists of non-
leaf nodes such as modules or packages and leaf nodes such as classes or
files. Hence, solid edges indicate parental relations. Dashed arrows represent
a uses-relation between two nodes.

Typically, software consists of hierarchically structured
modules or packages; modules support a separation of con-
cerns by grouping similar functionality into distinct software
entities. Frequently, such a module hierarchy maps to a
directory hierarchy. Within a software’s modules, low-level
software entities such as files or classes exist, which contain
the actual source code. Between these software entities there
are dependencies, e.g. a class referring to another class.

This concept of representing a software’s modular hierarchy
and dependencies between its entities as a compound directed
graph is not limited to common programming languages such
as C++ or Java. For example, an SAP ABAP software system
or a legacy COBOL system consist of a similar modular
hierarchical structure although different entity and dependency
types are used.

B. Visual Representation

Our concept facilitates visual, interactive analysis and de-
sign of changes to a software’s structure and its dependencies.
To actually visualize a software’s compound structure and
dependency graph, a layout technique is required. Fig. 2 illus-
trates a small example software hierarchy and its dependencies
on top using a rooted tree layout. Leaf nodes correspond to
low-level software entities, e.g., files or classes, and non-
leaf nodes represent architectural entities such as modules
or packages. Directed connections between nodes indicate
dependencies within this hierarchy. While our interaction
concept is independent of a specific tree and compound graph
visualization technique, it has four requirements to potential
techniques:

1) Unified Structure and Dependency View: The visualiza-
tion and its layout algorithm should provide a unified view
of a software system’s hierarchical structure and its inner
module dependencies. Enhancing standard tree visualization
techniques, e.g., the rooted-tree layout used in the example
figures, by adding dependency edges on top, typically suffers
from occlusion of nodes by edges when applied to larger
tree structures. Thus, reduction of visual clutter has highest
priority. Additionally, when layouting edges, the visualization
should emphasize edges crossing parental module boundaries
as these are more likely to be of interest than inner-module
dependencies.
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Fig. 3. Drag and drop concept. (a) When users start to drag a module, the
representing node is detached from its parent and the layout recomputed. (b)
While moving the node, its incoming and outgoing dependency edges change
as well and stay connected to the detached module. (c) Dropping the module
to a new place reinserts it into the hierarchy and, again, recomputes the layout.

2) Layout Stability: Inserting, moving and removing soft-
ware modules as well as creating new dependencies should
leave the layout almost unchanged. Any substantial realign-
ment of visualization items upon an interaction leads to
unnecessary user confusion. Hence, spatial proximity has to
be obeyed during re-layouting when a software architecture is
modified by the architect.

3) Scalability: Scalability of the visualization improves its
applicability to large software systems. Software architects not
only need to gain a high-level overview of their system, but
also need to have a deep insight into detailed parts. Combining
the ability to layout top-level structures, which aggregate low-
level information, with zooming is an essential part of our
visualization concept.

4) Performance: Finally, the visualization technique should
efficiently support interactivity. For example, real-time layout
recomputation upon module rearrangement is required to give
reasonable feedback to users.

C. Interaction Techniques

To visually analyze and design software hierarchies, system
architects require a broad set of interaction techniques. In
our concept, several search and filter mechanisms enable
to view distinct aspects of a software architecture and to
quickly find specific modules. Searching for text fragments
highlights relevant modules in the visualization and clicking
on them reveals further detailed information. A drill-down
feature allows users to restrict the visualization to a submodule
and its descendants. Only packages and dependencies within
this submodule are displayed. Additionally, modules can be
collapsed to hide their substructures. Dependency edges will
be aggregated upwards to the collapsed module.

For interactive discovery of architecture violations, our
concept provides three dependency visualization modes. In
the first mode, all dependencies are shown. The second mode
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Fig. 4. Dependency splitting. (a) A dependency violates the intended
model-view-controller architecture. (b) The dependency edge is grabbed in
the middle. (c) When starting to drag the dependency edge, it is split into
two separated edges. (d) Both new dependency edges are dropped onto the
controller module.

shows only dependencies related to specific modules, i.e.,
their incoming and outgoing dependencies. By hovering and
clicking, users select modules of interest. When a top-level
module is selected, dependencies of its submodules are shown.
Modules targeted by the relations are highlighted and their
labels are enlarged. A third dependency interaction mode
extends the second mode with indirect dependencies.

All three modes share the ability to filter visible edges by
incoming or outgoing relations. Thereby, users can concentrate
on identifying specific violations, e.g., a system library that
uses modules from higher layers. Emphasizing dependency
edges that cross module-borders points users at possibly
forbidden relations. A measure for these cross-border depen-
dencies is the distance between source and destination modules
in the hierarchy graph when navigating through their least
common ancestor. Additionally, each mode enables users to
hover modules with visible dependencies and, thereby, high-
light these dependencies. This way, users can distinguish them
from other dependency edges. To inspect single dependency
edges whose source, destination, and path may be occluded,
users can highlight edges by hovering.

By using drag and drop, users can create and modify their
plans to reorganize a software system’s hierarchy. Fig. 3 illus-
trates moving a single module to its new place in a hierarchy.
While moving, dependency edges follow the dragged module
and the layout changes accordingly as the module leaves its old
and approaches its new parent. When users choose a top-level
module, its whole subtree is moved along with the module.
Furthermore, selection of multiple modules enables users to
move more than one module at the same time.

Creation and removal of modules enable software architects
to further restructure a software’s hierarchy. New modules
provide a containment where users can drag submodules to.
Old modules, which got empty during a restructuring process
or have never actually been used, can be deleted.



When moving modules across a software hierarchy, archi-
tects may introduce new cross-border module dependencies.
Fig. 4 shows how to dissolve such unwanted crossings: Users
grab a dependency in its middle and drag it to a third module.
Next, our refactoring tool splits up the dependency edge into
two new ones, introducing an indirection, e.g., a callback
mechanism in a utility library.

Another way of dissolving such cross-border dependencies
is to grab them in front of a module. If the module is collapsed,
dragging the dependency edge pulls out every submodule
corresponding to the dependency. Otherwise, the module itself
is moved similar to the drag and drop mechanism.

After finishing all virtual modifications to a software’s
structure, system architects get a list of intended changes,
e.g., “Move module A to module B”. The tool automatically
removes intermediate steps and reverted actions. Using this
compressed task list, architects may estimate effort require-
ments for planned root-canal refactorings.

IV. IMPLEMENTATION

We have implemented a prototype tool in C++ for visual
planning of software reengineerings. Fig. 5 shows an example
visualization of a software hierarchy and its dependencies
using our implementation. We decided to use hierarchical edge
bundles [18] for layouting. This technique uses a circular
layout for the hierarchical structure and depicts edges between
leaf nodes within the resulting circle.

Alternatives to hierarchical edge bundles are standard tree
layout techniques such as treemaps, rooted trees or a radial
layout. While treemaps provide a scalable and efficient solu-
tion to our requirements stated in Section III-B, most treemap
algorithms lack stability [35]. In contrast, a rooted tree layout
is stable but does not scale for large hierarchies [36]. Finally,
radial layouts provide stability and better scalability than
rooted trees, but similar to most hierarchical graph layouts,
they suffer from visual clutter, when dependencies are drawn
on top [37].

On the contrary, hierarchical edge bundles mostly satisfy
our needs: First, they provide a unified view for a software
system’s hierarchical structure and its inner relationships.
Additionally, edge bundling enables users to recognize implic-
itly shared parental relationships between dependencies and
connected modules. Second, the circular layout is stable with
respect to a hierarchy’s order of modules. Hence, inserting and
removing new modules into and from a hierarchy preserves the
layout. Finally, hierarchical edge bundles are suitable for large-
scale software systems. If necessary, lower-level modules can
be collapsed and, thereby, hidden. Furthermore, edge bundling
eases visual recognition of outliers. A downside of hierarchical
edge bundles is their inability to visualize edges involving non-
leaf nodes.

V. CASE STUDIES

We discuss three case studies that we have performed
on industrially developed and maintained software systems.
First, we analyze a reengineering scenario within BRec, a

Fig. 5. Fully expanded dependency view of BRec’s code base using hier-
archical edge bundles. Nodes on outer circle represent hierarchical structure
and lines depict a usage relation. Grey nodes correspond to modules, blue
nodes are files. A color gradient from green to red indicates a dependency’s
direction.

Fig. 6. Detailed view after zooming. By zooming to the file with many
incoming red dependency edges, the architect found out that the Triangle.cpp
file is violating the intended architecture.

3D building reconstruction software by virtualcitySYSTEMS
GmbH1. Next, we present a second case study using SD Studio
and SD Developer Edition’s code base. Both software analysis
and visualization tools are developed by Software Diagnostics
GmbH2. Finally, we describe a usage scenario in a legacy
COBOL software system.

A. virtualcitySYSTEMS: Identifying Architectural Weaknesses

BRec is a 3D building reconstruction software developed by
virtualcitySYSTEMS GmbH. Using raw laser scan data from
plane flyovers, it reconstructs and visualizes building models.
It is maintained by 15 developers on average and it consists
of approximately 100k LOC written in C/C++.

The task to accomplish for virtualcitySYSTEMS’ system
architect was to identify architectural weaknesses that can be
quickly resolved. Using our tool, he first saw an overview of
the system and its dependencies depicting approximately 350
files and 1,500 relations between them (Fig. 5). A relation
between two files indicates that one file (green line end) uses
one or more functions and variables defined in the other file
(red line end). In this view, he noticed a large amount of

1http://www.virtualcitysystems.com, last accessed 5/10/2011
2http://www.softwarediagnostics.com, last accessed 5/10/2011
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Fig. 7. Moving two modules to a new utility library: (a) Creation of a new utility-library subtree using a context menu. (b) Dragging the HierarchyVis
module to its new place. Dependency edges change along with the dragged module. (c) Both modules have been moved to the utility library. New forbidden
cross-module usage dependencies between the utility library and application-specific code have been introduced.

red (incoming) dependency edges connected to a single file
within the QtGUI module. Source of these edges were files
within the Core and SGI-Port modules. The architect saw this
as an architectural weakness because core libraries should
not depend on user interface modules. To identify the files
violating this principle, he hovered over the file in the QtGUI
module. Thereby, he highlighted the file itself, its dependent
files and dependency edges in between. As nodes representing
files were too small to be labeled in the overview, he zoomed
in to reveal the respective file’s name.

Fig. 6 shows the highlighted and zoomed triangle.cpp file
that caused the architecture violation. The system architect
wanted to estimate the amount of work required to correct this
issue. He dragged the file to the Core module and watched the
moving dependencies. He noticed no new architecture viola-
tion being introduced by the reorganization. A check of the
modification list confirmed the cheapness of this restructuring
in terms of required work amount.

Without usage of further metrics or formal architecture
descriptions, the visual software-reengineering tool enabled
virtualcitySYSTEMS’ architect to recognize an architectural
violation and to estimate the effort required for correcting this
issue.

B. Software Diagnostics: Decoupling Libraries

SD Developer Edition is a software tracing and visualization
tool that supports developers with bug fixing and program
comprehension. SD Studio provides visualization tools, such as
software maps, to assess a software system’s quality, source
code evolution and development resources. Both tools share
a code base that comprises approximately 230k LOC within
2,100 C++ files.

To improve reusability, Software Diagnostics’ system archi-
tect planned to remove two graph visualization submodules
from the application code-base and to put them into a new
“graphvis” utility library. This included eliminating all depen-
dencies from both modules to application-specific code. Based
on experiences of Software Diagnostic’s developers, the archi-
tect expected forbidden dependencies. To avoid unknown risks,
he decided to make an effort estimation prior to assigning the
task to the developers.

Using our prototypical tool, the system architect visually
explored the steps required to fulfill the reengineering. To

(a) (b)

Fig. 8. Dissolving unwanted dependencies: (a) By grabbing the dependency
edge (1) in front of the Entities module (2), the architect pulled out the ID
module (3) that caused the unwanted dependency. (b) Software Diagnostics’
system architect grabbed the dependency edge between the GV module (1)
and the Userfeedback module (2) and, thereby, separated it into two new
dependencies (3). Afterwards, he could put these new dependencies into the
Callback module.

concentrate on high-level modules, he first collapsed low-
level layers. Fig. 7 illustrates his next three steps: First, he
created a new container module for the two libraries to move
(Fig. 7(a)). He dragged both libraries towards the container
module and dropped them (Fig. 7(b)). During dragging, he al-
ready recognized several dependency edges indicating usage of
application-specific code within both graph visualization mod-
ules: They used code from the application-specific modules
Entities, Containers, Userfeedback and Layouting (Fig. 7(c)).

Relying on his knowledge of the affected modules, the ar-
chitect used different strategies to dissolve these dependencies.
For the Containers module, he decided to place it into the
new container module as well, because it consists of low-
level re-usable collection classes. To find out, which part of
the Entities module was actually referenced by the graph
visualization modules, the architect grabbed the dependency
edge in front of the module and pulled out a module ID
(Fig. 8(a)). As the ID module is low-level functionality as
well, he moved it to the new utility library. To decouple the
graph visualization libraries and the Userfeedback module,
which is responsible for displaying progress dialogs to users,
he created a new Callback utility library and grabbed the
corresponding dependency edge in its middle. By dragging
the grabbed edge to the Callback module, he divided the
dependency into two new ones: Both, the graph visualization
modules and the Userfeedback module used the new Callback
library (Fig. 8(b)). To remove the last cross-border dependency
to the Layouting module, the architect decided to put it directly



Fig. 9. Dialog displaying a detailed task list for decoupling two modules from
Software Diagnostics’ application-specific code base. The list was generated
based on the system architect’s interactions with our prototypical tool.

Fig. 10. Dependency view of an industrial COBOL system. Grey nodes
represent programs and copybooks, blue nodes are sections within programs.
Edges correspond to dependencies such as PERFORM, CALL, or COPY
statements. Due to intellectual property reasons, we had to obfuscate most
entity labels.

into the new graph visualization library as layouting is a
central task for graph visualization.

Having eliminated each forbidden dependency, Software
Diagnostic’s system architect retrieved a list of modifications
from the tool (Fig. 9). Using this list, he estimated the effort
required to fulfill the decoupling task and eventually decided
to assign it to developers.

The visualization technique helped to break down a generic
reengineering task, i.e., decoupling of two graph visualization
libraries from the application code-base, into clearly formu-
lated subtasks without reading or changing any code. Risks
such as unexpected dependencies and architecture violations
could be estimated beforehand.

C. COBOL: Change Impact in Legacy Software Systems

The subject software system of this case study is an excerpt
of a confidential 100k LOC COBOL system from the banking
industry (Fig. 10). It consists of approximately 1,100 sections
in 150 programs and copybooks (include files). On the upper-
most structure level, the visualization separates a copybook
and a program section. Next, actual programs and copybooks
follow. Finally, programs are further separated into sections
based on their procedure division, i.e., a COBOL program’s
behavioral part.

Besides introducing a new developer to the code base using
a visual representation of its structure, our prototypical tool has
been used for change impact analyses. By hovering programs
to be modified, the system’s maintainer visually explored
dependent sections and programs. They might be affected
because they are called by a subject program or, vice versa,
it is called by them. A similar task was to find all programs
potentially affected by a copybook modification.

Our tool enabled the maintainer to efficiently estimate
efforts required for an intended modification by analyzing its
impact visually. He identified program sections that required
changes as well and are subject to subsequent quality assur-
ance. Thereby, the risk of introducing new bugs was reduced.

VI. LIMITATIONS

During our case studies, we identified some limitations
of our concept. First, planning fine-grained reengineerings
such as interface changes requires detailed system knowledge,
which is hard to obtain using the proposed concept. Addition-
ally, some interactions, e.g., introducing an indirection into
a dependency, can lead to unpredictable code modifications
within affected modules. Hence, our tool’s resulting subtask
list may be too coarse-grained in such cases so that architects
need additional knowledge to determine reasonable effort esti-
mations. In contrast, a reengineering’s result list may become
quite large and it can thus be hard for software architects to
overview the entire list. In this case, its textual representation
aggravates a sensible effort estimation. Introducing a detailed
code model and linking the visualization to synchronized code
views could provide additional support here, but would as well
reduce generalizability of our concept.

Furthermore, our visualization concept does not support dif-
ferentiating between distinct dependency types. Call relations,
for instance, cannot be distinguished from type usages. In
addition, defining a single generic modular view of a software
system’s structure limits our concept’s applicability to analysis
of one hierarchy at a time. A possible solution, though, is
to depict one view per hierarchy (or dependency type) and
synchronize these upon modifications.

VII. CONCLUSIONS

Software redesigns and reengineerings represent crucial pro-
cesses in software maintenance. Improving comprehensibility
and maintainability of aged and, in particular, large systems
saves major expenses. This compensates the risk of breaking
existing functionality. Nevertheless, experience from industry
shows that in particular complex and extensive reengineerings
are typically deferred or even avoided at all. One reason for
this is the difficulty in estimating feasibility and required effort
beforehand using state-of-the-art tools.

We presented a concept enabling software architects to
visually analyze and design changes to software systems.
Using a unified view of a software system’s hierarchy and
inner dependencies, software architects can reorganize a soft-
ware’s modular structure interactively. Drag and drop, a de-
pendency grabbing metaphor, and virtual creation and removal



of software entities enable architects to experiment with a
software’s design and test their hypotheses. A list of performed
modifications assists architects with their effort estimation.

We applied this concept to a prototypical implementation
using hierarchical edge bundles and tested it with three
large-scale software systems. These case studies showed that
software architects can verify assumptions concerning code
structure and plan reengineerings using our tool. Thereby, they
achieved an improvement of their effort estimations.

As future work, we plan to extend our prototypical imple-
mentation to support projecting aggregated code quality met-
rics onto a software’s hierarchy representation. This enables
architects to identify potential cost-intensive design flaws, e.g.,
modules that are frequently modified and contain forbidden
dependencies. Moreover, zooming capabilities down to class
member and function level would further improve a software
architect’s means to dissolve dependencies. For example, for a
class violating the separation of concerns principle, architects
could disentangle dependencies on member level.

Further future work includes enhancing hierarchical edge
bundles to support dependencies between non-leaf nodes.
Performing controlled experiments provides means to trace
software architects’ planning workflows and to compare user
satisfaction with different layout algorithms and interaction
techniques.

ACKNOWLEDGEMENTS

We would like to thank Software Diagnostics GmbH and
virtualcitySYSTEMS GmbH for providing their code bases
and performing the case studies with us. This work was
supported by the ZIM program of the Federal Goverment of
Germany (BMWi).

REFERENCES

[1] M. Fowler, Refactoring - Improving the Design of Existing Code.
Addison-Wesley Professional, 2000.

[2] E. J. Chikofsky and J. H. Cross II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, 1990.

[3] T. M. Pigoski and A. April, Software Engineering Body of Knowledge.
IEEE Computer Society, 2004, ch. Software Maintenance, pp. 6.1–6.16.

[4] K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 1999.

[5] M. Cohn, Succeeding with Agile: Software Development Using Scrum,
K. Gettman, Ed. Addison-Wesley, 2009.

[6] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,”
IEEE Software, vol. 25, pp. 38–44, Sep. 2008.

[7] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse ide?” IEEE Software, vol. 23, pp. 76–83,
2006.

[8] P. Weissgerber and S. Diehl, “Are refactorings less error-prone than
other changes?” in Proceedings of the International Workshop on Mining
Software Repositories, 2006, pp. 112–118.

[9] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Transactions on Software Engineering, vol. 29, no. 3, pp.
210–224, 2003.

[10] D. L. Parnas, “Software aging,” in International Conference on Software
Engineering, 1994, pp. 279–287.

[11] A. Telea and L. Voinea, “Case study: Visual analytics in software
product assessments,” in Proceedings of the International Workshop on
Visualizing Software for Understanding and Analysis, 2009, pp. 65–72.

[12] F. Bourquin and R. K. Keller, “High-impact refactoring based on archi-
tecture violations,” in Proceedings of the IEEE European Conference on
Software Maintenance and Reengineering, 2007, pp. 149–158.

[13] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object Oriented Reengi-
neering Patterns. Morgan Kaufmann Publishers Inc., 2002.

[14] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics based refactor-
ing,” in Proceedings of the European Conference on Software Mainte-
nance and Reengineering, 2001, pp. 30–38.

[15] S. Roock and M. Lippert, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. John Wiley & Sons,
Inc., 2006.

[16] M. Lanza and S. Ducasse, “Polymetric views-a lightweight visual
approach to reverse engineering,” IEEE Transactions on Software Engi-
neering, vol. 29, no. 9, pp. 782–795, 2003.

[17] R. Wettel and M. Lanza, “Visually localizing design problems with
disharmony maps,” in Proceedings of the ACM Symposium on Software
visualization, 2008, pp. 155–164.

[18] D. Holten, “Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, pp. 741–748, 2006.
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