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Abstract

Scene graphs are fundamental data structures
for hierarchical scene modeling. The general-
ized scene graph overcomes various limita-
tions of current scene graph architectures such
as support for different 3D rendering systems,
integration of multi-pass rendering, and de-
clarative modeling of scenes. The main idea is
to separate scene specification from scene
evaluation. To specify scenes, scene graph
nodes are arranged and equipped with render-
ing objects, e.g., shapes, attributes, and algo-
rithms. To evaluate scenes, the contents of
scene graphs nodes, the rendering objects, are
evaluated by rendering engines, which use the
algorithm objects to interpret shapes and at-
tributes. Using generalized scene graphs, most
real-time rendering techniques for OpenGL
and several 3D rendering systems can be inte-
grated in a single scene representation without
loosing control over or limiting individual
strengths of rendering systems.

1 Introduction

Scene graphs are ubiquitous: most high-level
graphics toolkits provide a scene graph appli-
cation programming interface (API) to model
3D scenes and to program 3D applications. An
ideal scene graph API should simplify pro-
gramming of 3D applications, optimize ren-
dering performance, and provide abstraction
by encapsulating rendering algorithms [11].
The generalized scene graph supports applica-
tion development on top of different, inde-
pendent rendering systems, integrates seam-

lessly rendering techniques that require multi-
pass rendering, and facilitates declarative
scene modeling.
The generalized scene graph is based on an
object model with three main object categories
(Figure 1). Rendering objects include 3D and
2D shapes, appearance and transformation
attributes, handlers for rendering objects, and
rendering techniques. Scene graph nodes hier-
archically organize rendering objects and may
generate and constrain rendering objects. Ren-
dering engines traverse and interpret the con-
tents of generalized scene graphs. During
scene graph evaluation, the rendering engine
manages a generic rendering context, associ-
ates rendering objects, and invokes handlers.
Handlers implement algorithms that map at-
tributes and shapes to constructs of a target
rendering system. We separate handlers from
shapes and attributes to support different ren-
dering systems. In addition, handlers do not
restrict the kind of mapping and may support
non-graphics rendering such as sound render-
ing as well.
Techniques implement multi-pass rendering
algorithms, which need to traverse all or parts
of the scene graphs multiple times; techniques
trigger multiple traversals during scene graph
evaluation.
Furthermore, generalized scene graphs support
declarative scene modeling by a pre-evaluation
phase which analyzes scene contents. This
mechanism improves usability and compact-
ness of scene specifications, and it can be op-
timized so that the computational overhead is
reduced to a reasonable amount.
The increasing number of real-time rendering
techniques possible due to significant advances
in graphics hardware (e.g., per-pixel fragment



coloring by register combiners [7]) motivated
our work. These techniques are difficult to
integrate in current scene graph systems due to
architectural constraints. Furthermore, we have
been looking for a uniform and open API for
different rendering systems at the scene mod-
eling level.

2 Related Work

OpenInventor [14] has introduced the classical
concept of a scene graph API that has been
adopted by other systems (e.g., Java3D and
VRML). As a common characteristic, order
and arrangement of rendering primitives in the
scene graph reflect the underlying rendering
pipeline. OpenInventor, Java3D, and VRML
concentrate on real-time rendering and do not
facilitate the usage of other rendering tech-
niques (e.g., photorealistic and non-
photorealistic rendering). The scene graph
APIs differ in the way the underlying 3D ren-
dering system can be accessed: OpenInventor
provides full access to OpenGL whereas
VRML and Java3D do not provide extensibil-
ity to that degree.

Graphics frameworks such as PREMO [3],
BOOGA [1], and Generic3D [2] represent ex-
tensible, object-oriented computer graphics
architectures but do not intend to generalize
scene graphs as our work does. PREMO can
represent scenes similar to OpenInventor [15]
whereas Generic3D offers different low-level
data structures to define the type of scene rep-
resentation. However, in these systems the
scene graph itself has not been improved sub-
stantially compared to OpenInventor.
GRAMS [4] is one of few graphics systems
separating rendering algorithms from render-
ing objects. Shape rendering algorithms are
selected using rendering efficiency as criterion
[5]. In our generalized scene graph API, the
separation has been extended towards algo-
rithms evaluating attributes and multi-pass
rendering algorithms.
The Vision architecture [13], focusing on
graphics based on global illumination calcula-
tions, completely separates geometry objects
and their attribute objects using object-oriented
design even at a low level in the system archi-
tecture [12]. In our work, the separation be-
tween geometry primitives and attributes has
been extended: attribute categories do not only
include optical attributes and transformation
attributes but also include rendering algo-
rithms; a generic attribute management han-
dles rendering-system dependent attribute
types. Furthermore, we abstract and param-
eterize the evaluation process applied to scene
graphs by rendering engines.
This paper outlines the rendering aspects of the
generalized scene graph emphasizing the ge-
neric and abstract specification of image con-
tents – interaction and animation represent
complementary issues (e.g., event handling,
constraint management) which we do not con-
sider here.

3 Generalized Scene Graphs

A generalized scene graph is composed of
scene graph nodes and rendering objects. Fig-
ure 2 outlines the object model.
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Figure 1: Components of generalized scene graphs.



Rendering Objects
Rendering object are categorized as follows:
- Shapes include 2D and 3D geometric ob-

jects as well as volume data. Shape objects
do not provide any rendering functionality;
they contain only the parameters that de-
scribe their geometry and state. This en-
sures that their interfaces are not con-
strained to a specific kind of rendering
technique.

- Attributes include appearance attributes
(e.g., color, material, texture), transforma-
tion attributes (e.g., rotation, look-at, bill-
boarding), properties (e.g., level-of-detail,
picking and filtering identifiers), and
lighting attributes (e.g., light sources,
lighting switches).

- Mono attributes are attributes stored on
stacks whose top elements represent the
active attributes (e.g., color, material,
drawing style).

- Poly attributes are attributes stored as col-
lections, i.e., more than one attribute of one
type can be simultaneously active (e.g.,
light sources, picking identifiers).

- Techniques are specialized mono attributes
that encapsulate multi-pass rendering algo-
rithms.

- Handlers are specialized mono attributes
that map shapes and attributes to constructs
of a specific rendering system, perform
calculations, or convert rendering objects
into a collection of rendering objects of
less complexity. Handlers include, for ex-
ample, shape painters, shape simplifiers,
ray intersectors, and attribute painters.

- Rendering engines evaluate shapes, man-
age attribute stacks and collections, and in-
stall (respectively de-install) handlers. A
rendering engine represents a generic ren-
dering context.

Scene Graph Nodes
Scene graph nodes organize rendering objects
in a hierarchical manner; they can also gener-
ate and constrain rendering objects and thus
automate scene modeling.
Generalized scene graphs distinguish between
two types of scene graph traversals: evaluation
and inspection. The evaluation interprets and
maps scene node contents (e.g., image synthe-
sis); rendering engines perform the evaluation.
The inspection, in contrast, only explores the
scene graph contents and graph structure (e.g.,
scene graph storage). Both are implemented
based on the visitor design pattern.

Evaluation
During evaluation, scene graph nodes commu-
nicate shapes and attributes to a rendering en-
gine. The scene graph nodes formulate a "ren-
dering micro program" which processes ren-
dering objects using rendering engines (Figure
3). In a scene graph node, rendering objects
and subgraphs can be stored in an inhomoge-
neous list. The pseudo code below outlines the
node class as well as the apply and unapply
procedures:

class Node {
private: List<Object> children;
public:
 void eval(E : Engine) {
  unapply(apply(children,E),E);
 }
 void inspect(V : Visitor) {
  for each child c do {
   V.explore(c)
   if(c is a node) { c.inspect(V) }
  }
 }
};
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Figure 2: Object model of generalized scene graphs.



proc apply(C:List, E:Engine):Stack {
 S:Stack = {}
 iterate c through C {
  if(c is a shape) E.eval(c)
  else {
   S.push(c)
   if(c is a mono attribute) E.push(c)
   else if(c is a poly attribute) E.add(c)
   else if(c is a handler) E.install(c)
  }
 }
 return S
}

proc unapply(S:Stack,E:Engine) {
 while S not empty {
  c Ä S.pop()
  if(c is a mono attribute) E.pop(c)
  else if(c is a poly attribute) E.remove(c)
  else if(c is a handler) E.deinstall(c)
 }
}

Mono attributes are pushed to (popped from)
the engine’s rendering context. Poly attributes
are included in (excluded from) the collection
they belong to. Handlers are installed (de-
installed) in the handler table of the context. In
any case, appropriate attribute handlers or
shape handlers are searched and invoked that
map or apply the rendering object to the un-
derlying rendering system. In a scene graph
node, child nodes can be arbitrarily mixed with
rendering objects in the list of children – child
nodes start a nested evaluation. In any case, the
attributes of a node affect only its children and
never its sibling nodes.

Rendering Engines
A rendering engine is responsible for associ-
ating shapes and attributes as well as for in-
voking handlers. For mono attributes, the en-
gine maintains a generic list of attribute stacks.
The first time an attribute of a specific cate-
gory is actually used, a new stack for that cate-
gory is created; the top element of the stack
represents the active attribute. For poly attrib-

utes, generic collections are used; their ele-
ments are not ordered.
Common types of engines include:
- Synthesis Engines use painters and simpli-

fiers to map rendering objects to a render-
ing system.

- Geometry Engines analytically calculate
intersections between rays and objects,
objects and objects, or objects and envi-
ronment, e.g., used for 3D interaction.

- Analysis Engines gather information about
frequency of rendering objects and attrib-
utes that apply to a given shape, e.g., used
for scene editing.

Handler Table
The handler table, part of the rendering context
of an engine, is a two-dimensional array of
stacks storing handlers. The stacks are sorted
according to their service they provide (e.g.,
painting, intersection calculation, and simplifi-
cation) and their target rendering objects they
process (e.g., spheres, boxes, materials). For
each service-target pair, there is a stack whose
top element represents the active handler. This
way, multiple dispatching is implemented en-
capsulating functionality into objects.
For each supported rendering system, a spe-
cialized rendering engine has to be imple-
mented. At construction time, the engine con-
figures its handler table with native shape and
attribute painters. In a scene graph, handlers
can be overwritten like attributes, that is, the
handling of shapes and attributes can be re-
configured in each node or subgraph.
Specialized rendering engines can provide
optimized implementations of engine methods
to exploit special functionality of the underly-
ing rendering system. For example, the
OpenGL engine overloads all methods con-
cerned with geometric transformations because
OpenGL handles them directly.

Design Paradigms
The following design principles characterize
the generalized scene graph:
- Strict separation of shapes and attributes

similar to Vision [12]. Furthermore, there
is no restriction for the types of attributes –
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Figure 3. Scene graph structure and resulting engine
microprogram.



engines provide a generic rendering con-
text.

- Strict separation of declaration and im-
plementation. Handlers encapsulate all
kinds of algorithms applied to rendering
objects. Therefore, shape and attribute
classes are kept lightweight, and algo-
rithms can be partially substituted in order
to optimize or introduce application-
specific implementations.

- Separation of structure and content. Scene
graphs provide structure; rendering objects
provide contents. Both can be extended in-
dependently.

- Scene graphs are understood as param-
eterized scene content specifications. A
scene graph can only be evaluated for
given a rendering engine. The contents of a
generalized scene graph can be interpreted
for different purposes by different render-
ing systems.

- Shapes and attributes are context-
dependent. For example, a billboarding at-
tribute, which orients things towards the
viewing direction, is defined relative to the
current model-view transformation. This
allows for intelligent, automated attributes.

4 Interfacing Renderers

The generalized scene graph supports multiple
rendering systems. For each system, we im-
plement the handlers for built-in shapes and
attributes, the attributes for system-specific
features, and the specialized rendering engine.

Handling of Shapes
Two categories of handlers are responsible for
shapes: Shape painters map shapes to native
constructs of rendering systems, and shape
simplifiers decompose shapes into collections
of lower-level rendering objects (including
attributes). If no painter is provided for a
shape, the engine searches for an appropriate
simplifier. If no simplifier is found, the shape
is ignored.
Rendering engines install suitable handler at
construction time. If handlers should be sub-

stituted, they can be included in generalized
scene graphs. Typically, we substitute handlers
to use optimized rendering algorithms. For
example, an application might want to switch
between shape painters for OpenGL 1.1 and
OpenGL 1.2.
In addition, generalized scene graphs can reuse
existing graphics codings. For example, con-
sider OpenGL parsing and display functions
for objects in the Wavefront "obj" format: To
include this coding, we need
- a shape class representing a Wavefront

object;
- an OpenGL shape painter class that wraps

the C function for parsing the "obj" file and
calls the C function to draw the object; and

- a shape simplifier class that converts the
"obj" object into a sequence of rendering
objects consisting of material attributes and
polygon shapes – this way, renderers other
than OpenGL are immediately supported.

Therefore, the generalized scene graph API
does not suppress existing, possibly very effi-
cient graphics code. Figure 4 illustrates a sam-
ple scene graph using the "obj" shape classes.

Handling of Attributes
Attribute types differ to a high degree among
rendering systems. Therefore, generalized
scene graphs permit to store any attribute type.
Attributes are not evaluated unless a handler is

CameraMonoAttr

PointLight-1PolyAttr

PointLight-2PolyAttr

Floor Node

MaterialMonoAttr

RenderManShaderMonoAttr

BoxShape

RootNode

ThingNode

MaterialMonoAttr

RenderManShaderMonoAttr

ObjPainterGLHandler

ObjSimplifierHandler

ObjShape

Figure 4: Flamingo scene graph evaluated with an
OpenGL engine and a RenderMan engine.



installed. This way, attributes not applicable to
a rendering system are ignored.
The generalized scene graph API defines a
small collection of standard attributes (e.g.,
appearance and transformation attributes), and
provides specialized attributes for each sup-
ported rendering system. For example,
OpenGL-specific attributes cover most of
OpenGL’s functionality. For RenderMan a
shader attribute interfaces compiled Render-
Man shader files (Figure 4).
In particular, renderer-specific attributes,
which are included as regular attributes in
scene graphs, facilitate the production of high-
quality animations: manual post-processing of
exported scene descriptions is no longer neces-
sary because all details of the target rendering
system can be expressed in generalized scene
graphs. For all built-in attributes, default con-
versions are available to map the attributes
reasonably (e.g., materials and light sources).
In analogy to shapes, attributes can be directly
evaluated (attribute painter) or further decom-
posed into a collection of lower-level render-
ing objects (attribute simplifier), which per-
mits to model complex aggregated attributes.
For example, an "importance" attribute might
be decomposed in a certain line style and ma-
terial for OpenGL. In comparison, a nonpho-
torealistic renderer might interpret the attribute
directly.

5 Multi-Pass Rendering

Multi-pass rendering is one characteristic ele-
ment of hardware-accelerated shading, light-
ing, and modeling techniques [6][7][10][16]
that implement, for example, high quality il-
lumination models, bump-mapping, and im-
age-space CSG modeling. In generalized scene
graphs, techniques implement multi-pass ren-
dering. A technique defines one or more ren-
dering passes, and it takes control over the
evaluation of shapes and attributes. Tech-
niques may be nested, triggering nested multi-
ple passes. The technique interface is defined
as follows:

class Technique : MonoAttribute {
public:
  //multipass control
  void start(Engine);
  void stop(Engine);
  void nextPass(Engine);
  bool needsPass(Engine);

  // redirection of evaluation
  void push(MonoAttribute,Engine);
  void pop(MonoAttribute,Engine);
  void add(PolyAttribute,Engine);
  void remove(PolyAttribute,Engine);
  void install(Handler,Engine);
  void deinstall(Handler,Engine);
};

To activate a technique, we push the technique
as a regular mono attribute; it re-directs to it-
self all evaluation methods of the engines for
attributes and shapes. For example, the tech-
nique might decide in one pass to evaluate
only shapes and attributes of certain categories.
Then, rendering objects and subgraphs are
processed as many times as required. Finally,
the technique is popped and redirection ends.
The modified apply procedure is given below:

proc apply(C:List, E:Engine):Stack {
 P : List = C    // objects to be processed
 S : Stack = {}  // objects to be unapplied
 while P not empty do {
  c Ä first element of P
  P.remove(c)
  if(c is a shape) E.eval(c)
  else {
   S.push(c)
   if(c is a mono attribute) {
    E.push(c)
    if(c is a technique applicable to E) {
     t.start(E);
     while(t.needsPass(E)) {
      unapply(apply(P,E),E)
     }
     t.stop(E)
     P Ä ∅
    }
   }
   else if(c is a poly attribute) E.add(c)
   else if(c is a handler) E.install(c)
  }
 }
 return S
}

If a technique is not applicable to a rendering
engine, it is ignored and no multiple passes
result. If techniques are nested, they can come
into conflict with framebuffer resources such
as stencil buffer, depth buffer, or color buffer.
OpenGL implementations do not provide an
efficient solution to that problem because the
reading and restoring operations for framebuf-
fers use application memory. The implementa-
tion of nested techniques could be improved if
OpenGL would permit to restrict framebuffer



operations to a selected (e.g., rectangular) re-
gion and would provide a kind of framebuffer
stack implemented on the graphics hardware.

Examples
We have implemented various line drawing
styles such as haloed wire-frames or silhouette
drawings for OpenGL [9]. The corresponding
technique uses multiple rendering passes and
stenciling (Figure 5).
In addition, algorithms for shadows and re-
flection [8] have been encapsulated this way.
In Figure 6, the shadow-volume technique
provides interactive shadows, and the mirror
technique calculates reflections of scene ob-
jects.

6 Declarative Scene Modeling

Scene graphs such as in OpenInventor evaluate
scene nodes in a depth-first order. Therefore,
global information, for example about light
sources and cameras, is not available – scene
contents has to be arranged in such a way that
the depth-first order is consistent with the ren-
dering pipeline. Generalized scene graphs can
pre-evaluate the scene gathering global infor-

mation. Candidates among the pre-evaluated
rendering objects are:
- Light sources: During the pre-evaluation,

all encountered light sources are installed
and enabled. They can be embedded in a
local modeling coordinate system (e.g., the
lights of an automobile). During the main
evaluation, light switch attributes control
which light source to turn on or to turn off
in each subgraph.

- Cameras: The camera, modeled as an at-
tribute containing projection and orienta-
tion transformations, can be arbitrarily po-
sitioned in the scene graph, for example, in
a leaf node. Therefore cameras can be
moved and positioned like geometric ob-
jects.

7 Conclusions

The well-known scene graph concept can
overcome its current limitations if we distin-
guish between structure and contents of a
scene specification. The scene graph nodes and
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Figure 5. (left) Line drawing with haloed wires.
(right) Model with additional silhouette.
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their hierarchical organization constitute the
structure; the rendering objects, which are
categorized in shapes, attributes, handlers, and
techniques, represent the contents.
The evaluation of the contents is left to ren-
dering engines, which delegate the interpreta-
tion of the contents to handlers and techniques
that encapsulate mapping and multi-pass algo-
rithms. The splitting of specification (shapes,
attributes) and implementation (handlers, tech-
niques) also permits to bypass abstraction
when performance (e.g., integrating native,
optimized code) or compatibility (e.g., code
reuse) become important.
A single generalized scene graph can map its
contents to different rendering systems without
suppressing the individual strengths of the
rendering system. In addition, generalized
scene graphs cope with advanced real-time
rendering techniques because they can express
multi-pass algorithms.
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