
OpenCSG: A Library for Image-Based CSG Rendering

Florian Kirsch, Jürgen Döllner

University of Potsdam, Hasso-Plattner-Institute, Germany
{florian.kirsch, juergen.doellner}@hpi.uni-potsdam.de

Abstract

We present the design and implementation of a real-time 3D graphics library for image-based Constructive Solid
Geometry (CSG). This major approach of 3D modeling has not been supported by real-time computer graphics until
recently. We explain two essential image-based CSG rendering algorithms, and we introduce an API that provides a
compact access to their complex functionality and implementation. As an important feature, the CSG library seam-
lessly integrates application-defined 3D shapes as primitives of CSG operations to ensure high adaptability and
openness. We also outline optimization techniques to improve the performance in the case of complex CSG models.
A number of use cases demonstrate potential applications of the library.

1 Introduction

Constructive Solid Geometry (CSG) represents a pow-
erful 3D modeling technique. The idea of CSG is to
combine simple 3D shapes to more complex ones with
Boolean operations in 3-dimensional space. Even
though CSG is an established technique and it is well-
understood, it has not become mainstream in software
systems due to the complex implementations of render-
ing algorithms to display CSG models.

In the scope of CSG, the most basic shapes are called
primitives. A CSG primitive must be solid, i.e., given in
a way that interior and exterior regions of the primitive
are clearly defined. For example, a sphere or a cube is a
solid primitive, whereas a triangle is not. Two primi-
tives or CSG shapes can be combined by one of the
following Boolean operations to define a more complex
CSG shape:

• Union. The resulting shape consists of all regions
either in the first, in the second, or in both input
shapes.

• Intersection. The resulting shape is the region
common to both input shapes.

• Subtraction. The resulting shape is the region of
the first shape, reduced by the region of the second
shape.

CSG models are stored in CSG trees, where leaf nodes
contain primitives and inner nodes contain Boolean
operations (Figure 1). Because of the mathematical
properties of Boolean operations, the resulting CSG
shapes are always solid. This is an important advantage

over other 3D modeling techniques, which often miss
polygons and generate unclosed models.

CSG modeling and rendering is directly available in
several graphics systems for offline rendering, such as
POV-Ray [1] or RenderMan [2]. Those graphics sys-
tems are used to generate photo-realistic images, and
they are not suited for real-time rendering, though.

Rendering CSG shapes in real-time using and taking
advantage of graphics hardware is difficult, in particu-
lar if the CSG shape is modified interactively. Basi-
cally, there are two options: On the one hand, the
boundary of the CSG shape can be calculated mathe-
matically and stored in a polygonal model that then is
sent to graphics hardware. This is practical for static
CSG shapes, but for CSG shapes that are modified in-
teractively, the expensive calculation of the boundary
must be repeated for each rendering frame, forbidding
animated real-time display.

 −
∩

Figure 1. Modeling a dice using CSG. A cube and a
sphere are intersected; from the result the dots of the

dice are subtracted.

On the other hand, image-based CSG rendering al-
gorithms can determine and store the visible parts of
the CSG shape directly in the frame buffer of the
graphics hardware. The result of an image-based CSG
algorithm is, therefore, just the image of the CSG
shape. Based on recent advances of graphics hardware
images of CSG models can be generated instantane-
ously and, for models of considerable complexity, in
real-time.

Image-based CSG can be used in all situations where
complex 3D modeling operations are required in real-
time. Image-based CSG does not analytically calculate
the geometry of 3D objects, but most uses of CSG do
not require the explicit 3D geometry and are satisfied
with the image of the model. Still, image-based CSG is
not commonly used in real-world applications today.
Very often, the primitives of CSG shapes are only
sketched as wire-frame image, which leads to difficult
understanding of the final 3D-shapes’ look.

We have developed OpenCSG, which represents the
first free library for image-based CSG rendering.
OpenCSG is written in C++, bases on OpenGL, and
implements the two most important image-based CSG
algorithms: The Goldfeather algorithm, which is suited
for all kinds of CSG primitives, and the SCS algorithm,
which is a more optimal algorithm if a CSG shape is
composed of only convex CSG primitives.

2 Related Work

Constructive Solid Geometry (CSG) has been recog-
nized as powerful approach for modeling complex 3D
geometry for a long time [3]. The foundation of image-
based CSG rendering was invented by Goldfeather et
al. [4]. They described the normalization of CSG trees
and also developed the first implementation of an im-
age-based CSG algorithm. Another important class of
CSG rendering algorithm today is the SCS algorithm
[5].

2.1 Normalization of CSG Trees

Rendering arbitrary CSG trees directly in real-time is
still not possible today. Instead, a CSG tree must first
be normalized. A normalized CSG tree is in sum-of-
products form, i.e., it is the union of several CSG prod-
ucts that consist, respectively, of a CSG tree with inter-
section and subtraction operations only, and only one
single primitive is allowed to be the second operand of
each operation. In other words, a CSG product has the
form (…(x1 ⊗ x2) ⊗ x3) … ⊗ xn) where “⊗” is either

an intersection or a subtraction. Goldfeather et al.
proved that the following set of equivalences, when
applied repeatedly to inner nodes of an arbitrary CSG
tree, transform the tree to a normalized CSG tree:

1. x – (y ∪ z) → (x – y) – z

2. x ∩ (y ∪ z) → (x ∩ y) ∪ (x ∩ z)

3. x – (y ∩ z) → (x – y) ∪ (x – z)

4. x ∩ (y ∩ z) → (x ∩ y) ∩ z

5. x – (y – z) → (x – y) ∪ (x ∩ z)

6. x ∩ (y – z) → (x ∩ y) – z

7. (x – y) ∩ z → (x ∩ z) – y

8. (x ∪ y) – z → (x – z) ∪ (y – z)

9. (x ∪ y) ∩ z → (x ∩ z) ∪ (y ∩ z)

Both the Goldfeather and the SCS algorithm render one
CSG product at a time. The union of several products is
determined by normal use of the depth buffer.

2.2 The Goldfeather Algorithm

The Goldfeather algorithm, for the case of convex
primitives, bases on several observations (Figure 2):
First, only the front face of intersected and the back
face of subtracted primitives are potentially visible.
Second, each other primitive P affects the visibility of a
pixel in a potentially visible polygon by the number of
polygons of P in front of the pixel (called the parity,
which, for convex primitives, is always in-between zero
and two): If P is subtracted and the parity is one, the
pixel is not visible, and if P is intersected and the parity
is zero or two, the pixel is also not visible. In all other
cases, the pixel could be visible, as at least primitive P
does not affect its visibility.

Based on these observations, the Goldfeather algo-
rithm works as follows: It tests the visibility of each
primitive in a CSG product separately. For this, the
front respectively back face of the primitive is rendered
into a temporary, empty depth buffer. Then, for all
other primitives in the CSG product, the parity is de-
termined, i.e., the number of polygons of the primitive
in front of the depth buffer is counted. On modern
graphics hardware, this is possible by toggling a bit in
the stencil buffer [6], an additional kind of depth buffer
that supports Boolean operations. Finally, if no parity

indicates that a pixel is invisible due to other primitives,
the pixel is marked as visible, whereas the depth values
of all other pixels are reset. The temporary depth buffer
then is combined with the content of the main depth
buffer before the algorithm continues with testing the
visibility of the next primitive.

The basic Goldfeather algorithm can be used with a
limited set of primitives, but some refinements are re-
quired to use the algorithm in more general cases:

Support of concave primitives [4]. First, the visibility
of each potentially visible layer of a primitive must be
checked separately. Layers of primitives can be ren-
dered with the stencil test. Second, the parity calcula-
tion must be extended to distinguish an odd from an
even number of polygons in front of a pixel. In prac-
tice, this is still possible by toggling a bit in the stencil
buffer.

Resolution of the stencil buffer [6]. The stencil buffer
typically only holds 8 bits for each pixel, such that it
can only store the result of 8 parity tests at once. If
more primitives are contained in a CSG product, invisi-
ble pixels must be remembered as such before continu-
ing with the calculation of the remaining parities.

The following improvements and optimizations dras-
tically increase rendering performance and, for com-
plex CSG shapes, make image-based CSG rendering
usable in practice:

Emulating two depth buffers. The Goldfeather algo-
rithm requires two depth buffers, whereas graphics
hardware directly exposes only one. This requires ex-
tensive copying between the depth buffer and main

memory to emulate two depth buffers [6], or (far better)
using an additional offscreen rendering canvas that
holds the temporary depth buffer [7].

Visibility transfer. To combine the content of the tem-
porary depth buffer with the main depth buffer, the
depth values could be just copied with pixel operations
[6]. But this requires a round-trip of the depth values to
main memory. It is, therefore, faster by far to use a tex-
ture-based visibility transfer that can work completely
on the graphics hardware [7].

Depth complexity. The basic Goldfeather algorithm
has O(n²) run-time complexity, where n is the number
of primitives in a CSG product. For large CSG prod-
ucts, it is often better to test the visibility of a complete
depth layer at once [8]. This leads to a run-time com-
plexity of O(n·k), where k is the depth complexity of
the CSG product. The depth complexity can be calcu-
lated either using the stencil test or with occlusion que-
ries [9].

Object-space optimizations. Primitives in a CSG
product that do not overlap in screen space do not mod-
ify the visibility of one another. Therefore, the visibility
of such primitives can be tested at once, and also the
mutual calculation of the parity is not required (Section
6.3).

Image-space optimizations. Visible parts of a CSG
product can only be inside the intersection of the
bounding boxes of all intersected primitives in screen-
space. The remaining areas do not need to be consid-
ered at all and can be omitted, for example, with the
scissor test (Section 6.3).

Primitive tested
for visibility.

Parity test
against other
primitive tested
for visibility.

Areas with odd /
even number of faces
in front of depth
buffer are marked.

Odd (1.) / even (2.)
areas are invisible.
The other areas are
kept…

... and composed in
the main frame
buffer (visibility
transfer)

1.
Intersected
primitive:
The front-
side of the

box is
potentially

visible.

2.
Subtracted
primitive:

The back-side
of the ellip-

soid is poten-
tially visible.

even

odd

even

odd

Figure 2. Example of the Goldfeather algorithm. An ellipsoid is subtracted from a box. The two primitives are tested for

visibility separately. For each primitive, this requires calculating and analyzing the parity. When visible areas of a
primitive have been determined, they are combined with the former content in the main frame buffer.

2.3 The SCS Algorithm

The SCS Algorithm is optimized for convex primitives.
In practical cases, it is typically faster than the Gold-
feather algorithm, but in exchange it does not operate
on concave primitives.

The SCS algorithm, similar to the Goldfeather algo-
rithm, requires a normalized CSG tree. Its performance
advantage is due to the determination of depth values of
a complete CSG product in a temporary depth buffer at
once. The algorithm has three stages: First, it deter-
mines the backmost front-face of all intersected primi-
tives in the CSG product. Then, it subtracts primitives,
i.e., where the front-face of a subtracted primitive
would be visible and the back-face not, it replaces val-
ues in the depth buffer with the back-face depths of the
subtracted primitive. For each subtracted primitive in a
CSG product, this has to be done several times. Finally,
the algorithm clips the depth buffer with the back-faces
of all intersected primitives in the CSG product.

The SCS algorithm is subject to similar performance
optimizations as the Goldfeather algorithm: It uses two
depth buffers and requires a similar visibility transfer. It
can also profit from knowing the depth complexity of a
CSG product and object-space respectively image-
space optimizations can be applied in a similar way.

2.4 Further Algorithms

Further image-based CSG algorithms appear to use two
or more depth tests at the same time for rendering [10].
For a long time, standard graphics hardware did not
support this. Guha et al. use the shadow mapping capa-
bility of modern graphics hardware for two-sided depth
tests to implement their CSG algorithm [11]. This algo-
rithm represents no fundamental new CSG rendering
paradigm; It could be integrated into OpenCSG once
hardware support matures.

2.5 Image-Based CSG Libraries

The only library for image-based CSG we are aware of
is TGS SolidViz [12]. As this library is part of TGS
OpenInventor 5.0, applications that are not based on
OpenInventor, a rather large scene-graph library, can-
not deploy SolidViz easily. TGS OpenInventor is avail-
able under a commercial license, the source code of
SolidViz is not freely available, and the capabilities and
restrictions of SolidViz are hardly documented.

Other implementations for real-time CSG rendering
appear to be prove-of-concepts, which are demon-
strated with small example programs. Therefore, they
can be hardly integrated into other applications.

3 Overview of the OpenCSG Library

In the following, we describe our approach for the li-
brary for image-based CSG rendering. We will moti-
vate the design choices in this section before we de-
scribe the consequences for implementation and usage
of the library.

We consider the following points as important prop-
erties of a library for image-based CSG rendering:

1. A minimal, abstract, and well-defined interface, for
easy use of the library. OpenCSG does not assume
any specific type of CSG implementation.

2. A simple and well-defined output. The library is
solely used for CSG rendering. All other tasks such
as shading the CSG primitives are handled outside of
the library.

3. Direct applicability to all kinds of rendering applica-
tions. Most graphics applications define their own
set of graphical primitives, which are likely valid
CSG primitives. It must be possible to use these
graphical primitives for CSG rendering.

4. As few external dependencies as possible. A library
that depends on a full-featured scene-graph library is
clearly not acceptable.

5. Stability, performance, and portability as properties
that every (graphics) library should provide.

OpenGL is the rendering library of choice to create
portable real-time graphics applications that take ad-
vantage of the graphics hardware [13]; therefore, we
use it for OpenCSG. Additionally, we require two small
libraries: GLEW [14] is a library which manages load-
ing and using OpenGL extensions, which provide a
mean for using new rendering functionality that has not
(yet) been adopted by the core OpenGL library. Ren-
derTexture [15] is another small library that provides
platform-independent access for hardware-accelerated
offscreen rendering into textures by the means of
p-buffers [16], a rendering technique that is extensively
used by OpenCSG. Both GLEW and RenderTexture
are, currently, statically linked with OpenCSG.

namespace OpenCSG {
 enum Operation { Intersection, Subtraction };
 class Primitive {
 public:
 Primitive(Operation, unsigned int convexity);
 virtual ~Primitive();
 void setOperation(Operation);
 Operation getOperation() const;
 void setConvexity(unsigned int);
 unsigned int getConvexity() const;
 void setBoundingBox(float minx, float miny, float minz,
 float maxx, float maxy, float maxz);
 void getBoundingBox(float& minx, float& miny, float& minz,
 float& maxx, float& maxy, float& maxz) const;
 virtual void render() = 0;
 };
 enum Algorithm {
 Automatic, Goldfeather, SCS
 };
 enum DepthComplexityAlgorithm {
 NoDepthComplexitySampling, OcclusionQuery, DepthComplexitySampling
 };
 void render(const std::vector<Primitive*>& primitives,
 Algorithm = Automatic,
 DepthComplexityAlgorithm = NoDepthComplexitySampling);
}

The most portable programming language for im-
plementing a rendering library is C. However, the API
of the library can be greatly simplified by using an ob-
ject-oriented language such as C++ instead of C, espe-
cially for supporting user-defined primitives (design
goal 3): In C, the rendering function of a CSG primitive
would be specified using a function pointer. C++, as
language with polymorphic objects, allows the same in
a more convenient way by declaring an abstract render-
ing method in a primitive base class and implementing
this method in derived classes. For this reason,
OpenCSG is implemented in C++ instead of C.

4 The API of OpenCSG

In this section, we shortly describe the complete API of
OpenCSG. The API is very compact and consists of
only one class for CSG primitives and a rendering func-
tion that has a list of CSG primitives as argument and
renders the CSG product indicated by this list of primi-
tives into the depth buffer.

All classes, functions, and enumerations of
OpenCSG are members of the C++ namespace
OpenCSG.

4.1 Specifying Primitives

The interface of OpenCSG defines an abstract base
class for all kinds of CSG primitives. Primitive objects
can be assigned a bounding box in normalized device
coordinates (screen-space mapped to [-1, 1]²), which is
used for object-based and image-based rendering op-

timizations internally. Setting the bounding box is op-
tional. Primitives also have a convexity, i.e., the maxi-
mum number of depth layers of the primitive. The de-
veloper must set the convexity because some algo-
rithms such as the Goldfeather algorithm need to know
the convexity of a primitive for correct rendering op-
eration. The convexity also allows for choosing be-
tween different CSG rendering algorithms that are pro-
vided by OpenCSG

The render method of the CSG primitive class is ab-
stract. To use OpenCSG the developer must derive a
specialized primitive class, which implements the ren-
der method. The CSG rendering function requires that
the geometric transformation used for rendering a CSG
primitive does not depend on transformations of other
primitives. This is best done by pushing the transforma-
tion matrix at the beginning of the primitive’s render
function, and restoring the matrix from the transforma-
tion stack at the end. An alternative approach is to load
the correct transformation matrix unconditionally for all
primitives in a CSG product at the beginning of the
primitive’s render functions.

For internal use in OpenCSG, the render method of a
primitive must not change the primary color. The color
of a primitive is used by all CSG rendering algorithms
for the texture-based visibility transfer, hence altering it
in the rendering method causes invalid rendering re-
sults. For best rendering performance vertex positions
alone should be submitted to graphics hardware be-
cause only pure geometry is needed for correct opera-
tion of CSG rendering. All other per-vertex data such
as normals or texture coordinates is ignored.

Figure 3. The API of OpenCSG

4.2 Rendering CSG Models

The central part of the OpenCSG library are the CSG
rendering algorithms. For using them, the API of
OpenCSG defines a rendering function, which requires
an argument containing the CSG shape to render. Dur-
ing the design of the API we considered two different
options for that argument: It could be a full-featured
CSG tree or only a CSG product, i.e., a list of primi-
tives, each of them either subtracted or intersected. In
the following, we discuss these two approaches.

First consider the required steps for the user of
OpenCSG if the argument of the CSG rendering func-
tion would be a CSG tree. In this case the application
developer would have to compose the CSG tree in its
application. This would require a class for CSG primi-
tives and some node classes for the inner nodes of the
CSG tree, i.e., union, intersection, and subtraction.
While this would not be particularly difficult, it would
nonetheless require a complete API for composing and
modifying CSG trees.

The second option is to permit only a CSG product
as argument of the rendering function. In this case the
interface can be drastically reduced: The rendering
function only requires a list of CSG primitives that can
be just given as STL vector. Additionally each CSG
primitive must hold a flag to indicate whether it is sub-
tracted or intersected.

If the argument of the CSG rendering function is a
complete CSG tree, the rendering library must also im-
plement the normalization of the CSG tree into a set of
CSG products. In the other case, this normalization step
has to be potentially implemented by the application
developer. But implementing the normalization itself is
not particularly difficult. Also, an application can often
create a normalized CSG tree of smaller size than a
general function in a CSG library because it can addi-
tionally analyze application-specific information. Fur-
thermore, if the rendering function supported an arbi-
trary CSG tree as argument, the application might
nonetheless require a non-trivial transformation of its
CSG data to the CSG tree argument of the rendering
function, depending on the kind of Boolean operations
supported by the application.

Therefore, the render function of OpenCSG takes a
CSG product as argument, given as a list of CSG primi-
tives. We assume general functionality for normalizing
a CSG tree would be better implemented by a separate
library.

Furthermore, the render function has two optional
arguments to choose between different CSG algo-

rithms. The first of these arguments chooses between
the Goldfeather algorithm, the SCS algorithm, or an
automatic mode that chooses between both algorithms
depending on the primitives in the CSG product. The
second of these arguments chooses between different
strategies for analyzing the depth complexity of the
CSG product: The depth complexity can be ignored,
determined directly by counting depth layers in the
stencil buffer, or used indirectly with occlusion queries.

5 Output Generated by OpenCSG

The CSG rendering algorithms in OpenCSG work all in
a similar way. From perspective of their rendering re-
sult they are exchangeable: They initialize the depth
information in the depth buffer with the correct depth
values of the CSG product. The depth values are writ-
ten with respect to the depth values that were in the
depth buffer before the CSG rendering call, using the
common z-less depth function. This allows for scene
composition of different CSG products with correct
hidden surface removal.

Besides altering the depth buffer, the CSG rendering
algorithms try to avoid any side effect. For example,
OpenCSG does not alter the color buffer, i.e., it does
not shade the colors of CSG shapes. This is because of
the many different approaches and techniques for color
shading. A number of graphics libraries are concerned
with the task to do color shading well. There are even
algorithms such as shadow mapping that do not require
color shading of CSG primitives at all. Therefore, shad-
ing the primitives after initializing the depth buffer is
better handled by the application.

The stencil buffer as remaining important part of the
frame buffer should also not be affected by using the
CSG rendering function. Currently, this is a technical
problem for CSG shapes that contain concave primi-
tives. During the visibility transfer, the CSG rendering
function must render separate depth layers of these
primitives in the frame buffer. This functionality is im-
plemented by counting the depth layers in the stencil
buffer, thereby destroying its former content. Hence,
the CSG rendering function guaranties to preserve the
stencil buffer only in the case of convex primitives,
otherwise the content of the stencil buffer is undefined.

The CSG rendering function respects a number of
settings of the OpenGL state for CSG rendering,
whereas it ignores other settings that are required inter-
nally or simply do not make sense: Above all, the nu-
merous OpenGL settings that manipulate color calcula-
tion are irrelevant for the CSG rendering function,

which does not alter the color buffer. The meaning of
other important OpenGL settings for CSG rendering
with OpenCSG is summarized in the following.

Alpha Test. OpenCSG internally uses the alpha test for
visibility transfer. Therefore the application settings of
the alpha test are ignored.

Scissor Test. This fragment test is applied as usual, i.e.,
fragments are only generated inside of the scissoring
area.

Stencil Test. The stencil test will be performed cor-
rectly if only convex primitives are contained in the
CSG product and if no layered CSG algorithms is used.
In the other cases, our algorithms uses the stencil test
internally and also overwrite the stencil buffer of the
frame buffer.

Depth Test. Depth-test settings are completely man-
aged by OpenCSG. It renders with the z-less depth
function, i.e., the forefront of the CSG shape is ren-
dered where it is in front of the former depth value in
the depth buffer. The z-greater function would be the
only potential alternative: The effect would be to render
the backside of the CSG shape behind the former depth
value in the depth buffer. Since the benefit of this set-
ting is questionable and since it requires large changes
to the implementation of the internal CSG algorithm,
we did not implement this.

Culling. The setting of front- and back-face culling is
ignored because OpenCSG uses this setting internally.
Anyway, culling also lacks a sound meaning for CSG
rendering of possibly concave CSG shapes.

Geometric Transformations. OpenCSG does not
change the transformation and projection internally. It
is under the responsibility of the CSG primitives to set
and restore the necessary transformations.

6 Implementation Details

The implementation of the CSG algorithms in
OpenCSG is similar to the algorithms presented by
Kirsch and Döllner [7], and it uses many of the tech-
niques presented there to improve rendering perform-
ance. Additionally, OpenCSG performs both object-
based and image-based performance optimizations.

6.1 Choosing the CSG Algorithm

The CSG rendering function for rendering a CSG prod-
uct has two parameters that control what kind of algo-
rithm is used for CSG rendering. As basic algorithms,

the Goldfeather algorithm and the SCS algorithm are
provided. Each of them can by used in several variants:
The depth complexity of the CSG product can be de-
termined (1) by counting the overdraw of the CSG
product in the stencil buffer, (2) indirectly by the means
of occlusion queries, or (3) not at all.

OpenCSG users can also specify the automatic
mode, in which an internal heuristic guesses the fastest
algorithm for rendering the CSG product. The follow-
ing heuristic experimentally turned out to give satisfac-
tory results: The SCS algorithm is chosen if the CSG
product contains only convex primitives, else the Gold-
feather algorithm is used. As strategy for depth com-
plexity, hardware occlusion queries are used if the CSG
product contains more than 20 primitives and the hard-
ware supports them. If the hardware does not support
them and the CSG product contains even more than 40
primitives, depth complexity is calculated by counting
the overdraw of the CSG product with the stencil
buffer. In all other cases, the depth complexity is not
determined at all.

6.2 P-Buffer Settings

For supporting two depth buffers, OpenCSG uses
p-buffers, i.e., offscreen rendering canvases. The visi-
bility transfer from temporary to main depth buffer is
performed using RGBA-textures, i.e., a texture is cre-
ated in which each color channel encodes the visibility
of a CSG primitive (Goldfeather) respectively the alpha
channel encodes one CSG product (SCS). This texture
is used to reconstruct the depth values in the main
depth buffer.

The p-buffer for internal calculation of the primi-
tive’s visibility must be configured carefully such that it
behaves identically to the main frame-buffer. This is
required because p-buffers have their own rendering
context with rendering settings that are independent of
the main rendering context. So we replicate the view-
port-size, the transformation and projection matrix, and
the front-face setting.

Determining an optimal physical size of the p-buffer
is not trivial. First we tried the approach to set the size
of the p-buffer to the size of the frame buffer in the
calling application (or to the next power-of-two size in
case of missing support for non-power-of-two-
textures). But this approach does not work well for ap-
plications using two or more frame buffers displaying
CSG shapes. As the sizes of the frame buffers likely
differ the p-buffer is constantly resized resulting in un-
acceptable rendering performance. This does not only

occur in applications with several OpenGL-windows; it
is also an issue for multipass algorithms such as dy-
namic shadow mapping or reflections by the means of
textures because those algorithms internally require
additional frame buffers.

We solved this problem with a heuristic for resizing
the p-buffer consisting of two rules: If the size of the
current p-buffer is smaller than the requested size
x0 x y0, the p-buffer is enlarged to that size immedi-
ately. Otherwise we analyze the requested sizes in both
dimensions during the last N requests x0 … xN and
y0 … yN and calculate the respective maxima xmax =
max {xi | i ∈ 0…N} and ymax = max {yi | i ∈ 0…N}. If
for a request the size of the current p-buffer exceeds
xmax x ymax, we downsize the p-buffer to the new size
xmax x ymax. In practice, a value of 100 for N proves to
get good results: The p-buffer is always big enough, it
is not resized too often, and memory for an unnecessary
large p-buffer is not occupied forever.

6.3 Performance Optimizations

Technical publications about image-based CSG rarely
mention the fact that the performance of CSG rendering
can be drastically improved with rather simple optimi-
zations that just take into account the bounding boxes
of primitives in the CSG product. OpenCSG imple-
ments the following optimizations:

Primitive Batches. For the standard Goldfeather algo-
rithm, normally the visibility of each primitive is calcu-
lated separately. But obviously, primitives that do not
overlap in z-direction of the camera space do not mutu-
ally influence themselves. Therefore, primitives whose
bounding boxes do not overlap in z-direction are inter-
nally grouped to batches of primitives (Figure 4). Fur-
ther on, each batch is treated as a single primitive. This
way we reduce the number of parity tests and also
lower the number of copy operations from the tempo-
rary into the main depth buffer. The same idea is ap-

plied to the SCS algorithm with all depth-complexity
strategies, whereas it makes no sense for the Gold-
feather algorithm using depth-complexity sampling.

Disjoint Bounding Volumes. In the standard Gold-
feather algorithm, calculating the parity of a subtracted
primitive against a primitive batch is only required if its
bounding box intersects at least one bounding box of a
primitive in the primitive batch. Otherwise, the sub-
tracted primitive cannot alter the visibility of the primi-
tive batch anyway. This optimization does neither apply
to the Goldfeather algorithm using depth-complexity
sampling nor to the SCS algorithm.

Restrict Rendering to Intersection Area. Visible
parts of the CSG product can only be found where in-
tersected primitives overlap in the xy-plane of camera
space. Hence, we calculate the bounding boxes of all
intersected primitives in pixel coordinates, intersect
them, and restrict rendering during the complete calcu-
lation of the CSG product to this intersection area us-
ing scissoring. This optimization is applicable to all
image-based CSG algorithms.

Restrict Rendering to Primitive Batch. For the parity
calculation in the standard Goldfeather algorithm, the
scissoring area can be minimized even more: The parity
does not need to be calculated for pixels outside of the
bounding box of the primitive batch whose visibility is
being determined because there are no visible pixels of
the primitive batch anyway. Therefore, we set the scis-
sor region such that the parity is only calculated in the
intersection of the bounding box of the primitive batch
and the aforementioned intersection area.

7 Using OpenCSG

In this section, we describe a small example for CSG
rendering with OpenCSG in practice. We also give
some practical hints for shading CSG primitives for
more complex applications and lighting conditions.

Figure 4: Primitive Batches. In these images, primitives that are contained in a batch are depicted with the same

color. The number of primitive batches depends of the orientation of the CSG product with respect to the camera: In
the left image, there are six primitive batches (included the box); in the right image there are twelve.

7.1 Overview of the Rendering Process

Rendering CSG shapes with OpenCSG requires two
steps: First, OpenCSG initializes the depth buffer of
one or several CSG products. Then, the application is
responsible for the color shading of the CSG primitives.
For that, the primitives must be rendered using a z-
equal depth function and with exactly the same trans-
formations that are used in the CSG primitive objects.
As only the front faces of intersected and the back faces
of subtracted primitives can be visible, back or front
face culling can be used accordingly to enhance render-
ing performance. The resulting performance improve-
ments are, however, hardly noticeable. Culling is not
important to get a correct rendering result, since the
depth test for equality already filters out all invisible
fragments.

7.2 A First Example

The OpenCSG library contains the example described
in the following, which illustrates a simple but effective
way to use it. The application creates OpenGL display
lists for each CSG primitive, which are created using
the OpenGL helper libraries GLU and GLUT.
GLuint id1 = glGenLists(1);
glNewList(id1, GL_COMPILE);
glutSolidCube(1.8);
glEndList();
GLuint id2 = glGenLists(1);
glNewList(id2, GL_COMPILE);
glutSolidSphere(1.2, 20, 20);
glEndList();

The application also derives a concrete class DLPrim for
CSG primitives, whose render-method just executes
one display-list id.
class DLPrim : public OpenCSG::Primitive {
public:
 DLPrim(unsigned int displayListId,
 OpenCSG::Operation operation,
 unsigned int convexity)
 : OpenCSG::Primitive(operation, convexity),
 id(displayListId) { }

 virtual void render() { glCallList(id); }

private:
 unsigned int id;
};

For each CSG primitive, an object of this class is cre-
ated that holds the appropriate display list id for render-
ing. A CSG product as argument for the render function
of OpenCSG is constructed just by appending several
CSG primitives to an STL vector :
namespace OpenCSG;
DLPrim* box=new DLPrim(id1, Intersection, 1);
DLPrim* sphere=new DLPrim(id2,Subtraction, 1);
std::vector<Primitive*> primitives;

primitives.push_back(box);
primitives.push_back(sphere);

For rendering the CSG product described in this way,
we invoke the render function with the list of primi-
tives. Optionally, we can choose a specific algorithm
and a strategy for depth complexity sampling.
OpenCSG::render(primitives,
 Goldfeather,
 NoDepthComplexitySampling);

After this, the depth buffer contains the correct depth
values of the CSG product. Now the application is re-
sponsible for shading the CSG product with the desired
colors. We set the depth comparison function to z-
equal, such that only fragments are rendered that equal
in depth to the value stored in the depth buffer. We also
set up lighting and shading as desired and then render
all primitives in the CSG product.
glDepthFunc(GL_EQUAL);
// setup lighting and shading
for (int i=0; i<primitives.size(); ++i) {
 (primitives[i])->render();
}
glDepthFunc(GL_LESS);

Finally, we reset depth testing to its original value. Fig-
ure 5 shows the image that is rendered by this example.

The bounding boxes of the primitives are not set in
this example. This is fine for such a small CSG product
with few optimization opportunities. But for CSG prod-
ucts that consist of more primitives setting the bound-
ing boxes is likely to increase rendering performance.

7.3 Lighting CSG Shapes

For illuminating CSG shapes, it is important to distin-
guish between intersected and subtracted primitives:
polygons of intersected primitives are oriented nor-
mally, but subtracted primitives have an inverse orien-
tation because only their inner back-facing polygons
can be visible. Therefore the lighting of subtracted

Figure 5. Resulting image of the CSG model defined in

the example.

primitives is, without precautions, inverse to the stan-
dard lighting: polygons that point away from the light
are lighted, but polygons that are oriented towards the
light source are unlighted.

The first option to fix this issue is to negate the nor-
mals of all subtracted primitives. This is likely the best
option if vertex programs are used for geometrical
transformations because a vertex program can imple-
ment the negation of normals easily. Otherwise this is a
potentially more complicated operation, since the nor-
mals of primitives must be created analytically, respect-
ing the CSG operation of the primitive. Negating nor-
mals is the only option that works correctly for shading
by the means of per-pixel lighting respectively bump-
mapping in a fragment program.

The second option for the standard vertex lighting is
to enable two-sided lighting. In this case, vertices of
back-facing polygons have their normals reversed be-
fore the lighting equation is evaluated. Unfortunately,
some graphics hardware such as the GeForceFX takes a
big performance hit with two-sided lighting. Apart
from this performance weakness, this is a simple solu-
tion for correct lighting.

A third workaround for the lighting problem is to
place two identical light sources on the opposite sides
of the CSG model: one of them illuminates polygons of
intersected and the other one polygons of subtracted
primitives facing to the same direction. While this may
be a kludge, in practice this approach works well if we
can accept an illumination that is equal from both sides
of the CSG model.

8 Limitations and Performance

As a general problem of image-based CSG rendering,
CSG shapes are only correctly rendered if all primitives
are completely inside the view frustum. Otherwise the
internal calculations of the CSG algorithms, for exam-
ple calculating the parity, fail. The fundamental prob-
lem is that image-based CSG rendering requires solid
primitives, but if a solid primitive crosses the front- or
back plane of the view frustum, some parts are clipped
and the primitive is not closed, and, therefore, not solid
in the view frustum anymore.

With the SCS algorithm, an alpha-texture encodes
the visibility of all primitives in a CSG product. As the
alpha channel typically has a resolution of 8 bits only,
256 different values can be distinguished in a channel,
therefore the CSG products may only consist of at most

255 primitive batches. In our experience, this limitation
can only be exceeded in pathological cases. As a future
work, IDs could be spread over the whole RGBA chan-
nel, allowing 232–1 different primitive batches for a
CSG product.

CSG rendering with OpenCSG requires some
OpenGL extensions. At least, a p-buffer must be avail-
able for offscreen rendering. Also, a stencil buffer must
be supported in the p-buffer, and, for rendering con-
cave shapes, also in the main frame-buffer. However,
very old graphic hardware does not support stencil or
p- buffers. In practice, OpenCSG can be used on all
newer graphics hardware: The oldest NVidia graphics
chip that is supported by OpenCSG is the Riva TNT,
and the oldest ATI generation is probably the Rage 128
(the latter hardware was, till now, not available for test-
ing, though).

For acceptable performance, using more recent
graphics hardware is important, whereas the power of
the CPU does not matter much. We have observed ex-
cellent performance on GPUs such as the GeForce4,
GeForceFX, or ATI Radeon 9800. On such graphics
hardware, OpenCSG can use additional hardware fea-
tures such as hardware occlusion queries for depth-
complexity sampling and dot products in the texture
environment, which are used to improve the perform-
ance of the visibility transfer.

Figure 6. Screenshot of the RenderMan modeling envi-

ronment Ayam using OpenCSG for previewing CSG
models.

In practice, with an ATI 9800 and a window resolu-
tion of 800×600, the trivial examples in Figure 2, 4, and
5 achieve several hundred fps. The dice in Figure 1
renders at about 100 fps, the puzzle of Figure 7 at about
60 fps, and the terrain in Figure 8, which bases on a
height-field of 256 x 256 resolution, at 22 fps. The
terrain is a rather difficult CSG model because the ter-
rain primitive is not convex and must be rendered with
up to eight depth layers.

9 Other Applications

CSG modeling is common practice in offline-rendering
systems, whereas interactive modeling environments
for such rendering systems have not supported real-
time CSG rendering traditionally. With OpenCSG, this
is hopefully about to change. Ayam [17], the Tcl/Tk-
based modeler for RenderMan compliant renderers, has
been the first such application we are aware of that has
integrated CSG rendering with OpenCSG in its most
recent version (see Figure 6). Currently, the Blender
[18] development community discusses integration of
an OpenCSG-based rendering plug-in for real-time
preview of CSG models.

With the availability of an open and stable CSG li-
brary, we foresee many novel uses of CSG. We have
implemented some examples based on an OpenCSG
plug-in for the scene graph library VRS [19]. One ap-
plication for CSG can be found in the entertainment
field, for example in puzzle games such as the jigsaw
puzzle for the letters “C”, “S”, and “G” in Figure 7: A
shape that fits exactly through the three letter-shaped
holes is easily constructed by intersecting the extruded
3D-models of each letter.

Another new idea for using CSG beyond the scope
of traditional modeling applications is road design in
3D terrain models (Figure 8). The red markers, which
can be moved to all six directions interactively, define
the course of the road. Thereby two tube-formed CSG
primitives S1 and S2 compose the 3D-model of the road.
The upper tube S1 is subtracted from the terrain primi-
tive T such that the final CSG expression is (T – S1) ∪
S2. In this way, excavations, embankments, and even
tunnels can be manipulated interactively and antici-
pated at an early design stage.

10 Conclusions

We have shown concepts and implementation of
OpenCSG, an open graphics library for image-based
rendering of CSG models. Our work demonstrates that

Figure 7. How does a 3D object look like that exactly fits
through all letter-shaped holes? CSG gives the answer:

Just intersect the extruded 3D-models of each letter. The
resulting shape is shown below from different positions.

Figure 8. Interactive road design in a 3D terrain model
using CSG operations to model excavations, embank-

ments, and tunnels.

image-based CSG becomes a mature enabling technol-
ogy for novel real-time 3D applications. In particular,
we foresee applications in the fields of simulation, 3D
modeling, CAD/CAM, and gaming.

OpenCSG also shows how a compact abstract API
can provide access to a broad range of CSG algorithm
variants with a minimum programming effort from an
application developer’s point-of-view: Due to its sim-
ple API, OpenCSG can be easily integrated into any
OpenGL-based application. Provided the application-
defined 3D shapes are solid, they can be directly proc-
essed by OpenCSG as CSG primitives.

The OpenCSG library has been developed since mid-
2002 with the first public version released in September
2003 and version 1.0 in May 2004. It is provided under
the GPL-license at http://www.opencsg.org.

Acknowledgements

We would like to thank Randolf Schultz for providing
us with a high-quality screenshot of Ayam.

References

[1] POV-Ray, The Persistence of Vision Raytracer,
http://www.povray.org

[2] S. Upstill, The Renderman Companion, Addison
Wesley, 1989, ISBN 0201508680

[3] A. A. G. Requicha, Representations for Rigid
Solids: Theory, Methods, and Systems, ACM
Computing Surveys, 12(4):437-464, 1980.

[4] J. Goldfeather, S. Molnar, G. Turk, and H.
Fuchs, Near Realtime CSG Rendering Using
Tree Normalization and Geometric Pruning,
IEEE Computer Graphics and Applications,
9(3):20-28, 1989.

[5] N. Stewart, G. Leach, and S. John, Linear-time
CSG Rendering of Intersected Convex Objects,
Journal of WSCG, 10(2):437-444, 2002.

[6] T. F. Wiegand, Interactive Rendering of CSG
Models, Computer Graphics Forum, 15(4):249-
261, 1996.

[7] F. Kirsch, and J. Döllner, Rendering Techniques
for Hardware-Accelerated Image-Based CSG,
Journal of WSCG, 12(2):221-228, 2004.

[8] N. Stewart, G. Leach, and S. John, An Improved
Z-Buffer CSG Rendering Algorithm, 1998 Euro-
graphics / SIGGRAPH Workshop on Graphics
Hardware, ACM, 25-30, 1998.

[9] M. J. Kilgard, (editor), NVIDIA OpenGL Exten-
sion Specifications, April 2004.
http://developer.nvidia.com

[10] D. Epstein, F. Jansen, and J. Rossignac, Z-Buffer
Rendering from CSG: The Trickle Algorithm,
IBM Research Report RC 15182, 1989.

[11] S. Guha, S. Krishnan, K. Munagala, and S.
Venkatasubramanian, Application of the Two-
Sided Depth Test to CSG Rendering, ACM SIG-
GRAPH 2003 Symposium on Interactive 3D
Graphics, 177-180, 2003.

[12] TGS SolidViz 1.2, part of TGS OpenInventor 5.0
from Mercury, 2004,
http://www.tgs.com/support/oiv_doc

[13] M. Segal, K. Akeley, The OpenGL Graphics
System: A Specification, 2004,
http://www.opengl.org/documentation/
spec.html

[14] GLEW: OpenGL Extension Wrangler Library,
http://glew.sourceforge.net

[15] RenderTexture 2.0,
http://gpgpu.sourceforge.net

[16] C. Wynn, OpenGL Render-to-Texture, Presenta-
tion, NVidia Corporation, 2002,
http://developer.nvidia.com

[17] Ayam, http://ayam.sourceforge.net

[18] Blender, http://www.blender3d.com

[19] VRS – The Virtual Rendering System,
http://www.vrs3d.org

