2.5D Clip-Surfaces for Technical Visualization
Matthias Trapp Jargen Dollner

Hasso-Plattner-Institut, University of Potsdam, Germany
{matthias.trapp | juergen.doellner}@hpi.uni-potsdam.de

Figure 1: Application of a 2.5D clip-surface to a virtual 3D model of a crank.

ABSTRACT

The concept of clipping planes is well known in computer graphics and can be used to create cut-away views. But clipping
against just analytical defined planes is not always suitable for communicating every aspect of such visualization. For example,
in hand-drawn technical illustrations, artists tend to communicate the difference between a cut and a model feature by using
non-regular, sketchy cut lines instead of straight ones. To enable this functionality in computer graphics, this paper presents a
technique for applying 2.5D clip-surfaces in real-time. Therefore, the clip plane equation is extended with an additional offset
map, which can be represented by a texture map that contains height values. Clipping is then performed by varying the clip
plane equation with respect to such an offset map. Further, a capping technique is proposed that enables the rendering of caps
onto the clipped area to convey the impression of solid material. It avoids a re-meshing of a solid polygonal mesh after clipping

is performed. Our approach is pixel precise, applicable in real-time, and takes fully advantage of graphics accelerators.

Keywords:

1 INTRODUCTION

Clipping planes are often used in illustrative technical
visualization for the exploration of complex 3D shapes.
Resolving spatial occlusion, they enable a user to view
the internal or hidden parts and assembly processes
of computer-aided design drawings more efficiently by
identifying any intersection that conflicts within the as-
sembly or the assembly configurations. This clipping
mechanism is a fast and easily understandable tech-
nique with simple interaction [2]. There are a number
of clipping variants, such as clipping into half-spaces,
cross sections, exploded or cutaway-views, which have
proven successful in various areas of visualization.
However, traditional planar clipping planes might not
always be suitable to communicate every aspect of an il-
lustrative technical visualization. For example, in hand-
drawn technical illustrations, artists tend to communi-
cate the difference between a cut and a model feature
by using non-regular, sketchy or ragged cut lines in-
stead of straight ones [23]. To enable the rendering of
such effect, this papers presents an extension of the pla-
nar clipping planes that is denoted as 2.5D clip-surface

clipping planes, real-time rendering, technical 3D visualization

(CS) (Figure 1). It enables clipping against a number of
non-planar, more precisely 2.5D clipping planes, and
the flexible stylization of the cutting regions. The pre-
sented approach is suitable to extend existing render-
ing techniques for interactive cut-away views or cross-
section illustrations.

The basic idea of a 2.5D CS is simple: consider the
plane equation for a traditional clipping plane CP =
(Nx,Ny,N;,D). Using this parametric plane equation,
one can decide for every given position P = (x,y,z) €
IR3 in which half space it is located. Clipping can then
be formulated as follows:

X(CP,P)=N¢-x+Ny-y+N;-z+D>0

This formulation can be extended by varying the dis-
tance D to the plane origin for each point P by using an
additional height value h = f(CP,P,OM) that is sam-
pled from a offset texture map (OM) using f. This re-
sults in a new parameterization:

X(CS,P)=Ny-x+Ny-y+N;-z+D+h>0

By introducing local distance variations, 2.5D clip-
surfaces can be used to interactively create non-regular

Figure 2: Application of a 2.5D clip-surface and with a
cap surface to a column dataset.

clipping silhouettes while a cap-surface conveys com-
plex inner structure of a clipped mesh (Figure 2).

While the application of CS can be implemented
straight forward using fragment shader programs, the
task of conveying the impression of solid material by
using a cap surface to visualize the inner structure of
an input mesh, is a challenging one. Due to the non-
planarity of the clip surface, capping techniques based
on stencil-buffer capabilities [3] cannot be applied to
non-convex shapes, because the association of a cap
surface to a clipped area cannot be decided in image-
space using stencil masks.

In this work we present a concept and rendering tech-
nique that addresses the above challenges with respect
to real-time, raster-based image synthesis. To summa-
rize, this work makes the following contributions:

1. It presents a fully-hardware accelerated rendering
technique that enables the application of multiple
2.5D clip-surfaces within a single rendering pass.

2. It presents a novel concept and fully hardware accel-
erated implementation for generating and rendering
of cap surfaces.

The remainder of this paper is structured as follows:
Section 2 discusses related and previous work. Section
3 introduces a rendering pipeline that implements 2.5D
clip-surfaces with cap surfaces. Section 4 describes the
parametrization and hardware-accelerated real-time im-
plementation of clip-surfaces. Section 5 describes the
generation and rendering of cap-surfaces. Section 6
presents application examples, discusses problems and
limitations, and presents ideas for future work. Finally,
Section 7 concludes this paper.

2 RELATED WORK

Despite the fundamentals of line and polygon clip-
ping [9, 11] for polygonal 3D scene representations, re-
lated work mostly comprises the generation of cut-away
views and exploded view diagrams. These interactive
visualization techniques reveal the interior of complex
3D models by clipping either occluding parts or outer
layers [19]. Traditionally, these depictions are static
and often hand-crafted, thus the view point and the dis-
played cuts are fixed. Interactive cut-away views over-
come these drawbacks by enabling the user to choose
desired cut planes and cut volumes, while exploring and
navigating the 3D virtual environment simultaneously.

In 1993, Lorensen presents an approach for image-
based clipping using Boolean textures [20], a texture
mapping technique, which is based on implicit func-
tions to generate texture maps that are used to perform
clipping during a renderer’s scan conversion step. How-
ever, implicit functions are usually hard to model. Cof-
fin et al. present a technique that enables a user to
look beyond occluding objects in arbitrary 3D graph-
ics scenes by interactively cutting holes into the oc-
cluding geometry [7]. The interactive image synthesis
for this kind of virtual x-ray vision is performed using
constructive solid geometry (CSG). Also using image-
based CSG for rendering [14], a sophisticated approach
for generating 3D cut-away views was introduced by Li
et al. [19]. This work was later extended to generate
interactive explosion diagrams [18]. An application of
this rendering technique to mathematical surfaces [13]
uses planar clipping planes. All of the previous ap-
proaches do not directly enable the stylization of the
cut surfaces and the rendering performance depends on
the depth complexity of the virtual scene with respect
to the virtual camera [14].

A more effective image-based approach for rendering
cut-aways views for geometrical complex 3D scenes is
presented by Burns et al. [5]. Based on distance trans-
formations of the depth buffer content, view-dependent
cut-aways can be generated for a number of 3D ob-
jects. This approach depends on the virtual camera
and always exposes the complete objects-of-interest in
the context of surrounding objects. Our approach en-
ables the creation of consistent cut-away illustration for
varying virtual cameras. In [15], a system for creat-
ing illustrative cutaway renderings is presented that rely
on sketch-based interfaces and stylized rendering tech-
niques for the study of elaborate 3D models. With re-
spect to interaction, Clifton & Pang present extensions
to the traditional cutting plane for virtual reality de-
vices. Using their hands, users interact directly with
the data to generate arbitrarily oriented planar surfaces,
linear surfaces, and curved surfaces [6].

In the field of volume graphics and rendering,
Weiskopf et al. propose clipping methods that are

Original Mesh

\

Clipping
(Section 4.3 - 4.5)

Clipped Mesh Final Image

Compositing

VDS Creation
(Section 5.2)

2.5D Clip-Surface

Volumetric Depth Sprite

Cap-Surface Generation
(Section 5.1)

Volumetric Parity Test
(Section 5.3 & 5.4)

ap®

i

Derived Cap-Surface Clipped Cap-Surface

J

Figure 3: Conceptual overview of the rendering pipeline for 2.5D clip-surfaces and non-planar cap surfaces.

capable of using complex geometries for depth-based
volume clipping [32]. It is based on an approach for
volume clipping based on per-fragment operations
on voxelized clip object that are used to identify
the clipped regions [31]. Based on over-sampling
fragment shader programs, Rottger et al. increase
the rendering quality for volumetric clipping [27].
Further, Qi & Martens investigate the aspects of
positioning a clipping plane within volume-rendered
data. They propose three different interface prototypes
that combine aspects of 2D graphical user interfaces
with 3D tangible interaction devices based on wireless
vision-based tracking [26]. Birkeland et al. presents a
feature and context preserving clipping approach called
membrane clipping [2]. These non-planar clipping
planes implement selective feature preservation using
an elastic membrane. With respect to the cut-away
approaches described above, our contribution presents
a complementing approach for creating cut-away
illustration.

3 CONCEPTUAL OVERVIEW

The proposed image-based approach works for an ar-
bitrary solid input mesh. Figure 3 shows the rendering
pipeline for 2.5D clip-surfaces and cap surfaces applied

to the domain of technical illustration. The complete
rendering process comprises the following three steps
that are performed on a per-frame basis:

1. Application of clip surfaces by rendering the solid
mesh into the framebuffer with applied clipping
(Section 4).

2. Automatic generation of a cap surface from the clip-
surface. This is implemented using a polygonal
cap surface that is derived from the clip-surface
parametrization. GPU based-mesh refinement [4] is
applied to fit the subdivision of the cap mesh to the
resolution of the offset map (Section 5.1).

3. Clipping of the cap mesh by performing a volumet-
ric depth test on a per-fragment basis. It determines
if a fragment lies inside the volume and thus is as-
sociated with a gap, or if it is located outside the
input shape and therefore is discarded. In this step
per-vertex displacement mapping, and per-fragment
shading, and texturing is also performed (Section 5.2
and 5.3).

Subsequently, the intermediate results of each stage
(i.e., the fragments of the clipped mesh and clipped cap-
surface) can be composited by rendering to the frame

buffer successively or by using an additional composit-
ing step to apply post-processing effects (e.g., edge-
enhancement [22]). Therefore, the intermediate results
are rendered into off-screen buffers [28] and compos-
ited using an additional post-processing pass.

4 IRREGULAR CLIP-SURFACES

As described previously, a 2.5D clip-surface is an ex-
tension of the standard clipping plane by offsetting each
point on the plane using height variances. Instead of
modeling these local height variances using implicit
functions [20] they are represented using a texture map
that contains height values.

Given a surface parametrization (Section 4.1) includ-
ing a respective offset map (Section 4.2), pixel-precise
clipping (Section 4.3) can be performed for every
fragment position during rasterization using a fragment
shader program (Section 4.4). This approach also
enables the rendering of multiple clip-surfaces within a
single rendering pass (Section 4.5).

4.1 Parameterization

Briefly, a 2.5D clip-surface
CS = (0,U,V,S,0M) can be
modeled using the following
five parameters (cf. Fig. 4):
an origin O € R?, two orthog-
onal direction vectors U,V €
IR3 (to support anisotropic ad-
justments), a scaling vector
S = (Sy,Sy,S;) € R, and an
offset texture map OM. The
normal vector N of the plane is implicitly given by
N = ||U|| x ||[V]|- A CS can be extended with further
attributes (e.g., normal, diffuse, and light texture maps)
that define the appearance of the cap surface.

4.2 Offset Maps

The top row of the right
Figure 5 shows some ex-
amples of 2D offset maps.
Basically, it is an image-
based representation of a
2.5D clip surface that is
used for clipping. Offset
maps can be easily com- and occlusion maps (top
bined (e.g., Column 3), us- to bottom).

ing standard image blending operations. The accompa-
nying normal maps (Row 2) and occlusion maps (Row
3) can be computed based on the offset maps using a
preprocessing step at run-time.

Representing the irregular clip surface using texture
maps offers a number of advantages: (1) it enables a
high design freedom since they can be created using
standard imaging software; (2) they can be easily ex-
changed and combined; and (3) can be easily repre-
sented and modified on GPU.

Figure 4: Parameters
of a2.5D clip-surface.

Figure 5: Examples of
different offset, normal,

4.3 Pixel-precise Clipping

Given an arbitrary shaped solid mesh and a CS, clip-
ping is performed at fragment level. For each fragment
with a clip-space coordinate P the following Boolean
function:

- PeN—-NeO+ f(OM,T)-S, <0
x(CS.P) = { otherwise M
—OeV
T = Y., S, 2
(5 os)©
Py = P—((P—0)eN)-N 3)

is evaluated. Here, the function f delivers a scalar value
h € [0,1] by first, generating texture coordinates 7 using
Equation 2 and 3, and second, sampling the offset map
OM, and finally scaling the resulting height sample by
S;. The sampling step depends on the type of offset map
used, i.e., it differs for 1D, 2D, or 3D representations
for an offset map. A point P is clipped if the half-space
test in Equation 1 resolves to 1 (true). This function
can be efficiently implemented using a fragment shader
program and the fragment discard functionality.

4.4 Fragment Shader Implementation

Listing 1 shows an OpenGL shading language (GLSL)
implementation for the clip-surface parameterization. It
first assembles the plane equation from the parameteri-
zation, then project the input point onto that plane and
compute the required texture coordinates. Using these,
the offset texture map is sampled and half-space test is
performed. This function can be executed for a num-
ber of surfaces within a single rendering pass. Prior to
shader execution, the parameterization is encoded in a
matrix representation.

bool clipSurface (

const in mat4 config,

const in vec4d P,

const in sampler2D offsetMap) {

// compute plane parametrization in eye space...
vec3 O= (gl_ModelViewMatrix x

vec4d (config[0] .xyz, 1.0)) .xyz;

vec3 A= gl _NormalMatrixsnormalize (config([l].xyz);
vec3 B= gl_NormalMatrixxnormalize (config([2].xyz);
vec3 N= cross (A, B);

// project fragment coordinates onto plane
vec3 PN= P.xyz-dot (P.xyz-0, N)xN;

// compute clip texture coordinates...

float s= dot (PN-O, A) / length(config[l].xyz)
float t= dot (PN-O, B) / length(config[2].xyz)
// fetch height...

float height= texture2D (offsetMap,

vec2(s,t) x config[3].st) .x;

// compute reference plane...

float plane= dot (point.xyz, N)-—

dot (N, O)+ (heightxconfig([3].z);

// perform clipping if surface is enabled...
return (plane < 0.0 && bool (config([3].w));

Listing 1: GLSL implementation to evaluate 2.5D clip-
surface for a given point.

Figure 6: Rendering multiple cut-away views of a vir-
tual 3D building model by applying two 2.5D clip-
surfaces.

4.5 Multiple Clip-Surfaces

To enable multiple cut-away views, a number of clip-
surfaces are evaluated within a single rendering pass.
Figure 6 shows an example for applying two different
clip-surfaces to reveal parts of the building footprint
and internal structures, such as walls and doorways,
which otherwise would be hidden to the viewer.

The quality of the 3D models (in terms of modeled
interior, solid walls, and consistency of polygon orien-
tation), is important for the resulting visual impression.
Besides additional configuration issues, the application
of cut-away views introduces a number of challenges
and technical implications to the visualization frame-
work: for example, Figure 6 shows shading and shadow
discontinuities for areas inside and outside the building.
These are caused by using a pre-computed lighting ap-
proach, which is only valid for views from outside the
building. This effect can be compensated partially by
using image-based global lighting approaches that ap-
proximate ambient occlusion [21].

5 CAP SURFACES

For certain types of ren-
derings, it can be desired
to show the inner mate-
rial properties after apply-
ing clipping. The sections
marked in red in Figure
7 represent the surface of
the inner material of a bro-
ken crank denoted as caps.
For planar clipping planes,
capping is usually performed by a stencil-buffer tech-
nique using the back-face and front-face polygon orien-
tation information [3]: a stencil mask representing the
visible back-faces determine the areas where to render
the cap. Since the non-regularity of the clip surface, this
approach is not suitable to be used for our purposes.

Figre 7: Surfaces f a
broken real-world crank
marked in red.

This paper presents an image-based approach for
the real-time rendering of cap surface for a 2.5D
clip-surface. It is suitable for any solid input mesh, i.e.,
a mesh that is modeled "water-tight" in real-time.

5.1 Rendering of Cap Surfaces

Conceptually, the rendering of cap surfaces comprises
two main steps: the generation of a cap surface and the
clipping of all surface parts that are outside the volume
enclosed by the input mesh.

During the cap-surface generation step, a triangulated
quad is generated using the U and V parameters, which
resembles the 2.5D cap surface (cf. to Derived Cap-
Surface in Fig. 3). This mesh is then adaptively refined
on GPU [4] to achieve a sufficient vertex density. Here,
a generic refinement pattern (stored at full resolution
as a vertex buffer on the GPU memory) is used to vir-
tually create additional inner vertices for the generated
cap-surface. Subsequently, each vertex of the refined
mesh is displaced using the offset map OM as well as
textured and shaded using specific diffuse, normal, and
occlusion maps. The generation of texture coordinates
is similar as for the clipping approach (Eqn. 1 to 3).

For the cap-surface clipping step during the rasteriza-
tion of the refined cap surface, each fragment is tested
if it lies inside or outside the volume enclosed by the
input mesh in order to determine where the gaps are lo-
cated that have to be covered by the surface. Fragments
that fail a volumetric parity test (Section 5.3), which
is based on an image-based volumetric representation
of the input mesh (Section 5.2), are discarded using a
fragment shader program (cf. to Clipped Cap-Surface
in Fig. 3 and Section 5.4 for implementation).

Non-Convex Polygonal Mesh S with d = 10 Depth Layers LDI = (LDI",...,LDI’)
[10 1

Depth-
Peeling

3D World Space IR’ 3D LDI Texture Space [0,1]

Figure 8: Example of an volumetric depth sprite. The
non-convex polygonal mesh S is depth-peeled into lay-
ers of unique depth complexity.

5.2 Volumetric Depth Sprites

A volumetric depth sprite (VDS) is an image-based rep-
resentation of a shapes volume by storing its depth val-
ues along parallel viewing rays [30]. A VDS extends
the concept of LDIs [29] that contain layers of unique
depth complexity. An LDI is a view of the scene from
a single input camera view, but with multiple pixels

AL[
(s,1,1)
5, 1,0,
(s1.0) Outside
pre0, LT D)
(T,,T,,0) Ray R

|
| r
1 A .

(5,0,0) T, (5,0,1)

Figure 9: Ray marching through an LDI representation
of the complex input shape shown in Figure 8. A ray
R intersects the depth layers LDI' at five points and ad-
justs the rays parity pr accordingly.

along each line of sight. The size of this representa-
tion grows linearly with the observed depth complexity
in the scene. Figure 8 shows an example of a VDS de-
rived from a complex 3D shape.

A VDS representation consists of the following com-
ponents: VDS = (G,LDI,d,w;,h;). Here, G € R? de-
notes the reference position of the VDS in world-space
coordinates. The depth complexity of S is denoted as
d € Nygg,1y. The layered depth image consist of d depth
maps LDI = (LDI®,... . LDI*""). The initial texture
resolution of width and height is given by w;,h; € N.
To obtain a depth value d; € [0,1] CR,0<i<d—11in
the ""-depth layer for a 2D point (s,7) € [0, w;] x [0, 4],
the 3D texture is sampled in LDI texture space using
the coordinates LDIESJ) = (s,1,i).

The creation of a VDS is performed within a prepro-
cessing step using multi-pass render-to-texture in com-
bination with depth-peeling [8]. Given a solid polyg-
onal mesh S, the associated LDI can be generated by
performing the following three steps:

1. The shape is scaled uniformly to fit into the unit vol-
ume [0,1]3. A camera orientation and an orthogo-
nal projection is chosen that covers this unit volume
with the near and far clipping planes adjusted ac-
cordingly.

2. The depth complexity d is computed and a 3D tex-
ture or 2D texture array is created with an initial res-
olution of width w;, height &;, and depth d.

3. Finally, depth-peeling [8] in combination with RTT
is performed. The solid S is peeled using linearized
depth values using a W-buffer [17].

5.3 Volumetric Parity Test

Real-time volumetric tests enable a binary partition of
a given arbitrary shape on vertex, primitive, and frag-
ment level [30]. They have a number of applications in
real-time rendering and interactive visualization, such
as pixel-precise clipping, collision detection, and ren-
dering with hybrid styles [12]. Given a VDS, a vol-
umetric parity test (VPT) classifies a point P with re-
spect to its position in the shape’s volume: it can either
be inside or outside. To model such test, a Boolean co-
ordinate parity pr € {0,1} is used. Before testing P,
it must be transformed into the specific 3D LDI texture
space. For a point P in world-space coordinates, the
transformed coordinate T = (T}, T;,7,) can be obtained
byT =M-P.

The matrix M is defined by M:=T(C)-S-B-T(—G).
Where B is a rotated ortho-normal basis of the VDS.
P is transformed into the LDI texture coordinate space
(B-T(—G)), scaled by S, and translated (T(C)) into the
LDI origin C = (0.5,0.5,0.5).

Subsequently, a ray R = [(T}, T;,0) (T}, T;, 1)] is con-
structed that marches through the depth layers LDI’ and
compares 7, with the stored depth values. Starting with
an initial parity, pr is swapped every time R crosses a
layer of unique depth complexity (cf. Figure 9). This
test can be formulated as pr = VPT(T,LDI) with:

1, 3diATdig1:d; < T <din

VPT(T,LDI) = { 0, otherwise

i i+1
d; € LDI[(T_;,T,) diy1 € LDI)

(T,
5.4 Fragment Shader Implementation

The implementation of the ray-marching algorithm
needs to iterate over the number of depth maps stored
in the 3D texture, which represents the LDI. Listing
2 shows the GLSL source code that implements the
VPT. The performance of this algorithm depends on
the number of samples the VPT has to perform. The
presented volumetric test consists of less than 20
assembler instructions per executed loop.

bool volumetricParityTest (
const in vec4 T, // coordinate in LDI-space
const in sampler3D LDI, // layered depth image
const in int depth, // depth complexity ds
const in bool initParity) // initial parity p
{ // initial parity; true = outside
bool parity = initParity;
// compute offset to address texture slices
float offset = 1.0 / float (depth);
// for each texture layer do
for (float i = 0.0; i < float(depth); i++){
if (T.r < texture3D(LDI, // perform depth test
vec3 (T.st, offset » 1i)).x) |
parity = !parity; // swap parity
}//endif }//endfor
return parity;

Listing 2: GLSL implementation of the VPT.

Offset Offset

Normal Normal

Diffuse

Diffuse

Normal

Diffuse

\

(a)

(©)

Figure 10: Examples for applying different parameterlzatlons of a 2.5D clip-surface to a virtual 3D model of a
crank. The insets show the respective 2D offset, normal, and diffuse texture maps used for stylization.

6 RESULTS & DISCUSSION
6.1 Application Examples

Figure 10 shows results for the proposed rendering
techniques using different offset, normal, diffuse, and
offset texture maps that enable stylization and appear-
ance variations. For example, technical illustration
styles can be achieved using hatch textures for the cap
surfaces in combination with image-based edge en-
hancement [22] (cf. Figure 10(a) and 10(b)) or Gooch
Shading [10] (cf. Figure 10(c)). Further, Figure 11
shows an application example that uses solid 3D tex-
tures [16] in combination with occlusion maps for tex-
turing the cap surface.

Offset if Diffuse
A X

Figure 11: A single 2.5D clip-surface is applied to a
cube using light maps and solid textures for the styliza-
tion of the cap-surface.

6.2 Rendering Performance

We tested the performance of a clip-surface with a sin-
gle cap-surface using a NVIDIA GeForce GTX 285
GPU with 2048 MB video RAM on a Intel Xeon CPU
with 2.33 GHz and 3 GB of main memory a viewport
resolution of 1024 x 768 pixels. The test model (Figure
10) comprises 50,394 vertices and 99,999 faces. It per-
forms with 131 frames-per-second (FPS) without clip-
ping in comparison to 125 FPS with clipping and cap-
surface enabled (with a sub-division level of 256 and
an LDI resolution of 10242 pixels). The applied cap-
surface technique is fill-limited, i.e., the runtime per-
formance depends on the number of fragments tested
against the volumetric depth sprite.

6.3 Limitations & Improvements

The presented approach implies a number of technical
and conceptual limitations. Despite requiring a water-
tight mesh, the rendering technique is limited by two
drawbacks: (1) it requires an additional data structure
(VDS), which is created during a preprocessing step
and is only suitable for static meshes; and (2) to obtain
a high visual quality, a sufficient vertex density of the
cap surface is required. With respect to this, matching
the tessellation factor to the screen resolution, which is
required to avoid gaps between the clipped mesh and
the cap surface, is an open research question.

With respect to the current implementation, there are
numerous ways for future work. Instead of using vol-
umetric depth sprites, which are generated in a pro-
processing step, one could perform the volumetric par-
ity test based on a k-Buffer implementation [1] that is
generated per-frame and per-object. Additionally, this
enables also the usage of dynamic objects. Further-
more, to achieve a sufficient vertex density for the mesh
that represents the cap surfaces, hardware-accelerated
and programmable tessellation [24] could be of inter-
est. With respect to this, the application of relief map-
ping [25] to render micro structures of the cut surface
could be researched.

7 CONCLUSIONS

This paper presents a concept and real-time render-
ing technique for implementing interactive 2.5D clip-
surfaces. The implementation is fully hardware accel-
erated and includes an approach for rendering cap sur-
faces that are applicable to arbitrary solid input meshes.
The main drawbacks of our approach are the necessary
additional data structure, that consumes additional GPU
memory as well as the need for highly tessellated sur-
faces in order to avoid rendering artifacts for the cap
surfaces. However, these drawbacks can be addressed
and counter-balanced in future implementations using
advanced GPU capabilities.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous re-
viewers for their valuable comments and suggestions
to improve the paper. This work was funded by the
German Federal Ministry of Education and Research
(BMBF), as part of the InnoProfile Transfer research
group "4DnD-Vis".

REFERENCES

(1]

[2]

[3]

[4]

[5]

(6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Louis Bavoil, Steven P. Callahan, Aaron Lefohn, Jodo L. D.
Comba, and Cldudio T. Silva. Multi-fragment effects on the
gpu using the k-buffer. In Proceedings of the 2007 symposium
on Interactive 3D graphics and games, 13D 07, pages 97-104,
New York, NY, USA, 2007. ACM.

Aasmund Birkeland, Stefan Bruckner, Andrea Brambilla, and
Ivan Viola. Illustrative membrane clipping. Computer Graphics
Forum, 31(3):905-914, June 2012.

David Blythe, Tom McReynold, Brad Grantham, Mark J. Kil-
gard, and Scott R. Nelson. Programming with OpenGL:
Advanced Rendering. In A. Rockwood, editor, SIGGRAPH
Course, New York, NY, USA, 1999. ACM Press.

Tamy Boubekeur and Christophe Schlick. Generic Mesh Re-
finement on GPU. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, HWWS ’05,
pages 99-104, New York, NY, USA, 2005. ACM Press.

Michael Burns and Adam Finkelstein. Adaptive cutaways for
comprehensible rendering of polygonal scenes. ACM Trans.
Graph., 27(5):154:1-154:7, December 2008.

Michael Clifton and Alex Pang. Cutting planes and beyond.
Comput. Graph., 21(5):563-575, September 1997.

Chris Coffin and Tobias Hollerer. Interactive perspective cut-
away views for general 3d scenes. In Proceedings of the 3D
User Interfaces, 3DUI 06, pages 25-28, Washington, DC,
USA, 2006. IEEE Computer Society.

Cass Everitt. Interactive Order-Independent Transparency.
Technical report, NVIDIA Corporation, June 2001.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer graphics: principles and practice (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1990.

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A
non-photorealistic lighting model for automatic technical illus-
tration. In Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH °98,
pages 447-452, New York, NY, USA, 1998. ACM.

Giinther Greiner and Kai Hormann. Efficient clipping of arbi-
trary polygons. ACM Trans. Graph., 17(2):71-83, April 1998.

Roland Jesse and Tobias Isenberg. Use of Hybrid Rendering
Styles for Presentation. In Poster Proceedings of WSCG 2003,
pages 57-60, 2003. Short Paper.

Olga Karpenko, Wilmot Li, Niloy Mitra, and Maneesh
Agrawala. Exploded view diagrams of mathematical surfaces.
IEEE Transactions on Visualization and Computer Graphics,
16(6):1311-1318, November 2010.

Florian Kirsch and Jirgen Dollner. Opencsg: A library for
image-based csg rendering. In USENIX 2005 Annual Techni-
cal Conference, FREENIX Track, pages 129—-140, 2005.

Sebastian Knodel, Martin Hachet, and Pascal Guitton. Interac-
tive Generation and Modification of Cutaway Illustrations for
Polygonal Models. 2009.

Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver
Deussen, Dani Lischinski, and Tien-Tsin Wong. Solid texture

synthesis from 2d exemplars. ACM Transactions on Graphics
(Proceedings of SSIGGRAPH 2007), 26(3):2:1-2:9, 2007.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

Eugene Lapidous and Guofang Jiao. Optimal Depth Buffer for
Low-Cost Graphics Hardware. In HWWS ’99, pages 67-73,
New York, NY, USA, 1999. ACM Press.

Wilmot Li, Maneesh Agrawala, Brian Curless, and David
Salesin. Automated generation of interactive 3d exploded view
diagrams. ACM Trans. Graph., 27(3):101:1-101:7, August
2008.

Wilmot Li, Lincoln Ritter, Maneesh Agrawala, Brian Curless,
and David Salesin. Interactive Cutaway Illustrations of Com-
plex 3D Models. In ACM SIGGRAPH 2007 papers, SIG-
GRAPH ’07, New York, NY, USA, 2007. ACM Press.

William E. Lorensen. Geometric clipping using boolean tex-
tures. In Proceedings of the 4th conference on Visualization
’93, VIS ’93, pages 268-274, Washington, DC, USA, 1993.
IEEE Computer Society.

Thomas Luft, Carsten Colditz, and Oliver Deussen. Image En-
hancement by Unsharp Masking the Depth Buffer. In ACM
SIGGRAPH 2006 Papers, SIGGRAPH 06, pages 1206-1213,
New York, NY, USA, 2006. ACM Press.

Marc Nienhaus and Jiirgen Dollner. Edge-enhancement - an
algorithm for real-time non-photorealistic rendering. Interna-
tional Winter School of Computer Graphics, Journal of WSCG,
11(2):346-353, 2003.

Marc Nienhaus, Florian Kirsch, and Jirgen Dollner. Illustrat-
ing design and spatial assembly of interactive csg. In Proceed-
ings of the 4th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa, AFRI-
GRAPH 06, pages 91-98, New York, NY, USA, 2006. ACM.

Matthias Niefiner, Charles T. Loop, Mark Meyer, and Tony
DeRose. Feature-adaptive gpu rendering of catmull-clark sub-
division surfaces. ACM Trans. Graph., 31(1):6, 2012.

Fabio Policarpo, Manuel M. Oliveira, and Jodo L. D. Comba.
Real-time relief mapping on arbitrary polygonal surfaces. In
Proceedings of the 2005 symposium on Interactive 3D graph-
ics and games, 13D 05, pages 155-162, New York, NY, USA,
2005. ACM.

Wen Qi and Jean-Bernard Martens. Tangible user interfaces
for 3d clipping plane interaction with volumetric data: a case
study. In Proceedings of the 7th international conference on
Multimodal interfaces, ICMI °05, pages 252-258, New York,
NY, USA, 2005. ACM.

Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl,
and Wolfgang Strasser. Smart hardware-accelerated volume
rendering. In Proceedings of the symposium on Data visu-
alisation 2003, VISSYM ’03, pages 231-238, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

Takafumi Saito and Tokiichiro Takahashi. Comprehensible ren-
dering of 3-d shapes. SSIGGRAPH Comput. Graph., 24(4):197—
206, September 1990.

Jonathan Shade, Steven Gortler, Li wei He, and Richard
Szeliski. Layered Depth Images. In SIGGRAPH 98, pages
231-242, New York, NY, USA, 1998. ACM Press.

Matthias Trapp and Jiirgen Dollner. Real-time volumetric tests
using layered depth images. In K. Mania and E. Reinhard, ed-
itors, Eurographics 2008 Shortpaper, pages 235-238. The Eu-
rographics Association, 2008.

Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Volume clip-
ping via per-fragment operations in texture-based volume visu-
alization. In Proceedings of the conference on Visualization 02,
VIS ’02, pages 93-100, Washington, DC, USA, 2002. IEEE
Computer Society.

Daniel Weiskopf, Klaus Engel, and Thomas Ertl. Interactive
clipping techniques for texture-based volume visualization and
volume shading. IEEE Transactions on Visualization and Com-
puter Graphics, 9(3):298-312, July 2003.

	1 Introduction
	2 Related Work
	3 Conceptual Overview
	4 Irregular Clip-Surfaces
	4.1 Parameterization
	4.2 Offset Maps
	4.3 Pixel-precise Clipping
	4.4 Fragment Shader Implementation
	4.5 Multiple Clip-Surfaces

	5 Cap Surfaces
	5.1 Rendering of Cap Surfaces
	5.2 Volumetric Depth Sprites
	5.3 Volumetric Parity Test
	5.4 Fragment Shader Implementation

	6 Results & Discussion
	6.1 Application Examples
	6.2 Rendering Performance
	6.3 Limitations & Improvements

	7 Conclusions

