
Interactive, Animated 3D Widgets *

Jürgen Döllner Klaus Hinrichs
FB 15, Institut für Informatik

Westfälische Wilhelms-Universität, Einsteinstr. 62, 48149 Münster, Germany
E-mail: {dollner | khh}@uni-muenster.de

 Abstract

If 3D applications become large, hierarchical networks
of geometric objects lead to messy specifications. Further-
more, if time- and event-dependencies are merged with the
geometric modeling, the global layout of animation and
interaction can hardly be achieved. We present an object-
oriented architecture for interactive, animated 3D widgets
which reduces the complexity of building 3D applications.
3D widgets encapsulate look (geometry) and feel (behav-
ior) into high-level building blocks based on two types of
directed acyclic graphs, geometry graphs and behavior
graphs. 3D widgets construct internal geometry graphs and
behavior graphs, perform operations on these graphs
through high-level interfaces which hide details and raise
the level of abstraction. 3D widgets define object ports
which are used to link together 3D widgets. A visual lan-
guage for 3D widgets allows the developer the interactive
construction of 3D applications.

1. Introduction

During the last few years much progress has been made
in the development of object-oriented 3D toolkits
[4][5][8][11][15], and new metaphors have been devised
[1][17][18]. However, the development of animated and
interactive 3D applications is still difficult for several rea-
sons:

3D toolkits provide support for geometric modeling, but
do not integrate an explicit time management. Therefore,
animation must be integrated at a low-level and is not sup-
ported by object-oriented animation concepts. Interaction
components are typically provided as complex black-boxes
(e.g. [15]) which makes it difficult to specialize these com-
ponents, to reuse parts of them, and to integrate animation.
Often interaction and animation components are attached to
geometric components. However, this is difficult to achieve
for complex animations and interactions because their rela-
tionships are more of a temporal than a spatial nature.

We present a toolkit for interactive, animated 3D wid-
gets based on a new methodology for the symmetric model-

ing of geometry and behavior. Both geometry and behavior
are represented by first class components, the geometry
nodes and behavior nodes. These nodes are organized in
two types of directed acyclic graphs, the geometry graphs
and behavior graphs. A geometry graph is a renderer-inde-
pendent hierarchical scene description, whereas a behavior
graph manages the flow of time and events, and is responsi-
ble for time- and event-dependent constraints. Geometry
graphs and behavior graphs are associated with shareable
graphics objects which are visualized by geometry nodes
and constrained by behavior nodes.

The toolkit provides 3D widgets, which construct geom-
etry graphs and behavior graphs, perform operations on
these graphs through a high-level interface, and define
object ports which are used to link together 3D widgets.
The ports of a widget specify which of its internal nodes
and graphics objects are visible from outside, and how the
widget can be linked to other widgets. 3D widgets simply
the usage of node and object networks.

The paper is organized as follows. First, we give a short
overview of geometric modeling by geometry graphs. Next,
we introduce behavior nodes and behavior graphs, and
show how behavioral modeling is related to geometric
modeling. Finally, we explain how 3D widgets can be mod-
eled through geometry graphs and behavior graphs.
Throughout the paper, we develop an animated triangle set
editor as a driving example.

2. Geometry graphs

Geometry graphs are declarative, hierarchical descrip-
tions of 3D scenes similar to OpenInventor or VRML scene
graphs. We distinguish between graphics objects and graph
nodes.

2.1 Graphics objects
Graphics objects represent all kinds of 3D primitives and

graphics attributes, e.g., spheres, triangle sets, colors, tex-
tures. Fig. 1 shows part of the class hierarchy.

These graphical abstract data types can be characterized
by their flyweight design [2] which ensures that they are as
minimal and as small as possible, and that they can be used
in large numbers and implemented efficiently [9]. Graphics
objects do not include any context information and do not
make any assumptions about their representation in the
underlying 3D rendering toolkit, i.e., they do not know how

* This work is support by the Minister of Science and Research of the State of
North-Rhine Westphalia, Germany.

to render themselves. They are used to represent application
data, not rendering data.

In order to render graphics objects, they are processed
by virtual rendering engines which map graphics objects to
appropriate calls of the underlying 3D rendering system. A
virtual rendering engine is an abstract device connected to a
concrete 3D rendering system such as OpenGL. Therefore,
we can process the same set of graphics objects for differ-
ent rendering systems. The Virtual Rendering System VRS
[3] is responsible for providing virtual rendering engines.

2.2 Geometry nodes
Geometry nodes are the components for building geom-

etry graphs. Based on their structural properties, geometry
nodes are divided into leaf nodes, mono (or transient)
nodes, and poly nodes. One or more geometry graphs
describe the geometry and appearance of a 3D scene.

In general, geometry nodes provide higher-level opera-
tions for graphics objects. In order to render a frame or to
answer ray intersection requests geometry graphs are tra-
versed by a virtual rendering engine. Each geometry node
sends its associated graphics objects to that engine (e.g.,
MThing which collects attributes and primitives). Geometry
nodes can modify the scene composition by calculating
transformation matrices (e.g., MAdjuster which fits sub-
graphs into target volumes) or record scene information
(e.g., MWatcher which stores the current model view trans-
formation matrix).

2.3 Example: A simple triangle set editor
We develop an animated editor for triangle sets. First,

we explain the geometry graph for that application, then we
will show how the editor can be animated by behavior
graphs. Later we will simplify the application by using 3D
widgets.

The editor visualizes a triangle set and its convex hull.
Part of the editor’s geometry graph is shown in Fig. 2. The
MAdjuster node exhibit fits its subgraph into the volume vol

given by an RBox graphics object. It applies an RTransform
graphics object tfE to its subgraph. Both MThing nodes
refer to the same graphics object objE of type RTriangleSet.
Additionally, a material graphics object mCH is applied to
the convex hull. To render an image of an exhibit, we con-
nect its geometry graph to a canvas (Fig. 3a) which pro-
vides a rendering engine. Fig. 3 shows a dragon head
rendered with an OpenGL rendering engine (b) and with a
Radiance [16] rendering engine (c). A canvas is controlled
by the studio, the controller for geometry graphs, behavior
graphs, and 3D widgets.

The main differences between traditional approaches for
hierarchical scene descriptions and our approach are:
•Graph nodes are distinguished from graphics objects

which allows us to easily customize graphics objects for
the needs of specific applications without having to
change the scene modeling classes.

SharedObject

RShape
RTriangleSet
RBox
RSphere

RAttribute
RColor
RMaterial
RTransform

MGeometryNode
MLeafGeometry

MMonoGeometry

MPolyGeometry
MGeometryGroup

MAdjuster

MThing

Graphics Object Classes

Geometry Node Classes

MWatcher

Figure 1. Graphics objects and geometry node
classes.

Figure 2. Geometry description of the triangle
set editor.

MView exhibit

MThing

MAdjuster

MGeometryGroup

MThing

MThing

RTransform projection

RTransform orientation

RColor
RBox ground

RBox vol
RTransform tfE

RColor

RTriangleSet objE

RColor
RMaterial mCH
RConvexHull ch

Geometry Graph Graphics Objects

Figure 3. Root of the geometry graph (a). Image
generated by OpenGL (b) and by Radiance (c).

(a)

Canvas 1 Canvas 2
OpenGL Engine Radiance Engine

Studio

MThing exhibit

(b) (c)

•Graphics objects are associated with both geometry
graphs and behavior graphs, and therefore inherently
linked to scenes and animations.

•Graphics objects are processed by virtual rendering
engines which allow us to map them to different render-
ing toolkits (e.g., OpenGL, RenderMan).

3. Behavior graphs

Behavior graphs specify the animation and interaction of
a 3D application. They are closely related to geometry
graphs because they usually apply constraints to graphics
objects which are associated with geometry nodes.

Behavior nodes can be divided into two groups: time-
related behavior nodes which synchronize animations and
event-related behavior nodes which manage interaction
events. Together with geometry nodes, behavior nodes rep-
resent the basic building blocks for 3D widgets. Fig. 4
shows part of the behavior node class hierarchy.

3.1 Time manager behavior nodes
The time management provided by behavior nodes is

based on the following temporal abstract data types:
•Time: a float value, measured in milliseconds. Corre-

sponds either to the real time or a model time.
•Time requirements: specify time demands of behavior

nodes. A time requirement consists of the natural (i.e.
desired, optimal) duration, a stretchability, and a shrink-
ability. For example, the time requirement [10sec, -4sec,

+5sec] specifies a desired lifetime of 10 seconds. How-
ever, the time management may assign only 6 seconds
lifetime due to the shrinkability of -4, or may assign at
most 15 seconds lifetime. Durations can be specified as
infinite.

•Moments: represent points in time. A moment contains
the current point in time (e.g., real time), and the lifetime
interval of the behavior which receives the moment.
Moments are sent by time events to behavior nodes in
order to active behavior nodes and trigger the synchroni-
zation of animations. Based on the lifetime contained in
a moment, behavior nodes can plan and distribute their
activity.

3.2 Time management
Time requirements and moments are used by time man-

agers to negotiate with behavior nodes and to synchronize
their activity. To activate a behavior graph, it is connected
to a time manager which requests the behavior graph’s time
requirement. In a bottom-up process, the behavior nodes
calculate the total time requirement. Based on that informa-
tion, the time manager assigns the behavior graph a life-
time. During the lifetime, the time manager sends
synchronization events to the behavior graph. These events
are evaluated by the behavior nodes in a top-down process
(s. Fig. 5).

Time managers obtain time events from clocks which
constructs time events. We distinguish between two types
of clocks: real-time clocks send the actual system time, and
model-time clocks send time events in an order and fre-
quency defined by the application (e.g., to record an anima-
tion at a fixed rate of frames per second, the application
must use a model-time clock).

3.3 Time-related behavior nodes
Time-related behavior nodes are categorized into time

setters, time modifiers, and time groups.

Time Setters
Time setters define the time requirements of its sub-

graphs. It can define time stretchability and time shrinkabil-
ity, natural durations (MDuration), and infinite durations
(MInfiniteDuration). It can also use the time requirement of
another behavior node for its body (MDurationCopy).

Figure 4. Behavior node classes.

MSharedObject
MBehavior

MLeafBehavior
MTimeCt
MInteraction

MMonoBehavior
MTimeSetter

MDuration

MInfiniteDuration

MCopyTimeSetter

MTimeModifier
MReverseTime
MRepeatTime

MPolyBehavior

MTimeGroup
MSequence
MSimultaneity
MTimeTable

...

...
...

MEventFilter
MEventSwitch

MInteractionGroup

...

Time

Behavior Graph

Time
Requirements

Moments

Manager

Figure 5. Time management for behavior graphs.

- 4 -

Time Modifiers
Time modifiers transform time requirements of their

subgraphs. Time modifier classes include: MTimeRepeater
behavior nodes map a moment modulo another moment,
and passes the resulting moment to its subgraph. MTimeRe-
versal behavior nodes invert moments and delegate the
inverted moments to their subgraphs. Thus, for a subgraph
the direction of the time progress is inverted. Time reversal
nodes are useful to model retrograde actions.

Behavior Groups
Behavior groups use a time layout to manage their child

nodes. A time layout calculates the individual lifetimes of
the child nodes based on their time requirements. If a
behavior group is synchronized to a new time, the time lay-
out checks which child nodes have to be activated or deacti-
vated. It synchronizes all active child nodes to the new
time, and assigns the calculated moments to them. Exam-
ples for time layouts are:
•Sequence: It distributes time in sequential, disjoint

moments to its child nodes. Only one child node is alive
at any given time during the duration of the sequence.

•Simultaneity: It aligns all child nodes to its own life time.
If a child node defines a shorter (or longer) natural life
time, the layout tries to stretch (or shrink) the child
nodes’ life time.

•FadeIn and FadeOut: FadeIn layouts assign moments to
their child nodes which start in cascading order like in
the case of the sequence layout, but all child nodes
remain activated until the last child node is deactivated.
FadeOut layouts are reversed FadeIn layouts.

•Time Table: Uses explicitly given lifetimes for each child
node. The lifetime of a child node can be specified in
absolute points in time, or relatively to the lifetime of the
behavior group.
The introduction of time requirements and time setters

was motivated by the space requirements and space setters
developed in InterViews [9], and by the TEX [19] boxes
and TEX glue model. Applied to time, it allows us to spec-
ify animations at an abstract level and makes it unnecessary
to calculate the exact time of an action in an animation.
Behavior groups provide an automatic time negotiation
mechanism based on time layouts.

3.4 Constraints
Constraints form a main category of behavior nodes. A

constraint node is associated with the constrained object
and establishes its constraints at the beginning of its life-
time, and removes the constraints when its lifetime ends.
Constraint networks managed by constraint solvers (e.g.,
SkyBlue [13]) can be anchored in behavior graphs and con-
nected to the flow of time and events by behavior nodes.

Time-dependent functions which are applied to parame-
ters of graphics objects represent a main category of con-
straint nodes. A time constraint behavior node (MTimeCt)
associates an attribute of a graphics objects with a time-
dependent function (MTimeMap). To maintain the encapsu-
lation of the graphics object, the MTimeCt node knows the

member functions (i.e., the methods) of the graphics object
which set and retrieve the attribute.

An MTimeMap represents a function which maps a
given moment to a numerical value of a generic type. If the
constraint node is synchronized, the mapping calculates the
new parameter values and applies them to the graphics
object. For example, an MLinearTimeMap<Vector> map-
ping interpolates two given vectors during the time interval
defined by the moment. The interpolation proceeds slower
at the beginning and at the end. A collection of mapping
classes is shown in Fig. 6.

3.5 Animating the triangle set editor
The animation fades in a new object loaded by the trian-

gle set editor. In the beginning the object is hidden in its
convex hull. The object’s volume is enlarged to its default
size. Then, the convex hull becomes transparent. To fade
out the object, we reverse the fade-in behavior. Addition-
ally, we define an automatic rotation for the object which
can be activated and deactivated. The behavior graphs for
these animations are shown in Fig. 7.

The fade-in behavior consists of two sequential behav-
iors. The first behavior consists of two simultaneous behav-
iors which both constrain the bounding box vol (the target
volume into which the triangle set is pressed) during 3 sec-
onds. Two time-dependent functions are applied to the min-
imal point and maximal point of the bounding box. The
second behavior constrains the material mch during the next
2 seconds (it actually constrains the transparency coeffi-
cient of the material).

The fade-out behavior consists of an MTimeReversal
node linked together with the fade-in behavior. Moments
sent to the fade-out behavior node are reversed, i.e. we get
the retrograde animation.

The rotate-obj behavior has an infinite time requirement.
Infinite moments are mapped to the moment [0, 5sec] by
MTimeRepeat. The time constraint maps incoming
moments to the numeric range [0, 360] and applies the new
angle coefficient to the transformation tfE., i.e. a full rota-
tion is performed every 5 seconds.

In the example, the fade-in behavior requires a natural
time of 4 seconds. The actual time assigned to the sequen-
tial behavior group may differ but is distributed in a 3:1
proportion to both child nodes.

The behavior graphs of this example are linked together
by a time manager which is controlled by the studio (Fig.
8). The triangle editor application can activate or deactivate

Figure 6. Time constraint classes.

MTimeCt<T,R>
MTimeMap<T>

MLinearTimeMap<T>

MBezierTimeMap<T>

MBSplineTimeMap<T>

MFunctionTimeMap<T>

MLeafBehavior
R (constrained object class)

- 5 -

individual behaviors based on user input or user interface
actions.

3.6 Interaction by behavior nodes
Several research tools have been developed which

explore new interaction techniques and interface styles.
However, they are limited with respect to robustness, com-
pleteness, and portability. Most 3D toolkits (e.g. [5][15])
provide low-level interaction techniques, but their reusabil-
ity is limited due to bindings to concrete geometry types
and their coarse-grained object oriented design.

In our approach, interaction can be specified by behavior
nodes which evaluate time events and canvas events. These
interaction nodes can be used to specify complex interac-
tions and multi-state augmented transition networks [7].

The base class MInteraction defines four states: starting,
processing, terminating, and canceled. The states change if
start, end, termination, or cancel conditions are satisfied.
Interaction nodes can be linked together to build complex
interactions. State changes are propagated to child interac-
tion nodes. Since interaction nodes use their own event
types for communication, other behavior nodes can be
inserted between them. Basic interaction nodes are:

•Manipulator nodes: They map device events (e.g.,
mouse motion events) on graphics objects. Manipulators
include trackballs, camera manipulators, and 3D sliders.

•Event filter nodes: They filter certain types of events and
decide how to distribute events to subgraphs. They are
useful to optimize event handling and to switch between
interactions.

•Selectors: Selectors process ray requests and picking
requests. They return information about the objects
which have been hit by a ray, a line or a pixel. A request
processed by a selector can be restricted to graphics
objects which belong to a specified group. All graphics
objects can be assigned group identifications by tag
attributes.
State changes are triggered if conditions are satisfied.

Conditions are modeled by condition objects which can be
composed to complex conditions. For example, a key con-
dition can be combined with a mouse motion condition, and
together they could trigger the rotation of a trackball.

4. 3D widgets

Behavior nodes provide a simple method to compose
animation and interaction descriptions. Geometry graphs
provide also a straight forward method to compose 3D
scenes. The relation between geometry graphs and behavior
graphs is mainly determined by shared graphics objects. To
reduce the complexity of building 3D applications even
more, frequent geometry graph patterns and behavior graph
patterns can be encapsulated in 3D widgets. We adopt the
definition of widget as “an encapsulation of geometry and
behavior used to control or display information about appli-
cation objects” [1].

3D widgets are high-level components which construct
internal graphics objects, geometry graphs, and behavior
graphs. 3D widgets allow the developer to perform opera-
tions on these graphs through a high-level widget interface.
This interface hides much of the details and complexity of
the node and graph construction. Only a few of the internal
geometry nodes and behavior nodes are visible from out-
side the widget.

3D widgets are defined by their ports, resources and
internal graphics objects and nodes.

Ports
A port determines how widgets can be linked together.

For each of its visible graphics objects or nodes and for
each graphics object or node supplied to the widget from
outside, a 3D widget defines a port. A port specification
includes
• the classes of the graphics objects or nodes,
• the number of objects, and
• the read-write permissions, i.e. whether an object is

imported (or exported) as read-only or readable/writable
object.

Figure 7. Behavior graphs for animating the editor.

MSequence fade-in

MDuration (natural=3sec)

MTimeCt
RBox vol

Behavior Graphs Graphics Objects

MDuration (natural=1sec)

MTimeCt

<Vector, RBox>

<Double, RMaterial>
RMaterial mCH

MLinearTimeMap

MLinearTimeMap

Duration fade-out (natural=3sec)
MTimeReversal

MSequence fade-in

MInfiniteDuration rotate-obj
MTimeRepeat (modulo [0,5] sec)

MTimeCt
RTransform tfE
MLinearTimeMap<Double, RTransform>

MTimeCt
<Vector, RBox>

MLinearTimeMap

MSimultaneity

Figure 8. Behavior graphs for animating the editor.

MTimeManager

MSequence fade-in

MDuration fade-out

MInfiniteDuration rotate-obj

Studio

- 6 -

We use the following symbolic notation for port specifi-
cations:

Resources
Resources specify attributes of internal geometry nodes,

behavior nodes and graphics objects. A resource is defined
by its name, its type, its default value, and its current value.
Resources are mainly used to configure 3D widgets by
resource files or interactively by a resource editor. This
mechanism has been adopted from 2D user interface
toolkits.

4.1 Example 1 : transformer box widget
To illustrate the internal structure of 3D widgets, we will

show in the following how to construct an interactive trans-
former box (Fig. 10) with handles to scale and to rotate a
shape. The geometry graph for this widget arranges 6 side
scale handles, 8 corner resize handles, and 12 rotation han-
dles around a wire-frame bounding box. The behavior
graph for the transformer widget consists of manipulator
nodes, one for each handle. The manipulator nodes con-
strain the associated RTransform graphics objects scalingTf
and rotationTf which contain the actual transformation
matrices. Both transformations represent the “output chan-
nels” of the widget. The graphs are illustrated in Fig. 11.

The graphs can be encapsulated in the TransformerWid-
get as shown in Fig. 12. A transformer widget expects a
scaling and a rotation transformation which are connected
to those geometry nodes which should reflect the actual
transformation. The widget exports the handles’ behavior
tfBoxBehavior and the geometry graph tfBoxGeometry (see
also Fig. 11).

Example 2 : Triangle Set Editor Widget
The editor widget for triangle sets allows users to select

triangles, edges, and vertices of a triangle set. Several oper-
ations can be performed on selected parts: delete triangles,
delete edges, delete vertices, add new triangles, refine
selected triangles, smooth selected triangles etc. This
widget implements the core functionality of the triangle
editor application.

The geometry graph consists of MThing nodes which
visualize differently the selected and unselected parts. For
example, unselected vertices are visualized as 3D points
whereas selected vertices are represented by small spheres.
The behavior graph consists of MSelector nodes which per-
form ray intersection tests in order to determine if the user
has selected parts of the triangle set.

(Class)
object name

(Class)
object name

Imported Object Exported Object

Figure 9. Notation for port specifications.

Figure 10. Transformer box applied to a shape.

Figure 11. Geometry graph and behavior graph for
an object transformer.

MThing tfBoxGeometry
MThing

MThing sclGeo1

MThing sclGeo6

...

MThing
MThing rotGeo1

MThing rotGeo11

...

MThing
MThing resizeGeo1

MThing resizeGeo7

...

MThing wiredBox

MInteractionGroup tfBoxBehavior
MManipulator sclManip1

MManipulator sclManip6

...

MManipulator rotManip1

MManipulator rotManip11

...

MManipulator resizeManip1

MManipulator resizeManip7

...

RTransform scalingTf

RTransform rotationTf

RTransform
scalingTf

RTransform
rotationTf

MBehavior
tfBoxBehavior

MGeometry
tfBoxGeometry

TransformerBox Widget

Figure 12. TransformerWidget and its ports.

MThing tfBoxGeometry

MInteractionGroup tfBoxBehavior

RTransform scalingTf

RTransform rotationTf

- 7 -

The widget expects a triangle set and an MWatcher node
(which should be installed in the geometry graph of the
application). The watcher is used to adjust the coordinate
systems between the triangle set in the application’s geom-
etry graph and the editor’s geometry graph. A watcher node
records separately the transformation matrices for each path
in a geometry graph and for each canvas which draws the
geometry graph. The editor widget exports its geometry
graph, behavior graph, and the current selections.

Example (Part 3) : Pedestal Widget
The pedestal widget exhibits a shape onto a pedestal and

displays a title by 3D characters on the vertical sides of the
pedestal. The shape can be scaled and transformed by a
linked transformer box widget. The pedestal widget is used
in our example to display the editor’s triangle set.

The widget’s geometry graph contains the layered
boxes, the 3D characters, and a node for displaying the
shape. It exports the local coordinate system of the shape
by a watcher node, and the transformation graphics objects
used for connecting to the transformer box.

The pedestal widget’s behavior graph defines behaviors
to show the title (moving it out) and to hide it (moving it
inside the box), to fade in the shape, and to fade out the
shape. Parts of the geometry graph and behavior graphs
developed in the previous sections can be reused.

4.2 3D Widget visual language
The programming of 3D applications can be simplified

using a visual language for 3D widgets, their ports and rela-
tions. Fig. 15 illustrates how the triangle set editor can be
rewritten as a network of 3D widgets. We implement the
functionality of the triangle set editor by instances of the
Pedestal Widget, the TransformerBox widget, and the Tri-
angleSetEditor widget. Their geometry graphs and behav-
ior graphs are bound to a studio. The studio associates
geometry graphs with canvas objects. It connects behavior
graphs to time managers. The behaviors are activated (resp.
deactivated) the user interface. Several steps of the anima-
tion, started when a new triangle set is loaded, are shown in
Fig. 16.

An editor for the visual construction of 3D widgets is
currently under development. Basically, a 3D widget sup-
plies a full specification of its ports to the editor. Runtime
type information for nodes and graphics objects is used
together with the port specifications to check the semantic
of object relations.

4.3 Collection of 3D widgets
We have defined a few experimental 3D widgets. This

collection is far from being complete but may serve as a
starting point for a development of a library for general pur-
pose 3D widgets.

Transformer Box
A Transformer widget constructs a 3D tool used to

rotate, scale, and translate a shape in 3D space. Its geome-
try graph and its behavior graphs are basically designed as
shown in Fig. 11.

CameraCockpit
A CameraCockpit widget consists of a complex geome-

try graph which specifies the cockpit’s instruments, and a
complex behavior graph which interprets the movements of
the steering-wheel and controls the instruments. The widget
constrains an imported scene node.

RTriangleSet
ts

MGeometry
editorGeometry

MBehavior
editorBehavior

TriangleSetEditor Widget
MThing editorGeometry MThing editorBehavior

RTriangleSet ts

RPoints3D
RSphere

RSphere

...

Internal
Graphics
Objects

Figure 13. Triangle set editor widget and its ports.

MWatcher
localCoordSystem

RTriangleSubset
selectedParts

RShape
exhibit

MWatcher
watcher

MBehavior
fade-in

MBehavior
fade-out

Figure 14. PedestalWidget and its ports.

MBehavior
showLabel

MBehavior
hideLabel

MGeometry
geometry

RTransform
tf1

RTransform
tf2

Pedestal Widget

Geometry Graph

Behavior Graphs

Figure 15. 3D widget configuration for the object
editor.

Studio

TriangleSet
Editor
Widget

RTriangleSet

watcher local CSshape

G B

G B

TS

G B B B B B

tf 1
tf 2

Transformer
Box

Widget

Pedestal Widget

scaling rotation

- 8 -

Text
A Text widget visualizes 3D characters. The characters

can be organized by different layouts, e.g. aligned along a
curve. Multi-line texts are supported. The Text widget pro-
vides callback bindings for individual characters.

Editor Group
A EditorGroup widget controls a set of shapes. Each of

the shapes can be selected or deselected. For a selected
shape, graphics attributes are temporarily installed (e.g., a
point light source in the center of the shape to highlight the
current selection). The widget defines a behavior subgraph
containing interaction nodes which detect shape selections.

Slider
A slider widget is the 3D equivalent to a 2D slider. The

geometry graph defines the look of the slider. The behavior
graph provides a slider handler.

Button
Like its 2D equivalent, a Button widget is associated

with actions defined by a command interaction. The widget
imports a geometry graph whose shape is aligned with the
button’s geometry.

Shadow
A Shadow widget calculates shadows of an associated

shape object for a set of shadow planes. Its geometry graph
embeds the shadow polygons in the 3D scene. Its behavior
graph defines interactions for each individual shadow. This
widget can be used to implement interactive shadows.

5. Implementation

The presented concepts have been realized in MAM/
VRS, a 3D graphics and visualization library implemented
in C++. The Virtual Rendering System VRS supports the
rendering libraries OpenGL, RenderMan, POV Ray, and
Radiance. The Modeling and Animation Machine MAM is
an ongoing project which serves as framework for imple-
menting interaction and animation strategies. As applica-
tion programming interface, developers can choose the C++
API or an embedding of MAM/VRS in Tcl/Tk [12]. Using
the interpretative Tcl/Tk language facilitates the rapid pro-

Figure 16. Object viewer during the animation.

Figure 17. CameraCockpitWidget applied to the

- 9 -

totyping of 3D applications and guarantees portability
across different operation systems. For more information,
see http://wwwmath.uni-muenster.de/~mam.

6. Related work

In the last few years several object-oriented 3D graphics
too lk i t s have been proposed , e .g . GRAMS [4] ,
OpenInventor [15], GROOP [8], TBAG [5], Obliq-3D [11].
These toolkits introduce object-oriented concepts applied to
3D graphics.

GRAMS appears to be one of the first toolkits with ren-
dering-independent 3D graphics. OpenInventor provides
geometric node classes based on the OpenGL rendering
library. It supports basic interaction handling mechanisms.
These toolkits concentrate more on 3D graphics than on
user interface construction.

TBAG is characterized by its functional approach to 3D
graphics based on constrainable, time-variant graphical
data types. Obliq-3D uses time-variant properties for ani-
mating objects. Our approach complements these object-
oriented concepts by an object-oriented design for behav-
ioral modeling.

Based on UGA [18][17][1][14] several new metaphors
for 3D widgets and concepts for visual programming of 3D
widgets have been developed. UGA is one of the first sys-
tems with a close integration of geometry and animation.
Our approach has been motivated by similar goals, and con-
centrates on an object-oriented design for 3D widgets and
its implementation structures, i.e. geometry nodes and
behavior nodes.

7. Conclusions and Future Work

The key features of the presented architecture for ani-
mated, interactive 3D widgets are:
•Graphics objects are separated from geometry nodes

which makes it easy to install dependencies between
geometry and animation. Graphics objects can be shared
throughout the whole application. Application-specific
graphics objects allow developers to embed their own
data structures directly into the graphics toolkit.

•Look and feel of a 3D widgets can be expressed by
geometry nodes and behavior nodes. Since behavior
nodes are treated as first-class objects, general and reus-
able behavior components can be designed without
being part of a specific geometry class. The time man-
agement facilitates the design of complex time flows.

•3D widgets raise the level of abstraction at which 3D
applications are developed. The construction and the
maintenance of hierarchical object networks is com-
pletely encapsulated into 3D widgets which represent
geometry graph patterns and behavior graph patterns in a
compact way.

•The ways 3D widgets can be combined are defined by
their ports which offer the prerequisites for the visual
programming of 3D widgets.
The presented object-oriented architecture for interac-

tive, animated 3D widgets provides a framework for the

rapid development of large 3D applications. Future work
includes the development of specialized 3D widgets for
visualizing and exploring multi-dimensional geo-data.

 References

[1] D. Conner, S. Snibbe, K. Herndon, D. Robbins, R. C.
Zeleznik, A. van Dam, Three-Dimensional Widgets. Com-
puter Graphics (1992 Symposium on Interactive 3D Graph-
ics), Vol. 25, No. 2, March 1992, pp. 183-188.

[2] P. R. Calder, M. Linton, Glyphs: Flyweight Objects for
User Interfaces. Proceedings of the ACM SIGGRAPH Third
Annual Symposium on User Interface Software and Tech-
nology, 1990.

[3] J. Döllner, K. Hinrichs: The Design of a 3D Rendering
Meta System. In: Eurographics Workshop on Programming
Paradigms for Graphics ‘97, Budapest, 1997.

[4] P. K. Egbert, W. J. Kubitz, Application Graphics Modeling
Support Through Object -Orientation, Computer, October
1992, pp. 84-91.

[5] C. Elliot, G. Schechter, R. Yeung, S. Abi-Ezzi SunSoft, Inc.
TBAG: A High Level Framework for Interactive, Animated
3D Graphics Applications. Proceedings of SIGGRAPH ‘94,
pp. 421-434.

[6] M. Gleicher, A. Witkin. Through-the-lens camera control.
Proceedings of SIGGRAPH’92, pp. 331-340.

[7] M. Green, A Survey of Three Dialogue Models. ACM
Transactions of Graphics, Vol. 5, No. 3, July 1986, pp. 244-
275.

[8] L. Koved, W. L. Wooten, GROOP: An object-oriented
toolkit for animated 3D graphics. ACM SIGPLAN
NOTICES OOPSLA’93, Vol. 28, No. 10, October 1993, pp.
309-325.

[9] M. Linton, J. Vlissides, and P. Calder. Composing user
interfaces with InterViews. IEEE Computer, pp. 8-22, Feb-
ruary 1989.

[10] B. Myers, User-interface tools: Introduction and survey.
IEEE Software, Jan. 1989, pp. 15-23.

[11] M. Najork, M. Brown, Obliq-3D: A High-Level, Fast-Turn-
around 3D Animation System. IEEE Transactions on Visu-
alization and Computer Graphics, Vol 1, No. 2, Juni 1995,
pp. 175-192

[12] J. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley,
1994.

[13] M. Sannella. SkyBlue: A Multi-Way Local Propagation
Constraint Solver for User Interface Construction. Pro-
ceedings of UIST’94, pp. 137-146.

[14] M. Stevens, R. C. Zeleznik, J. F. Hughes, An Architecture
for an Extensible 3D Interface Toolkit. Proceedings of
UIST’94, pp. 59-67.

[15] P. Strauss, R. Carey, An object-oriented 3D graphics
toolkit. SIGGRAPH’92 Proceedings, Vol. 26, No. 2, pp.
341-349.

[16] G. J. Ward, The RADIANCE Lighting Simulation and
Rendering System, Proceedings of SIGGRAPH’ 94, pp.
459-472.

[17] R. C. Zeleznik et al., An object-oriented framework for the
integration of interactive animation techniques. Proceed-
ings of SIGGRAPH’ 91, Vol. 25, No. 4, pp. 105-112.

[18] R. C. Zeleznik et al., An Interactive 3D Toolkit for Con-
structing 3D Widgets. Proceedings of SIGGRAPH’93, pp.
81-84.

[19] D. E. Knuth. The TEXbook. Addison-Wesley, Reading,
MA, 1984.

