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SUMMARY
We present an object-oriented 3D graphics and animation framework which provides a new
methodology for the symmetric modeling of geometry and behavior. The toolkit separates the
specification of geometry and behavior by two types of directed acyclic graphs, the geometry
graph and the behavior graph, which are linked together through constraint relations. All geom-
etry objects and behavior objects are represented as DAG nodes. The geometry graph provides a
renderer-independent hierarchical description of 3D scenes and rendering processes. The behav-
ior graph specifies time- and event-dependent constraints applied to graphics objects. Behavior
graphs simplify the specification of complex animations and 3D interactions by providing nodes
for the management of the time and event flow (e.g. durations, time layouts, time repeaters,
actions). Nodes contain, manipulate and share instances of constrainable graphical abstract data
types. Geometry nodes and behavior nodes are used to configure high-level 3D widgets, i.e. high-
level building blocks for constructing 3D applications. The fine-grained object structure of the
system leads to an extensible reusable framework which can be implemented efficiently.
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1. INTRODUCTION
Interactive, animated 3D applications are difficult to develop. Many paradigms and metaphors
for object-oriented 3D graphics have been proposed. However, the development of interactive
and animated 3D applications is still difficult for several reasons.
Often geometric modeling is strongly related to a specific rendering system. The developer has
to understand the underlying rendering library in order to work with the 3D graphics toolkit.
Applications are difficult to adapt to rendering systems using a different rendering-technique
(e.g. from an immediate mode library to a radiosity-based library) because the toolkit design is
based on assumptions about the rendering pipeline. In order to overcome this problem, toolkits
such as GRAMS [7] and GROOP [12] separate the graphics layer from the rendering layer.
They provide a set of built-in shapes and properties which can be used to construct objects in
the graphics layer. Main disadvantages of this concept are the loss of application semantics in
the rendering layer and the communication overhead between the graphics and the rendering
layer. Furthermore, current toolkits concentrate on an object-oriented representation of scene
components but do not extend object orientation to the control and specification of the image
synthesis process. If image synthesis processes are modeled as toolkit components, algorithms
and rendering techniques (e.g. producing motion blur or magic lenses) can be encapsulated
and provided to the developer.
Furthermore, current toolkits do not treat behavioral modeling at the same level of abstraction
as geometric modeling. By behavioral modeling we mean the modeling of time-dependent
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and event-dependent actions and processes1). Behavioral modeling is as important as geomet-
ric modeling because the specification of time-varying and event-dependent properties is the
key for animation and interaction control. Traditional toolkits do not provide an explicit
object-oriented approach for time and event handling. Instead, they support behavioral model-
ing through procedural extensions leading to a break in the system architecture.
Finally, there exists no clear strategy how to integrate time- and event-dependent constraints
for geometry components and animation components. Animated and interactive applications
contain lots of constraints among the scene components. TBAG [26], based on a functional
approach, appears to be one of the first systems integrating constraints as first class objects. No
concept for the object-oriented integration of constraints is available for systems based on
declarative scene descriptions.
Our contribution provides a framework for the uniform modeling of both geometry and behav-
ior. The main goals of MAM/VRS, the “Modeling and Animation Machine” and the “Virtual
Rendering System” are
• to specify geometry and behavior separately in geometry nodes and behavior nodes which

are organized in two directed acyclic connected graphs, the geometry graph and the behav-
ior graph,

• to provide renderer-independent graphics objects which can be visualized by geometry
nodes and constrained by time- and event-related behavior nodes, and

• to construct high-level 3D widgets by combining geometry nodes and behavior nodes.
For the representation of class hierarchies and object relationships we use the notation of the
Object Modeling Technique OMT [24].

2. OVERVIEW
We start with an overview of the system architecture, introduce graphical abstract data types
used throughout the system, and define the basic node types of the toolkit.

2.1 System Architecture
The toolkit consists of two main parts, the rendering layer and the graphics layer (Fig. 1). The
rendering layer provides graphics objects which are instances of graphical abstract data types
and represent graphical entities, e.g. shapes, transformations, colors and textures. The render-
ing layer is based on low-level 3D rendering libraries (e.g. OpenGL and PEX), their function-
ality is encapsulated in virtual rendering devices. The uniform interface of the virtual
rendering devices allows us to exchange them at run time without having to modify the appli-
cation. Since the virtual rendering devices operate on renderer-independent graphics objects, it
is easy to integrate new low-level 3D rendering libraries into the system. In general, a virtual
rendering device is associated with a window in which it visualizes graphics objects.
The graphics layer is responsible for the management of geometry graphs and behavior
graphs. Node factories support the construction and manipulation of nodes and graphs. Geom-
etry nodes visualize associated graphics objects, and behavior nodes apply constraints to
them. The graphics layer and the rendering layer are tightly coupled because geometry nodes
and behavior nodes manipulate and operate on shared graphics objects.
The toolkit is implemented in C++. We provide a C++ and a [incr Tcl] [16] application pro-
gramming interface. Motif and [incr Tk] [17] user interface bindings are available. Currently,
we have integrated the following low-level 3D rendering libraries: OpenGL, PEX, XGL,
RenderMan [29] and Radiance [30]. Portability is guaranteed due to different application pro-

1.We use the term ‘behavior’ in a technical sense because it captures both animated and interactive aspects of the model descrip-
tion. However, the term has a different meaning in the context of behavioral animation and the modeling of artificial life.
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gramming interfaces and independence from window systems and low-level 3D rendering
libraries.

2.2 Graphical Abstract Data Types
Graphical abstract data types support the tight coupling of the graphics layer, the rendering
layer, and the application layer. Consider an application managing 3D arrows. An arrow object
is an application object which has to be represented in the graphics layer in terms of nodes. To
visualize an arrow, we could combine a cone node and a cylinder node. However, two prob-
lems arise: 1. The application stores redundant information, i.e. for each arrow a cone node
and a cylinder node. 2. The arrow semantics is lost in the graphics layer and the rendering
layer. The semantics could be useful to optimize rendering and intersection algorithms.
In our approach, applications can define application-specific types as new graphical abstract
data types and integrate them in the rendering layer and the graphics layer. For example, an
arrow class can be registered in a virtual rendering device together with an arrow rendering
algorithm. The application creates its arrow objects and embeds them in generic shape nodes.
If these shape nodes are requested to render themselves, they pass the arrow objects to the vir-
tual rendering device which in turn uses the arrow rendering algorithm. This approach main-
tains the application-semantics in all three layers and avoids data duplication and data
conversion.
The design of graphical abstract data types can be characterized by their flyweight and ele-
mentary nature. The flyweight design [4] ensures that they are as minimal and as small as pos-
sible. They do not include any context information and make no assumptions about how they
are visualized. A sphere graphics object, for example, stores its radius and midpoint, but does
not include a transformation matrix, a color, a virtual rendering device or a surface approxima-
tion. Graphical abstract data types are elementary because shapes and attributes contain only
the information implied by their types, but no context information. Only a fine-grained hierar-
chy of elementary types can be used without redundancy by all kinds of applications. These
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Figure 1. The System Architecture.
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design considerations allow us to use graphics objects in large numbers and to implement
them efficiently [14].
Furthermore, the instances of graphical abstract data types are shareable objects which can be
multiply referenced and are automatically removed when they become completely derefer-
enced. Shareability provides an efficient management of dynamically allocated objects.
We use the term graphics object as a synonym for an instance of a graphical abstract data type.
A 3D application is specified by a collection of geometry nodes and behavior nodes which are
associated with graphics objects. The animation and interaction is specified by nodes which
apply constraints to these graphics objects.

2.3 Nodes
Nodes are the basic building blocks used in the construction of animated, interactive 3D appli-
cations. They are realized as instances of node classes. Six base classes are derived by multiple
inheritance from the node structure classes MLeaf, MMono and MPoly, and the node semantics
classes MGeometry and MBehavior (Fig. 2).

2.3.1 Structural Properties of Nodes
The structural properties define how a node can be linked to other nodes and restrict therefore
the position of a node in a DAG. A leafnode terminates a subgraph and does not propagate
messages. A mononode has at most one child node, called body; all messages received by a
mononode are passed to its body if it exists. Mono nodes are mainly used to partially redefine
protocols passed through them. A polynode manages an ordered sequence of arbitrarily many
child nodes, it passes messages to all or to a subset of its child nodes.
We introduce these types to ensure the following properties of DAGs: All traversals starting
from an arbitrary node end in a leafnode, and the traversal of a mononode produces no side-
effects, i.e. the mononode does not affect its parent or siblings, but only its body.

2.3.2 Semantic Properties of Nodes
We distinguish between geometry nodes and behavior nodes. Nodes must be able to under-
stand a set of semantic-specific communication protocols. For example, geometry nodes
define protocols for intersection tests and rendering, behavior nodes for inquiring time require-
ments, for synchronization and event handling. Each geometry node and each behavior node is
either a leafnode, mononode or polynode (Fig. 2).

Figure 2. Base Node Classes.
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To construct a 3D application, we combine geometry nodes to a geometry graph and behavior
nodes to a behavior graph. A geometry graph specifies 3D scene components, their appearance
and modeling coordinate systems. A behavior graph specifies how these components vary in
time and how they react to events. The next two sections discuss both graphs in detail.

3. GEOMETRY GRAPHS
Geometry graphs are declarative and rendering-library independent descriptions of 3D scenes.
In contrast to traditional systems, geometry node classes are oriented towards the user’s view
of a 3D scene instead towards a specific rendering library. Developers can use geometry
graphs without detailed knowledge of the underlying rendering library.
Four categories of geometry nodes are provided to compose 3D scenes: shapes, attributes,
geometry groups, and image controllers. Shapes are leafnodes which embed shape graphics
objects. Attributes are mononodes which embed attribute graphics objects. Geometry groups
are polynodes which link several subgraphs. The scene objects described by the subgraphs are
arranged based on the group’s layout strategy. Image controllers manage the image synthesis
process, e.g. each camera initializes a virtual rendering device and initiates the rendering of its
assigned scenes. Scene nodes are the root nodes of geometry graphs.

3.1 A Sample Geometry Graph
To illustrate the MAM/VRS concepts we develop an interactive application for animating an
algorithm which visually constructs the Voronoi diagram [21] of a given set of points. The
points are represented by small spheres. During the animation the points are lifted from the
floor onto a paraboloid (Fig. 3a), planes that are tangential to the lifted points on the parabo-
loid are visualized (Fig. 3b), and finally the Voronoi diagram is exposed by looking into the
open paraboloid (Fig. 3c).
The geometry graph of this application (Fig. 4) is discussed in this section, the behavior graph
is explained in section 4.

Figure 3.  Animation of the Construction of a Voronoi diagram. Lifting points onto the paraboloid (a).
Fading in the tangential planes (b). Exposing the Voronoi diagram inside the paraboloid (c).

a b c
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3.2 Shapes
Shape nodes are leafnodes of the geometry graphs. A shape node specifies a visual component
of a 3D scene and is associated with one or more graphics objects. In the example (Fig. 4), the
RFacet objects P1, ..., PN are referenced by shape nodes. Graphics objects and nodes can be
shared since they are shareable objects, e.g. all points are represented by only one shape node
and an associated RSphere object S (Fig. 4).
Each MShape node is associated with a RShape2) object (Fig. 2). A MConvexHull node is
associated with a vertex-based graphics object (RVertexBased) and visualizes its convex hull
through a triangle set (RTriangleSet). The MNormalViewer node visualizes the facet normals
of a polyhedron graphics object (RPolyhedron) by glyphs (e.g. small arrows) on top of each
facet.
Shape classes and geometry node classes are specified in separate hierarchies (Fig. 2) in order
to decouple their functionality. This reduces the implementation complexity and results in
lightweight objects which can be used in large numbers.
The design of the MAM/VRS shape hierarchy is semantic-oriented, i.e. similarities in class
methods are used as criterion for inheritance. Traditional toolkits frequently use implementa-
tion similarities as a criterion, e.g. a line set class is derived from a point set class. However,
from a user’s point of view similarities in the semantics of shapes are more important than
similarities between their internal implementation-dependent representations. For example, all
triangle, quadrilateral, line-based and point-based shapes share methods to manipulate vertices
and vertex information, therefore all of them are subclasses of an abstract base class
RVertexBased.

2.The syntax convention for class names is as follows: Node classes start with ‘M’, graphical abstract data types start with ‘R’
(rendering/graphics objects).

Figure 4. Geometry Graph for the Algorithm Animation.
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3.3 Attributes
Attribute nodes are geometry mononodes. They determine the visual appearance and control
the coordinate systems of shape nodes. To keep the attribute mechanism side-effect free, an
attribute node affects only its subgraph and does not influence sibling nodes.
The MAttribute node embeds an arbitrary attribute graphics object. For example, there are
attribute nodes which constrain or modify attributes. The MBrightness node changes the
brightness of the color attribute applied to its body. The MAdjuster node scales and translates
the shapes contained in its body so they fit into a target volume. In Fig. 4 it is used to fit the
main scene components into a given RBox.
As for shape classes, attribute classes and geometry node classes are specified in separate hier-
archies (Fig. 6) in order to decouple their functionality. The design of the MAM/VRS attribute
class hierarchy generalizes the visual attributes found in standard rendering libraries such as
OpenGL and RenderMan. The core attributes can be evaluated by all rendering devices. To use
specific capabilities of renderers, attribute subclasses can be integrated, e. g. for the
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Figure 5. Shape Classes.
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RenderMan rendering device we supply more subclasses of volume shaders and surface shad-
ers.
There are several reasons to model attributes as first-class objects. Attributes are objects, not
parameters of shapes. Therefore, application-specific attributes can be easily integrated into
the toolkit since the number of attributes attached to a shape is not fixed. Existing attribute
classes can be subclassed to access specific features of the underlying rendering library. Fur-
thermore, we can use the same technique for constraining attributes and shapes since both are
represented by graphics objects.

3.4 Geometry Groups
The MGeometryGroup nodes are geometry polynodes which organize their child nodes
according to geometry layouts (Fig. 7). A geometry layout can transform the modeling coordi-
nate system of its child nodes and determine which of them are traversed. Examples:
• Unconstrained: No restrictions for child nodes.
• BSplineAlignment: Child nodes are positioned and oriented along a BSpline and optionally

scaled to a target volume. For example, the character objects of the title are aligned along a
BSpline HB and organized in the geometry group H (Fig. 4).

• Switch: Child nodes are selected according to the type of virtual rendering device used to
render the node, or according to the view plane size of the child node’s image.

3.5 Image Controllers
Image controllers manage the image synthesis process (Fig. 7). A MScene node is a geometry
polynode which orientates and projects its child nodes. It defines a virtual environment with a
default modeling coordinate system and default attributes. An associated RView graphics
object determines the view orientation and projection matrix. MBlurScene and MLens are spe-
cialized scene nodes. A MBlurScene blurs the image. A MLens node restricts the drawing area
for its child nodes to a certain region of the view plane area. For example, lens nodes can be
used to implement magic lenses [3].
A MCamera object is associated with a virtual rendering device and a list of scenes. It is
responsible for redrawing and performing operations on these scenes.
A Renderer represents a virtual rendering device which provides methods to render shapes, to
push and to pop attributes, and to control the rendering buffers (e.g. z-buffer, accumulation
buffer, stencil buffer). We provide virtual rendering devices for OpenGL, XGL, PEX,
RenderMan and Radiance. These virtual rendering devices are implemented as specialized
Renderer classes.
To visualize a shape, a virtual rendering device uses a rendering algorithm which is encapsu-
lated in a RPainter class. A painter is an attribute (Fig. 6) which is associated with a shape
class. Therefore, applications can switch between visualizations because painters can be

MPolyGeometry
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MGeometryGroup

MLens
MScene

MBlurScene

GeometryLayout

Unconstrained

BSplineAlignment

Switch

Figure 7. Geometry Groups and Image Controller Classes.
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exchanged for each shape class. For example, a point set can be visualized in low-quality as
pixels and in high quality as spheres.
MAM/VRS defines painters for all built-in shape classes. In order to optimize the rendering
process, additional painters can be provided for specific rendering toolkits. For example, the
arrow painter converts an arrow into a cylinder shape and a cone shape. MAM/VRS provides
an additional faster painter for arrows which is optimized for OpenGL. The base painter class
RPainter provides methods to convert a high-level shape into lower-level built-in shapes, e.g. a
cylinder can be converted into a triangle mesh.

3.6 Caching of Scene Descriptions
Systems like Grams [7] and GROOP [12] represent a scene by a collection of geometric
objects each of which contains all its attributes. Therefore, such collections of objects can be
passed directly to the renderer. An alternative strategy organizes scene objects in directed acy-
clic graphs (e.g. OpenInventor [28]). In this display-list oriented approach, scenes are rendered
by traversing the graphs. During the traversals the evaluation of attributes is managed by
stacks.
Our geometry graphs are based on a declarative, display-list oriented composition technique
which offers the following advantages:
• “Intelligent” geometry nodes modify attributes and shapes and can be integrated in the

scene description. For example, an adjuster node dynamically modifies the transformation
attributes in its subgraph. Systems which restrict the attributes to be declarative do not sup-
port the integration of such attribute modifiers into geometry descriptions.

• Declarative scene descriptions come close to the user’s view of 3D scenes because they
encode the building process and the image synthesis process of the scene components. The
construction of geometry graphs can be directly supported by a graphical user interface.

However, a traversal of the geometry graph is needed to perform geometric operations, e.g.
intersection tests, computations of bounding boxes, and rendering. In order to avoid such tra-
versals, MAM/VRS provides a caching mechanism. A cache node is a geometry polynode.
Each time a shape node is encountered during the traversal of its child nodes a cache node
installs a cache item. A cache item stores optimized, approximated shapes together with all
attributes applied to them.
A sample node configuration is shown in Fig. 8, the cache node stores the actual transforma-
tion matrices (T’, T3, T4) and resolves the multiply referenced shape S2. If the sample geome-
try graph in Fig. 8 is rendered with an OpenGL rendering device, the Opt(Si) represent
OpenGL display lists. Once the cache is built, the node performs geometric operations on the
cache items. The cache can be updated automatically. Graphics objects and cache entries are
connected to a notification center. If a graphics object has been modified, the cache receives a
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Figure 8. Cached Subgraph.
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notification. Cache nodes guarantee the principle of locality [31] (i.e. attributes should be
placed near the object they modify).

4. BEHAVIOR GRAPHS
A behavior graph is a directed acyclic graph (DAG) which specifies animation and 3D interac-
tion. Behavior graphs and geometry graphs are indirectly related because a geometry node and
a behavior node can be associated with the same graphics object. Geometry nodes determine
the graphics objects contained in a 3D scene, whereas behavior nodes animate these graphics
objects by applying constraints to them.
In general, we distinguish between time-related and event-related behavior nodes, and behav-
ior groups. Time-related behavior nodes calculate and control the time assigned to their child
nodes and maintain time-dependent constraints. Event-related behavior nodes respond to
incoming events, and maintain event-dependent constraints. In analogy to geometry groups,
behavior groups organize child nodes according to a time layout and an event layout.
The geometry graphs and behavior graphs of MAM/VRS applications are managed by model
controllers which control the rendering and animation of 3D scenes.

4.1 Flow of Time and Events
Explicit modeling of the time and event flow offers several advantages:
• General and reusable behavior components can be designed because their functionality is

not part of a specific geometry class.
• Behavior nodes can be combined to model complex animations and interactions because

they are treated as first-class objects. The behavior node class hierarchy serves as the base
for the development of application-specific behavior classes.

• Behavior graphs can be used to build story books. Behavior group nodes and time modifier
nodes calculate and distribute life time intervals to their child nodes. A behavior node can
specify an action relative to its life time. An action can be modified by transforming the life
time interval of its behavior node. For example, to stretch an action in time, we stretch the
life time assigned to its behavior node.

• Behavior nodes can be combined to model user interaction components. For example, a
trackball can be realized by an interaction node which responds to mouse events and con-
strains a rotation graphics objects. Interaction nodes can be nested to form complex interac-
tions. The trackball could be extended, for example, by an additional behavior node which
temporarily applies a wire-frame attribute to the shape being rotated.

• Behavior graphs support the object-oriented integration of time- and event-dependent con-
straints in 3D applications. Behavior nodes automatically install and remove these con-
straints depending on their status.

• Behavior graphs and geometry graphs can be processed independently. For example, the
application can use one thread for controlling the behavior graph and another one for the
geometry graph.

4.2 Temporal Abstract Data Types
Most graphics systems define graphical abstract data types such as vectors, volumes, and ras-
ters to simplify the management of geometry. To simplify the management of time, MAM/
VRS defines the following temporal abstract data types:
• A model time represents a point in time measured in milliseconds.
• A moment M represents a point t in a time interval [t0, t1]. A moment assigned to a behavior

node determines the node’s life time interval and the current point in time within this inter-
val. Moments are essential for behavior nodes which specify animation processes. Based on



- 11 -

the knowledge about their life time, behavior nodes can plan and distribute their activity.
Moments provide a local model time for behavior nodes. Fig. 9 shows a sample moment. Its
current time is 50 seconds. This point in time belongs to the time interval [10, 90] (in sec-
onds).

• A time requirement describes the time demand of a behavior node. It consists of the natural
(i.e. desired, optimal) duration Tnatural, the minimal duration Tmin, and the maximal dura-
tion Tmax (Fig. 10). A time requirement can specify an infinite natural duration. Further-
more, it may define an alignment A which is used to position a shorter moment within a
longer moment. With A = 0.0 the shorter moment starts at the same time as the longer
moment, A = 1.0 causes both moments to end at the same time, and A = 0.5 centers the
shorter moment within the longer moment.

• A time run is a process which sends synchronization events to a target behavior node during
a given moment and at a given frequency. It is typically implemented as a separate thread.
The time runs created by behavior nodes are managed by the model controller. Fig. 11
shows a time run for the moment of Fig. 9. It sends synchronization events at a frequency of
1 event / 10 seconds to the associated target behavior node.

Due to the lightweight design, behavior nodes do not include time requirements by default. We
add these requirements by including specialized mononodes in the behavior graph, called time
setters, or calculate them implicitly through behavior groups. The local model time of a
behavior node can be modified by time modifiers.

4.3 Time Setters
Time requirements are specified by MTimeSetter behavior mononodes. A time setter specifies
or modifies the time requirements of its body. A time setter class redefines the synchronize
method of behavior nodes. MAM/VRS defines the following time setter classes (Fig. 12):
• MDuration defines the time requirement of its body by a TimeRequirement.
• MFlexibleDuration redefines the time requirement of its body by adding time stretchability

and shrinkability. A time stretchability and shrinkability of zero fixes the time requirement
of a behavior node.

tt0 t1
m = [ t0=10,  t1=90;   t=50 ]

Time

Figure 9. Time Moment.

Tnatural

Tmax

Tmin

Figure 10. Time Requirement.

Time Run
m = [ t0=10,  t1=90;   t=50 ]

t0 t1

(MBehavior)
target

Synchronization Events

Frequency = 1 Event / 10 Seconds

Figure 11. Time Run.
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• MInfinite defines an infinite duration as time requirement of its body. These time setters are
used to model permanent actions.

• MDurationCopy uses the time requirement of another behavior node as time requirement of
its body.

Fig. 13 illustrates the usage of time setters. The time setter D1 specifies a natural duration of
10 seconds for the behavior node B1 (Fig. 13a). The duration is fixed, i.e. it cannot be
stretched or shrunk. D2 speficies a natural duration of 20 seconds for B2. The maximal dura-
tion assigned to B2 can be (20+10) = 30 seconds, the minimal duration (20-5) = 15 seconds
(Fig. 13b). The MFlexibleDuration node (Fig. 13c) overwrites the time stretchability of D3b,
i.e. the maximal duration assigned to B3 can be (10+30) = 40 seconds. The MDurationCopy
node D4 (Fig. 13d) uses for B4 the time requirement defined in D2.
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Figure 12. Behavior Node Casses.
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4.4 Time Modifiers
Time modifiers are used to transform the local model time of behavior nodes. A MTimeModi-
fier node (Fig. 12) defines a time-to-time mapping which is applied to all moments passed
through the time modifier. MAM/VRS defines the following time modifier classes:
• MTimeConstant assigns a constant time to its body (Fig. 14a).
• MTimeReversal inverts the direction of the time progress for the body (Fig. 14b). Time

reversal nodes are useful to model retrograde actions.
• MTimeCreep defines a creeping time progress, i.e. the time progress is slow in the beginning

and fast at the end of a time interval (Fig. 14c). Alternatively, the time progress can be fast
in the beginning and slow at the end. The creeping is controlled by a speed coefficient. This
time modifier is used to model animation processes which begin or end slowly.

• MTimeSlowInOut defines a time progress which is slow in the beginning and at the end of a
time interval (Fig. 14d). The slow-in and slow-out speed is controlled by speed coefficients.

• MTimeDiscrete defines a discontinuous time progress. A time interval is decomposed in
piecewise constant time intervals (Fig. 14e). This time modifier is used to model time
“jumps”. MTimeDiscrete provides coefficients which specify the number of intervals and
the time increments.

• MTimeRepeat maps a moment modulo a time interval, and passes the resulting moment to
its body (Fig. 14f). For example, to model an action which lasts 5 seconds and which should
be repeated permanently, we specify an infinite duration followed by a time repeater with
the modulo moment [0, 5sec] (Fig. 14g).

MBehavior B3

Figure 13. Time Setter Examples.

(10, +0, -0)

MBehavior B1

MDuration D1 (20, +10, -5)

MBehavior B2

MDuration D2
(+30, -0)

MDuration D3b

MFlexibleDuration D3a

MBehavior B4

MDurationCopy D4 (D2)

(10, +0, -0)(a) (b)

(c)

(d)

Time in

Time out

Time in

Time out

Time in

Time out

Time in

Time out

Time in

Time out

Time in

Time out

Figure 14. Time Functions Used by Time Modifiers (a-f). Behavior Graph for a Permanent Action (g).
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4.5 Behavior Groups
Behavior groups provide an automatic time negotiation mechanism which allows the devel-
oper to specify animation processes at a high level of abstraction. The time negotiation is
based on time layouts and event layouts. Behavior groups are implemented as behavior poly-
nodes which associate a time layout and an event layout (Fig. 12).

4.5.1 Time Layouts
A time layout calculates the individual life times of the associated behavior group’s child
nodes based on their time requirements and the layout strategy. If a behavior group receives a
synchronization event, the time layout checks which child nodes have to be activated or deac-
tivated. It synchronizes all active child nodes to the new time, and assigns the calculated
moments to them.
Instead of the global system time, moments are passed to behavior nodes. Since time layouts
provide mechanisms to distribute and to align time intervals, the designer is relieved from cal-
culating absolute times. Based on a relative model time, we can specify a wide class of time-
dependent behaviors at a high level of abstraction, e.g. time layouts can be used to design ani-
mation processes like in story books. Examples for time layouts (Fig. 12) are:
• Sequence: Defines the total time requirements as sum of the time requirements of the child

nodes. It distributes a received moment proportionally to the child nodes. The moments
assigned to the child nodes are sequential and disjoint. Only one child node is alive at any
given time during the duration of the sequence.

• Simultaneity: Defines the total time requirement as the maximum of the time requirements
of the child nodes. It distributes a received moment to the child nodes if their natural dura-
tion is equal to the duration of the moment. If not, the simultaneity layout tries to shrink or
stretch the time requirements of the child nodes to fit the duration. If they still do not match
it aligns the duration of the child nodes within the moment.

• FadeIn and FadeOut: Like sequences, they define the total time requirement as the sum of
the time requirements of the child nodes. FadeIn layouts assign moments to their child
nodes. Child nodes are activated like in the case of the sequence layout, but all child nodes
remain active until the life time of the last child node expires. FadeOut layouts are reversed
FadeIn layouts.

Fig. 15 shows how actions can be composed by behavior groups, and how time requirements
are evaluated. The behavior nodes A1, A2, and Si are processed sequentially. Behavior node Si
consists of two simultaneous behavior nodes, A3a and A3b. D1, D2, and D3 define infinitely
stretchable time requirements of 1, 2, and 1 seconds. The sequence Se is prefixed with a dura-
tion D of 100 seconds. If Se actually gets from its parent 100 seconds, it distributes this
moment proportionally to its child nodes, i.e. A1 and Si get 25 seconds each, and A2 50 sec-
onds. Since A3a can last at most (1+14) = 15 seconds, Si centers the life time of A3a within the
25 seconds. Se activates in turn A1, A2 and Si, A3a and A3b are activated by Si.

MDuration D (100, +0, -0)

MBehaviorGroupSequence Se

MDuration D1 MDuration D2 MDuration D3

MBehaviorGroupSimulaneity SiA1 A2

A3a

A3b

(1,+ ,0) (2,+ ,0) (1,+ ,0)

Figure 15. Time Management through Time Layouts.
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4.5.2 Event Layouts
Event layouts (Fig. 12) determine how events are dispatched to child nodes. For example, the
MultipleIA event layout dispatches an event to all child nodes, whereas an ExclusiveIA event
layout dispatches an event to child nodes until one child node has consumed the event. The
ActiveIA distributes events to those child nodes which are activated. Event layouts in behavior
groups can be used to specify complex interactions and multi-state augmented transition net-
works [10].

4.6 Behavior Pools
A behavior pool which is implemented as a behavior polynode (Fig. 12) collects and controls
behavior subgraphs. The child nodes can be activated and deactivated individually. If a child
node is activated, the behavior pool requests its time requirements and registers a time run for
that node in the model controller. The synchronization events created by the time run are dis-
patched to the child node. If a child node is deactivated, the behavior pool deregisters the time
run.
A behavior pool maintains for each of its child nodes a list of start actions and stop actions. An
action is an object which performs operations (e.g. callbacks, method invocations). The start
actions for a child node are executed when it is activated, and the stop actions are executed
when it is deactivated. Examples for actions used in behavior pools are the MSwitchOn action
which invokes the activation of a child node, and the MSwitchOff action which causes the
deactivation of a child node.

4.7 Constraints
Constraints are implemented as behavior leafnodes (Fig. 12). They can constrain geometry
nodes, behavior nodes, and graphics objects. A constraint node establishes its constraints at
the beginning of its life time, and removes the constraints when its life time ends. We distin-
guish between one-way and multi-way constraints. One-way constraints know their solution
strategy, whereas multi-way constraints are solved by an external constraint solver, e.g. Sky-
Blue [25]. Constraint networks are anchored in behavior graphs and connected to the flow of
time and events by behavior nodes.

4.7.1 Mappings
In general, one-way constraint nodes for graphics objects apply time-dependent functions to
parameters of graphics objects. MAM/VRS encapsulates these functions in mapping objects.
A mapping represents a function which maps a given moment to a value (e.g. float, 2D point,
3D point). If the constraint node obtains a synchronization event, the mapping calculates the
new value and applies it to the graphics objects.
• LinearMap maps the time interval specified by a moment onto a polyline. The polyline is

defined by an ordered sequence of control points. For each moment, the mapping calculates
and returns the corresponding point on the polyline.

• BezierMap maps the time interval specified by a moment onto a Bezier curve. The Bezier
curve is defined by an ordered sequence of control points. For each moment, the mapping
calculates and returns the corresponding point on the curve.

• BSplineMap maps the time interval specified by a moment onto a B-spline curve. The B-
spline curve is defined by an ordered set of control points, a knot vector, and the curve
degree. The mapping contains an interval B-spline segment cache which improves the cal-
culation of B-spline points for a given moment.

The mapping classes are generic. For example, a LinearMap<Vector> mapping interpolates a
set of vectors during the time interval defined by the moment.
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4.7.2 Constraints for Graphics Objects
Constraint nodes can describe time-varying parameters of graphics objects. For each of the
time-varying parameters, constraint nodes require a mapping object. Basically, a constraint
node class defines three operations: constraint installation, constraint application, and con-
straint removal.
The constraint installation takes place when the constraint node is activated. Whenever the
constraint node receives a synchronization event, it calculates the new parameter values by
parameter mappings, and assigns the new parameter values to its constrained graphics object.
In addition, it may notify the model controller about the modification of the graphics object in
order to cause a redrawing of the scene. The constraint is removed when the constraint node is
deactivated.
Optionally, the constraint node can restore the original state of graphics objects before the
constraint node was activated. In this case, the constraint node requests and stores the original
parameter values before the installation, and restores these values after its deactivation.

4.7.3 Constraints for Nodes
Constraints can control the activation status of nodes. A MLifeTimeCT node ensures that a tar-
get node is active during a given time interval. A MLifeCT node ensures that a target node is
activated (respectively deactivated) when the MLifeCT node is activated (respectively deacti-
vated).
For example, to turn on an actor in a 3D scene during an animation, we specify a simultaneous
behavior group which consists of the animation behavior, and a MLifeCt which keeps the
actor’s geometry node activated during its own lifetime.

4.8 Animating the Example Algorithm
The Voronoi algorithm is animated as follows: The paraboloid appears in the scene, the points
are lifted onto the paraboloid, the tangential planes are enlarged, and the paraboloid disap-
pears. Simultaneously the camera moves such that finally the Voronoi diagram becomes visi-
ble by looking into the open paraboloid. We revert the animation by moving the camera back
to its original position, shrinking the planes and fading in the paraboloid. Optionally, the title
should fly through the scene.
The behavior graph of the algorithm animation is presented in Fig. 16; the corresponding
geometry graph is shown in Fig. 4. The animation’s behavior pool consists of the Voronoi con-
struction, the reverse animation, and the flight of the title. Basically, these behavior nodes con-
strain the graphics objects which are also associated with the geometry graph.
For example, the MViewCT nodes constrain the look-from point of the RView graphics object
C. The mappings of these MViewCT nodes are BSplineMap objects which define the camera
path taken during the life times of the MViewCt nodes. The first MViewCt is preceded by a
MTimeCreep node. Therefore, the camera moves slowly in the beginning and fast at the end of
its animation. Optionally, we could constrain the look-to point of C by providing an additional
mapping. The MTransmissionCT nodes constrain associated RTransmission graphics objects.
In general, their mappings interpolate the surface transmission coefficients in the range [0.0,
1.0] during their life times.
The ReverseAnimation behavior reuses the EnlargePlanes and LiftPoints behavior sub-
graphs. The sequential behavior group is preceded by a time reversal node, i.e. the time
progress is inverted.
The MLifeCT in the TitleFlight behavior activates the associated geometry group H which
contains the 3D characters for the title. Only activated geometry nodes are considered for ren-
dering. The MAlignmentCT constrains the B-spline interval to which the child nodes of the
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geometry group are aligned, i.e. the characters are moved along the B-spline. Its mapping
defines the section of the B-spline curve to which the characters are aligned.
The constraint relations are established (respectively removed) automatically when the behav-
ior nodes are activated (respectively deactivated) by the behavior pool. Behavior nodes have to
be activated by the application. Optionally, we could supply an interaction behavior which
switches a behavior node of the behavior pool on or off according to the user’s interaction.

4.9 3D Interaction
Several research tools have been developed which explore new interaction techniques and
interface styles. However, they are limited with respect to robustness, completeness, and port-
ability [11]. In traditional 3D toolkits, interaction techniques are provided as black boxes.
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Figure 16. Behavior Graph for the Algorithm Animation.
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Therefore, the developer cannot reuse or extend these components. Furthermore, it is difficult
to combine animation components and interaction components.
The MAM/VRS concept for interactions is based on an object-oriented decomposition of their
functional components such as events, conditions, and interaction processes, which are dis-
cussed in the following sections.

4.9.1 Events
MAM/VRS extends the concept of events to a general notification mechanism between behav-
ior nodes. Low-level hardware events represent one category of events which are organized
similar to the X11 event types in an object-oriented fashion. Another category of events is
used for the node-to-node communication. These events are typically created by nodes or the
model controller (e.g. time events are created by time runs, collision events are created by
geometry nodes). Behavior nodes are responsible for dispatching events.

4.9.2 Event Conditions
A behavior node has to trigger actions if it receives the proper events. We could encode the
event checking procedure in the behavior node’s methods. However, this would restrict the
reusability of behavior nodes since event conditions are application-specific, e.g. a shape rota-
tion may be controlled by mouse movements but also by key events. Therefore, we provide
objects (Fig. 17) which test whether an event satisfies a condition. When behavior nodes
receive events, they use these event conditions to decide if the event is of interest.
For example, the ShapeSelection condition is satisfied by mouse click events which pick a
shape in the scene, whereas the BackgroundSelection condition is satisfied if no shape in the
scene is selected. The ConditionGroup combines event conditions by logical operations (e.g.
and, or, not).

4.9.3 Interactions
Interaction nodes are behavior mononodes which control an interaction behavior (Fig. 17). A
MInteraction node specifies four methods: start, process, end, and cancel. These methods are
called if the interaction node receives events which satisfy the corresponding event conditions,
i.e. the start condition, process condition, end condition, and cancel condition.
Interaction nodes can be linked together to build complex interactions. If an interaction node
starts, it sends a start interaction event to its body. If there is another interaction node in the
body, it receives this event and starts, too. In the same way, an interaction node triggers the
methods for process, end, and cancel in its subgraph. Because interaction nodes use their own

Figure 17. Event Condition and Interaction Classes.
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event types for communication, other behavior nodes can be inserted between two interaction
nodes. MAM/VRS defines the following basic interaction nodes:
• Graph-editor nodes temporarily modify the graph structure by inserting or removing graph

nodes. For example, to impose a wire-frame style on a shape during an interactive rotation,
a graph-editor node can prepend an attribute node to a shape node when the interaction
starts; this attribute node is removed when the interaction ends.

• Drag nodes map time events or device events to numerical intervals. The values are used to
constrain parameters of graphics objects. The drag nodes include trackballs (associated with
a polar or a rotation transformation matrix), translation draggers (associated with a transla-
tion matrix), and scale draggers (associated with two points in space which are interpo-
lated).

• Command nodes are used to integrate application-specific callbacks in the behavior graph.
The MCommandIA node executes an action if a given event condition is satisfied, and it is
used to infiltrate actions in interaction processes.

4.10 Model Controller
Model controllers are used by application frameworks, they control the rendering and anima-
tion of 3D scenes. Model controllers are associated with the root nodes of the geometry graphs
and the behavior graphs (Fig. 18). They install time runs which synchronize behavior nodes,
dispatch external events (e.g. user input) to behavior nodes, and manage the redrawing of
scenes. MAM/VRS provides specialized model controllers for Motif and [incr Tcl]/[incr Tk].
Controllers are toolkit-specific because the redrawing of scenes and the management of time
runs depend on the underlying window system.

The Motif model controller XtMCtrl is associated with a Motif application framework defined
by XtMFrame. This framework provides a graphical user interface with standard menus. It
installs Motif cameras defined by XtMCamera. Cameras are toolkit-specific since they must
map events of the underlying window system to MAM/VRS events. In analogy to Motif,
MAM/VRS designs a framework for [incr Tcl]/[incr Tk].
A MAM/VRS application always instantiates a framework which implicitly creates a default
camera, a default controller and a default behavior pool. The application links its scenes to the
camera and its behavior graphs to the default behavior pool. Finally, it activates the user inter-
face.

5. 3D WIDGETS
One of the key goals of 3D animation toolkits is to provide a rich collection of interactive 3D
widgets [32]. Conner et al. [5] define a 3D widget as “an encapsulation of geometry and
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Figure 18. Model controller and its class relations.
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behavior used to control or display information about application objects”. 2D user interface
toolkits provide a universal collection of 2D widgets which can be used for many application
domains. Although metaphors and paradigms for 3D interaction (e.g. the rack to perform
high-level deformations [5] and the cone tree to view hierarchical information [23]) have been
investigated no generic 3D toolkit is available which provides universal 3D widgets.

5.1 Structure of 3D Widgets
3D widgets represent high-level, interactive, animated 3D components. They construct inter-
nal geometry graphs and behavior graphs, and allow the developer to perform operations on
these graphs through a high-level widget interface. This interface hides much of the complex-
ity of the node and graph construction. Only a few of the internal geometry nodes and behav-
ior nodes are visible from outside the widget.
Ports determine how widgets can be linked together. For each of its visible graphics objects or
nodes, and for each graphics object or node supplied to the widget from outside, a 3D widget
defines a port. A port specification includes the classes of the involved objects or nodes, the
number of objects, and the read/write permissions, i.e. whether an object is imported (or
exported) as read-only or readable/writable object. Fig. 19 shows the symbolic notation for
port specifications.

3D widgets simplify the application construction because developers are not directly con-
cerned with building geometry graphs and behavior graphs. Since nodes provide a transparent
implementation structure and can be combined in a flexible way, this leads to highly config-
urable widgets and allows the developer a straightforward implementation of application-spe-
cific widgets. In order to build a 3D application, the developer only has to instantiate 3D
widgets and connect their ports.

5.2 A Sample Trackball Widget
As an example for high-level interaction and animation components, we develop the trackball
widget. The trackball widget is used to rotate a shape interactively. A trackball widget imports
a shape node F, a polar transformation graphics object B, and the attribute graphics object W.
The attribute node S associated with W is prepended to F during the interaction (Fig. 20a).
The widget exports a behavior subgraph composed of a polar drag node T and a graph-editor
node. The MPolarDrag node maps the mouse movement to a 3D rotation which is assigned to
the polar transformation B.

Figure 19. Notation for Port Specifications.
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The trackball widget has to be connected to the application’s behavior graph. In Fig. 20b a
trackball behavior is connected to the behavior pool of our sample animation. The widget is
associated with the RTransform node B and the shape node F (Fig. 4).
The start condition for the MPolarDrag node can be specified as ‘Click(Button1 down) and
(ShapeSelection(F))’. These conditions are modeled by condition groups. The end condition is
specified as ‘Click(Buttonany up)’, the process condition as ‘Motion’, and the cancel condition
as ‘Click(Button2 down)’.

5.3 3D Widget Overview
MAM/VRS defines several standard 3D widgets.
• WShapeTransformer: A shape transformer widget allows the user to rotate, scale, and trans-

late a shape. It uses small three-dimensional glyphs located around a bounding box of the
shape. The glyphs are used like handles to perform the different transformations (Fig. 21a).

• WCameraCockpit: A camera cockpit widget consists of a complex geometry graph which
specifies the cockpit’s instruments (built by the MAM/VRS solid modeler), and a complex
behavior graph which interprets the movements of the steering-wheel (Fig. 21b). These
behavior nodes constrain the RView graphics object associated with the application’s
MScene node. The snapshot in Fig. 21b shows the camera cockpit widget and the shape
transformer widget applied to a geometric object.

• WShapeGroup: A shape group widget controls the interactive selection from a set of shape
nodes. For a selected shape, an attribute node can be installed temporarily (e.g. a brightness
node to highlight the current selection). The widget implements a behavior subgraph con-
taining interaction nodes which detect shape selections.

• WActorCamera: An actor camera widget provides automatic camera control. It determines
the view position and direction of a virtual camera according to the positions and the
weights of virtual actors [20].

• WEnvironment: An environment widget contains scene elements and installs lights. Addi-
tionally, it provides environment elements such as the sky (i.e. a hemisphere enclosing the
whole scene) and different terrains.

6. IMPLEMENTATION
The MAM/VRS toolkit is implemented in C++ and consists of more than 120 node classes
and 140 classes for graphical abstract data types. Currently, we have implemented virtual ren-
dering devices for OpenGL, PEX, RenderMan, XGL, and Radiance. We provide user interface
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3D Trackball

MBehaviorPool

ReverseAnimation
TitleFlightConstructVoronoi T

(a)

(b)

(MShape)

(RPolarTf)(MPolyBehavior)
const T

const F

B

(RAttribute)
const W

Geometry: Behavior:

Informatik
 



- 22 -

bindings for OSF/Motif and for [incr Tcl]/[incr Tk], an extension of the command tool lan-
guage Tcl [22].

6.1 Application Programming Interfaces
Application developers can use the C++ class interfaces or the [incr Tcl] class interfaces [16].
We use C++ for the implementation of the core classes due to its efficiency. Rapid prototyping
of 3D applications is facilitated by using the interpretative [incr Tcl] language, an object-ori-
ented extension to Tcl/Tk. For example, application-specific behavior classes which in general
differ only in the included functional expressions can be represented by one generic [incr Tcl]
behavior class which includes functional expressions as parameters evaluated at run-time.
Thus, we avoid recompiling, relinking and extensive subclassing.

6.2 Object Management
Dealing with large numbers of objects requires mechanisms to simplify the object handling.
MAM/VRS supports object management through an object sharing mechanism, object facto-
ries, and object repositories.

6.2.1 Shared Objects
MAM/VRS objects are created dynamically, and can be multiply referenced. Each shared
object contains a reference counter. If a shared object is referenced, this counter is incre-
mented. If it is dereferenced, the counter is decremented. A shared object is destroyed if its
counter becomes zero.
The template class SO<T> provides safe pointer handling for shared objects of type T. A
SO<T> object stores a pointer to a shared object. If a shared object is assigned to this pointer,
SO<T> references the shared object automatically. SO<T> dereferences its shared object
before changing this pointer and before its destruction.

6.2.2 Object Factories
Object factories are classes which construct instances of other classes. Object factories sim-
plify the usage of a fine-grained object-oriented system because they hide much of the com-

Figure 21. Shape Transformer Widget (a). Combination with the Camera Cockpit Widget (b).
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plexity of class hierarchies and class constructors, and offer methods to produce frequently
used graphics objects and node configurations. MAM/VRS groups the node classes and graph-
ical abstract data types in the following factories:
• Shape factory: Creates shape graphics objects.
• Attribute factory: Creates attribute graphics objects.
• Geometry Factory: Creates shape nodes, attribute nodes, scene nodes, and camera objects.
• Behavior Factory: Creates nodes for time management, time modification, interaction, and

constraints.
• Text Factory: Creates node configurations which represent 3D text objects.
• Transfer Factory: Converts standard 3D file formats into MAM/VRS node configurations.
The shape and attribute factories are merged in the VRS factory, and the other factories are
merged in the MAM factory by multiple inheritance. To illustrate the object construction
through factories, the example below shows part of the ShapeFactory:

class ShapeFactory : public Factory {
public:
 SO<RSphere> sphere(float r, Vector p) { return new RSphere(r,p);}
 SO<RBox> box(Vector minpoint, Vector maxpoint) { return new RBox(minpoint, maxpoint); }
...
};

The GeometryFactory provides generic methods to construct geometry nodes. They associate
these nodes with existing graphics objects or create implicitly new graphics objects:

class GeometryFactory : public Factory {
public:
 // generic method for all shapes:
 SO<MShape> shape(RShape* s) { return new MShape(s); }

 // methods with implicit graphics objects:
 SO<MShape> sphere(float rad, Vector center) {
   return new MShape(new RSphere(rad, center));
 }
 SO<MShape> box(Vector minpoint, Vector maxpoint) {
  return new MShape(new RBox(minpoint,maxpoint));
 }
 ...
 // generic method for all attributes:
 SO<MAttribute> attr(RAttribute* a) {
   return new MAttribute(a);
 }

 // methods with implicit graphics objects:
 SO<MAttribute> color(float r, float g, float b) {
   return new MAttribute(new RColor(r,g,b));
 }
...
};

6.2.3 Object Repository
An object repository is a persistent description of nodes, graphics objects, and their relations.
These repositories are similar to container objects which automatically reconstruct objects and
object relations from a persistent representation. Object repositories can be used to build
libraries for nodes and node configurations.
All MAM/VRS classes define persistency methods, i.e. methods to write the object’s state to
files and to read it back from files. Since each class is registered in an object factory, an object
repository uses the factories to determine whether a persistent object can be reconstructed.
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6.3 C++ Implementation of the Algorithm Animation
The geometry graph and the behavior graph developed in Fig. 4 and Fig. 16 can be imple-
mented with the C++ API as shown below. First, we define the application class Voronoi
which is inherited from the Motif application frame XtMFrame. The Voronoi class specifies as
data members the nodes and graphics objects3) which we will use in the geometry graph and in
the behavior graph:

class Voronoi : public XtMFrame {
public:
 Voronoi(int argc, char** argv);
private:
 SO<RView> C;
 SO<RPolarTf> B;
 SO<MShape> F;
 SO<RTransmission> TF;
 SO<RTransmission> TP;
 Array< SO<RTranslation> > ST;
 Array< SO<RTranslation> > PT;
 Array< SO<RScaling> > PS;
 SO<MScene> Scene;
 SO<MGeometryGroup> H;
 SO<BSplineAlignment> HB;
 SO<WTrackBall> trackball;
};

The Voronoi constructor builds the graphics objects and nodes, omitted parameters are
denoted by ‘(...)’:

Voronoi::Voronoi(int argc, char** argv) : XtMFrame(argc, argv) {
 MAM mam;
 VRS vrs;

 // construct graphics objects
C = vrs.view(...);

 B = vrs.polar_tf(...);
TF = vrs.transmission(0.0);
TP = vrs.transmission(0.0);

 // build geometry and behavior for the points and their tangential planes
 SO<MGeometryGroup> point_group = mam.geometry_group();
 SO<MGeometryGroup> plane_group = mam.geometry_group();
 SO<MBehaviorGroup> lift_points = mam.simultaneity();
 SO<MBehaviorGroup> enlarge_planes = mam.simultaneity();
 SO<MShape> point_glyph = mam.shape(vrs.sphere(...));

 // read point data
 for each point (i=0, ..., N-1):

ST[i] = vrs.translation(...);
    PT[i] = vrs.translation(...); PS[i] = vrs.scaling(...);

point_group->append_child(mam.attr(ST[i])->set_body(point_glyph));
plane_group->append_child(mam.attr(PT[i])->set_body(

      mam.attr(PS[i])->set_body(vrs.facet(...)))
    );

lift_points->append_child(mam.duration(...)->set_body(
      mam.translation_ct(ST[i], mam.linear_map(...))
    ));

enlarge_planes->append_child(mam.scaling_ct(PS[i], mam.linear_map(...)));

 HB = mam.bspline_align(...);
 H = mam.aligned_text(“VORONOI”, HB)
}

Now we build the geometry graph:

3.The names of the objects correspond to the names used in the figures 4, 16, and 20.
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SO<MScene> scene = mam.scene(
  mam.geometry_group(
    mam.attr(vrs.ambientlight(...)),
    mam.attr(vrs.distantlight(...))
  ),

  mam.adjuster(...)->set_body(
   mam.attr(B)->set_body(
    mam.geometry_group(
     mam.attr(TF)->set_body(
      mam.attr(vrs.gray(0.7))->set_body(
       F = mam.shape(vrs.box(...))
      )
     ),
     ... install paraboloid ...,
     mam.attr(vrs.plastic(...))->set_body(
      mam.attr(vrs.rgb(1,0,0))->set_body(
       point_group
      )
     ),
     ... install plane_group ...
    )
   )
  ),
  mam.attr(vrs.plastic(...))->set_body(H)
);

Next, we associate a XGL camera and a Radiance camera with the scene. They are provided
by the application frame work and can be referenced by the methods ‘xgl_camera’ and
‘radiance_camera’:

xgl_camera()->append_scene(scene);
radiance_camera()->append_scene(scene);

The behavior graph (Fig. 16) for the animation can be constructed as follows:

SO<MBehaviorGroup> construct_voronoi = mam.sequence(
  mam.duration(...)->set_body(
   mam.slowinout(...)->set_body(
    mam.view_ct(C, mam.bspline_map(...))
   )
  ),
  mam.duration(...)->set_body(mam.transmission_ct(TP, mam.linear_map(1.0,0.0))),
  mam.duration(...)->set_body(lift_points),
  ... install other behavior nodes ...
);

... compose reverse_animation, title_flight analogously

trackball = mam.trackball(F,B, vrs.wire_frame());

Finally we connect the application’s behaviors to the behavior pool of the application:

behavior_pool()->append_child(construct_voronoi);
behavior_pool()->append_child(reverse_animation);
behavior_pool()->append_child(title_flight);
behavior_pool()->append_child(trackball->get_behavior());

// activate first behavior:
behavior_pool()->switch_on(0);
// trigger second behavior when the first behavior stops
behavior_pool()->append_stop_trigger(0, mam.switch_on(behavior_pool(), 1));

// add controls (e.g. menu) for (de)activating the title flight behavior
}; // end of constructor
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The main program constructs one instance of Voronoi and calls its run method which forces
the model controller to initialize the geometry graph and behavior graph:

int main(int argc, char** argv) {
  Voronoi V(argc,argv); V.run();
}

7. RELATED WORK
In the last few years several object oriented 3D graphics and animation toolkits have been pro-
posed, e.g. Grams [7], OpenInventor [28], GROOP [12], SWAMP [2], TBAG [26], UGA [33],
and Obliq-3d [19].
Similar to our approach the architecture of Grams is separated into a rendering layer, a graph-
ics layer, and an application layer. Grams appears to be one of the first systems providing ren-
dering portability by strictly separating the rendering and the graphics layer. However,
application objects have to be converted to objects of the graphics layer, which again have to
be converted to objects of the rendering layer. The conversion involves a computational and a
storage overhead, and the semantics of application-specific types is lost. Grams’ architecture
does not focus on animation and interaction.
GROOP is an object oriented graphics toolkit based on the camera/stage/actor paradigm. The
class hierarchy stresses on user-oriented organization of 3D objects which significantly
increases the level of abstraction at which 3D models and animations can be specified. Like
Grams, the criterion used for subclassing is the common internal representation of shapes.
This leads to an implementation-dependent class hierarchy which is not portable between dif-
ferent rendering-techniques. Both, GROOP and Grams do not use fine-grained object orienta-
tion to such an extend as our approach does.
SWAMP is an object-oriented graphics environment and stream-based animation system.
Streams generalize animation control strategies such as keyframing and script languages.
SWAMP appears to be one of the first systems which explicitly decouples geometry descrip-
tions from behavior descriptions in an object-oriented fashion. MAM/VRS extends the stream
concept to a fine-grained object-oriented organization of behavior.
OpenInventor has introduced a powerful node-based and graph-based construction paradigm
for 3D applications which is extended by our approach to behavioral modeling. OpenInventor
scene graphs rely on OpenGL’s rendering pipeline. Nodes are highly order-dependent and rely
on side-effects of sibling nodes. In our toolkit, the structural properties of nodes overcome this
problem. OpenInventor attributes and shapes are not portable between different rendering
techniques and rendering libraries. Image synthesis processes are not represented by nodes.
Behavioral aspects of 3D models are integrated by procedural extensions to nodes, but are not
modeled explicitly through behavior classes. We believe, however, that an object-oriented
approach to behavior modeling can dramatically reduce its complexity like object orientation
does for geometric modeling. OpenInventor, like Grams and GROOP, does not provide tempo-
ral abstract data types. Behavioral aspects are linked by callbacks to geometry nodes. In our
toolkit we use behavior graphs to model behavior. Behavior graphs provide a clear and com-
prehensible organizational structure for time- and event-dependent animation and interaction.
In contrast to our approach in which constraints are represented by behavior nodes,
OpenInventor does not provide a constraint management.
The object oriented animation system Obliq-3D represents scenes by graphical objects which
are related to time-varying properties and callbacks. Obliq-3D’s class hierarchy (like for
Grams and GROOP) models only graphical objects. However, it does not provide the flexibil-
ity given by our constrainable and shareable graphical abstract data types and behavior
classes. Obliq-3D’s behavior components operate on low-level attributes. Obliq-3D does not
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support a high-level organization of the time and event flow as our approach does with behav-
ior groups based on a time and event layout.
Other related systems are TBAG and UGA. TBAG is based on a functional approach. Similar
to our approach, TBAG integrates constraints and graphical abstract data types as first-class
objects. UGA is one of the first systems with a close integration of geometry and animation.
Our approach has been motivated by similar goals, and concentrates more on an object-ori-
ented design of geometry and behavior.

8. CONCLUSIONS AND FUTURE WORK
MAM/VRS as an object-oriented framework for 3D modeling, animation and interaction sup-
ports behavioral modeling at the same level of abstraction as geometric modeling. It separates
geometry nodes from behavior nodes, provides for both a wide range of node classes, and uses
constraints to relate them. Geometry graphs represent all graphical aspects of 3D scenes
including shape and attribute nodes which visualize and evaluate instances of graphical
abstract data types, geometry groups, and image controllers. Behavior graphs explicitly orga-
nize the flow of time and events through time modifiers, behavior groups and constraint nodes.
Time negotiations and temporal abstract data types allow the developer to specify complex
animation processes at a high level. Interaction nodes and event conditions represent a set of
elementary toolkit components which can be easily combined to 3D widgets. The polymor-
phic nodes of our toolkit facilitate the construction of animated, interactive 3D applications
through a fine-grained object-oriented framework. The semantic-oriented class hierarchies
guarantee portability and reusability. Due to the C++ and [incr Tcl]/[incr Tk] application pro-
gramming interfaces, the toolkit can be integrated in an interactive environment for the devel-
opment of 3D applications.
Future directions of our work include the automation of the camera control, the integration of
more animation techniques such as physically-based animation, and the addition of high-level
behavior nodes for the control of articulated figures.
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Images taken during the animation of the Voronoi algorithm.
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