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Abstract—Maintenance accounts for the major part of a
software system’s total costs. Therein, program comprehension
is an important, but complex activity: Typically, up-to-date
documentation is not available, so the main reliable source of
information on the implementation represent the artifacts of
the system’s implementation. Understanding software systems is
difficult, in particular, if multithreading concepts are involved
because state-of-the art development tools provide only limited
support for maintenance activities. In addition, concurrency is
often not directly reflected by the source code, i.e., there is only a
non-obvious correlation between control structures in the source
code and a system’s runtime behavior. We present a program
comprehension technique that helps to analyze and understand
runtime behavior of multithreaded software systems and, thereby,
facilitates software maintenance tasks. Our approach contains the
following concepts: First, light-weight dynamic analysis records
executed method calls at runtime. Second, visualization of mul-
tithreading trace data allows developers to explore the system
behavior post-mortem. The technique forms part of a scalable
tool suite for understanding the behavior of complex software
systems. We also show how to apply the technique on industrial
software systems to solve common maintenance problems.

I. INTRODUCTION

Software maintenance represents an essential, time- and
cost-intensive task for the management of complex software
systems [14]. It accounts for the major part of a software
system’s total costs: “Year after year the lion’s share of effort
goes into modifying and extending preexisting systems, about
which we know very little” [18]. Maintenance is typically
difficult because, among many reasons, these systems (1) are
large, e.g., comprise more than 500k lines of code (LOC), (2)
are weakly understood, (3) are hardly documented, and (4)
often exhibit substantial differences between the existing docu-
mentation and the as-is system design due to the system’s long
evolution period [5] [14]. Hence, maintenance significantly
requires program understanding, i.e., developers build a mental
map of the system’s functionality and concepts based on its
implementation artifacts [10]. Building such a mental map
typically involves studying existing source code and design
documents as well as stepping through the execution using
a debugger to uncover and understand the original design
concepts and the system’s behavior. As a result, 50-60% of
the time used for software maintenance tasks is actually spent
for program comprehension [1] [20].

Understanding source code of multithreaded systems is
often complicated because a static view on control structures,
e.g., by analyzing code, does not explicitly reveal runtime

concurrency. In addition, debuggers and profilers, while being
established tools for debugging and testing software hav-
ing predominantly single-threaded runtime behavior, typically
provide limited support for multithreaded software: There
are issues related exclusively to concurrent systems that are
insufficiently supported by today’s tools [4], e.g., deadlocks,
load imbalance, data sharing patterns, race conditions, or con-
tention. Existing tools mostly ignore timing and scheduling,
which have to be considered in concurrent systems.

To circumvent today’s lack of appropriate tools, developers
have established workarounds such as manual source code
augmentation. For example, console debug output can be
triggered, but is a resource-intensive operation, thus likely to
cause noticeable performance decrease or to change the sys-
tem’s timing essentially. Since source code augmentation also
is a time consuming and tedious task, developers frequently
apply error-prone guesswork instead. As a result, modifications
“made by people who do not understand the original design
concept almost always cause the structure of the program to
degrade” [14].

In this paper we present a program comprehension tech-
nique that helps to understand the runtime behavior of com-
plex, multithreaded software. It selectively instruments bina-
ries of the analyzed software system to record execution traces
at runtime. These traces are postprocessed and imported into
the analysis tool. The proposed visualization technique gener-
ates stack based, synchronized views on sequences of method'
calls for multiple threads. The technique enables developers to
interactively explore the traces. The tool has been implemented
as a plugin of the Software Diagnostics Developer Edition—a
commercial tool for tracing and visualizing runtime behavior
of software systems and has been tested with software systems
consisting of over 4 million LOC. We demonstrate its usage
and benefits in maintenance by two case studies.

II. RELATED WORK

Existing techniques for dynamic analysis of concurrent
behavior primarily focus on performance optimization or
coarse-grained behavior visualization and have shortcomings
with respect to program comprehension [4]. Examples of
such shortcomings include insufficient support for interactive
exploration of execution traces at varying levels of detail and
scalability issues.

'From now on, the term method is being used interchangeably with the
terms function, procedure, routine etc.



Early work on analysis of multithreaded runtime behavior
was done by Malony and Reed (1989) [11]. Their approach
focuses on monitoring and collecting statistics like communi-
cation bandwidth. Heath (1993) [7], Nutt et al. (1995) [13] and
Nagel et al. (1996) [12] propose tools that aim at performance
optimization for parallel message passing systems. In contrast
to our technique, these approaches target analysis of process
interactions, the processes often running on separate machines.

Stasko (1995) [16] introduces PARADE, which partially
targets program comprehension. However, the tool visualizes
multiple threads only separately and thus developers are unable
to tell which activities in separate threads actually happen in
a concurrent manner. Kergommeaux and Stein (2000) [8] as
well as Bedy et al. (2000) [2] propose a visualization that
depicts 2-dimensional graphs with life lines for each thread
showing their state (running, suspended, etc.). Contrary to our
approach, this graph visualization does not show the threads’
execution contexts or call stacks. Reiss (2007) [15] presents
live visualization systems that depict an analyzed system’s
behavior while the system is executed. These approaches
differ from our technique in that they provide only coarse-
grained information on the system’s execution. Wheeler and
Thain (2009) [19] propose ThreadScope, a tool for identifying
structural and synchronization problems. The generated 2-
dimensional graphs do not scale well for large execution
traces, and there is, in contrast to our approach, potential
for interactive exploration, which would allow for enhanced
scalability of their tool.

Existing work for execution trace summarization and ab-
straction techniques that enable developers to assess a trace’s
essence, by contrast to our approach, focus on sequential
execution [3] [6] [9].

With our approach, we aim to improve on existing tech-
niques and tools by enabling developers to analyze multiple
threads’ execution contexts and call stacks in parallel in a
synchronized manner. Furthermore, our approach improves on
existing work in terms of scalability.

III. ANALYSIS PROCESS

The analysis process of our technique consists of two

phases:

1) Tracing: The analyzed software system is instrumented.
During execution of the system, a trace is recorded.

2) Visualization and exploration: Recorded trace data is
imported into the analysis tool. First, developers select
the threads to be visualized in a fextual thread overview.
Then, the interactive sequence visualization is rendered
and can be used for exploration.

IV. TRACING
A. Properties of Trace Data

For each thread ¢, the recorded trace essentially forms an
ordered group FE; of timestamped events e; (with j being the
timestamp). That is, V e;,er € Fj, e; happens before e, if
j < k.Events e € E; are typed: They are either of type method
entry or method exit. Furthermore, each event comprises (1)

the address of the respective method being called or returning
and (2) the address of the calling method.

B. Minimizing Runtime Overhead

Generally, instrumentation causes a runtime overhead which
may cause unintended or unexpected behavior of the instru-
mented software system if timing is critical. In multithreaded
software systems, the instrumentation may alter the usual
system behavior. For instance, instrumentation may cause
(or prevent) deadlocks or race conditions. To minimize such
interferences, we (1) minimize the runtime overhead of the
instrumentation routines and (2) instrument only those parts
of the system implementation that are relevant for the main-
tenance task at hand.

Developers can specify at runtime which parts of the imple-
mentation are actually instrumented. Hence, they initially run
the system with full instrumentation and record a trace. By
roughly exploring the resulting trace, they identify those parts
of the implementation that are relevant for the given task and
disable all irrelevant methods for further tracing. Next, they
exercise the system again with only selective instrumentation.

In our case studies, the technique has not caused interfer-
ences. However, the technique has natural limitations if highly
time critical systems, e.g., embedded real-time systems in the
automotive domain, are to be analyzed.

V. VISUALIZATION

Traces typically contain hundreds or thousands of method
calls. To explore such traces, developers need effective visual-
ization that presents trace data in an interactive way. Additional
orientation aids, e.g., by means of overviews, in the mass of
data are considered helpful [3] [6] [9].

A. Concept

Multithreaded software systems may spawn numerous
threads at runtime. To ease exploration of their behavior, a
means of choosing a representative subset of all threads is
required. Our analysis tool provides a textual thread overview
of the activities for selected threads, which shows all methods
invoked in the context of the respective thread including their
invocation count (Fig. 1). This way, developers find and choose
representative threads to analyze.

After choosing the threads, trace data is shown in a visual
thread overview and in a sequence view for each thread
separately. These views are synchronized, which permits the
analysis of each thread’s activity separately and in parallel.

Each sequence view depicts a thread’s activity using a 2-
dimensional graph representation. The execution sequences
are visualized using a stack based approach. That is, time is
mapped on the x-axis and call stack along the y-axis (Fig. 2).
Call relations between functions are implicitly expressed. That
is, if function foo calls bar, then bar is drawn below foo.
Since the complete sequence graph typically exceeds available
screen space, panning and zooming functions are provided so
that developers can adjust the shown time span to their needs.

To scale with large execution traces, the visualization tech-
nique makes use of out-of-core concepts: Only a sub time span
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Fig. 2. Illustration of the interactive sequence visualization for a single
thread.

of the complete recorded time span is kept in main memory
and is depicted as detailed sequence. Additional visual thread
overviews are generated once, facilitating quick orientation
within the trace data. The current detailed sequence sub range
is marked within the respective visual thread overview (Fig. 3).
Ware [17] states that “the human visual system is a pattern
seeker of enormous power”. To exploit this power, the visual
thread overview converts execution patterns to visual patterns:
A 2-dimensional grid is computed where methods are mapped
along the grid’s y-axis and time is mapped along the x-axis.
When a method is executed at a specific point in time, the
respective grid cell is colored black, white otherwise. This
way, repeated execution of the same (or similar) functionality
causes repeating visual patterns in an overview (Fig. 4).

B. Synchronizing Multiple Sequence Views

A key challenge when building a trace visualization tool
for multiple threads is the way multiple views—each de-
picting single thread activity—can be synchronized such that
collaboration between threads gets visible. Without effective
synchronization, developers need to compare event timestamps
manually to assess whether a specific method execution in the
context of a thread is actually concurrent to another method
execution in the context of a second thread.

Furthermore, execution durations of methods typically vary
significantly: Where execution of method foo may take 10,000
milliseconds, the execution of method bar may take only a few
milliseconds. Even for the visualization of a single thread’s
activity, this poses a challenge: Using these raw execution
durations, long lasting method executions would span multiple
screens whereas a very short execution might span only
a single pixel (Fig. 5a). Consequently, a time distortion is
required for exploration and can be implemented by a scaling
transformation.

We apply a logarithmic-based scaling for an execution’s
time interval At¢. The scaling shrinks short time spans only
slightly, but long time spans massively:

1 if log(At) < 1
log(At) if 1 < log(At) < const
const if log(At) > const

logscale(At) =
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Fig. 3. Sequence visualization showing 2 threads. Activities of methods

hovered in the sequence visualization (1a) are highlighted in each visual thread
overview (1b). The sub time span (in the sequence visualization) is marked
according to the respective visual thread overview (2).
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Fig. 4. Illustration of a visual thread overview: Repeated executions of the

same (or similar) functionality causes repeating visual patterns.

Applying this non-linear scaling function logscale on each
threads’ events would break visual comparability between
concurrent method executions. Method executions or idle
times of separate threads (time spans a, b, ¢ and d in Fig. 5a)
that happen before foobar and/or barfoo would be scaled
differently (Fig. 5b), resulting in warped method entry and
exit timestamps of foobar and barfoo.

To solve this issue and to preserve concurrency of method
executions, we apply on-demand scaling for the selected subset
of threads and for the currently depicted sub time span. That
is, we analyze all events in the selected time span for all
selected threads and identify concurrency constraints, i.e.,
pairs of concurrent method executions, that need to be satisfied
(Fig. 5¢). Thus, we yield an event order in which we can apply
the scaling function while preserving existing concurrency of
method executions (Fig. 5d). Our approach then both scales
time and synchronizes multiple views by focusing on a specific
point in time and by updating all views such that the views
are centered on this point in time.

VI. CASE STUDIES

We discuss two case studies that we have performed on
industrially developed and maintained software systems: (1)
Chromium?, the open-source code base of Google’s web
browser Chrome and (2) BRec (Building Reconstruction),
a tool for reconstructing 3D building models from laser
scan data, developed and maintained by virtualcitySYSTEMS
GmbH, one of our industrial partners.

Zhttp://www.chromium.org, last accessed 10.04.2010
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Fig. 5. Concurrency issue with logarithmic scaling and its solution.

A. Chromium - Opening a Website via Bookmark

Chromium consists of approximately 4 million LOC>. The
source code repository lists 388 authors as contributing to
the code base. The implementation concepts of Chromium
strongly rely on multithreading, e.g., tasks are ‘posted’ at
runtime and successively solved by dedicated threads. Hence,
developers that need to understand the internal workings of
the 4 MLOC system Chromium likely face understanding
problems that are also faced during maintenance of complex
closed-source multithreaded systems.

In our case study, we needed to understand how Chromium’s
threads collaborate when users issue a bookmark search and
open the respective website. For this task, we identified
relevant parts of the implementation (Section IV-B) and in-
strumented the system partially for a second run. We exercised

3http://www.ohloh.net/p/chrome/analyses/latest, last accessed 10.04.2010
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Fig. 6. Chromium: Identifying threads that are relevant for the comprehension
task in the textual thread overview.

the bookmark scenario and imported the resulting trace data
(approx. 200,000 events) into our analysis tool.

With the textual thread overview, 2 out of 8 threads were
identified as relevant for our comprehension task (Fig. 6).
Next, the sequence visualizations and the visual thread
overviews showed each thread’s overall activity. After initially
seeking through the trace data, we recognized relevant parts
therein by their patterns in the visual thread overview and
navigated using the pan and zoom tools. We identified 3 key
points in the trace data that are of high relevance for our
comprehension task:

1) After the bookmark search term is entered in
Chromium, a message is sent as an IPC and received
by the thread responsible for bookmark searches
((1) in Fig. 7): RenderViewHost::onExtensionRequest.
The thread performs the search (2) (book-
mark_utils::GetBookmarksContainingText) and sends
its response (3) which is then received by another
thread (4).

2) Before the bookmarked page is actually loaded in a new
tab, Chromium updates its history asynchronously via an
IPC (Fig. 8).

3) The new tab is created: A new RenderView (that contains
the rendered page) is created asynchronously (Fig. 9).
Internally, Chromium uses the Webkit* browser engine
for rendering. In this context, Chromium prepares ev-
erything needed to render a new page and then hands
over rendering to Webkit.

Chromium makes heavy use of asynchronous task schedul-
ing. The proposed technique facilitates (1) program compre-
hension as task processing responsibility becomes visible and
(2) debugging in case of erroneous task scheduling as it
permits to reconstruct when a specific task is processed.

B. BRec - Simplifying the Rendering Process

BRec reconstructs 3D building models from given laser
scan data. A key characteristic of BRec’s rendering engine is
that the triangulation of building models is parallelized. BRec
comprises approx. 100k LOC written in C/C++.

The task to be solved was to understand and simplify BRec’s
rendering functionality. The developer started with recording a
trace of the rendering functionality (approx. 100,000 events).
With the textual thread overview, he identified one coordinat-
ing thread and a number of worker threads that all execute the

“http://webkit.org, last accessed 10.04.2010
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same utility functionality: Delaunay triangulation. The coor-
dinating thread is identified as it executes the main window’s
event loop and exhibits significantly higher execution counts
than the worker threads.

updating its history: (1) trigger update functionality, (2) insert history update into a task queue, (3) history

The developer selected the coordinating thread and two
worker threads for visualization. He inspected the visualized
sequences and identified the following behavior within the
coordinating thread: Delaunay triangulation is triggered from
constructors of SolidRenderer ((1a), (1b) in Fig. 10) and
Triangulation3D2 ((2a) and (2b)). Further inspection of the
respective source code locations revealed that there are two
additional classes spawning threads for Delaunay triangula-
tion. Being surprised by the fact that there is no functionality
that is reused by the coordinating thread to manage the worker
threads, the developer decided to consolidate that code in a
single class responsible for handling the triangulation worker
threads. This greatly simplifies the code and eases further
maintenance of this functionality. Besides this architectural
design flaw, the developer identified critical code clones in
the respective methods that spawned the threads: The dupli-
cated code contained functionality to allocate memory, spawn
the thread and clean up after thread termination by freeing
numerous memory locations.

The visualization technique helped to understand how trian-
gulation threads are coordinated in BRec. Not only contribute
multiple threads to the rendering functionality, but key parts of
this functionality were repeatedly implemented, which further
complicated an understanding of the rendering functionality.
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VII. CONCLUSIONS

Understanding and maintaining multithreaded software sys-
tems is typically much more difficult than single-threaded
systems. The application of multithreading impacts develop-
ment and maintenance processes in several ways: (1) System
design is being complicated, (2) runtime behavior is often
unpredictable and much more complex, and (3) program
comprehension is aggravated, e.g., due to a weak correlation
between the source code’s control structures and the system’s
runtime behavior.

We propose a visualization technique for analyzing the
runtime behavior of complex, multithreaded software systems
that uses out-of-core concepts to handle large execution traces.
Its usefulness is investigated by case studies on two complex
software systems: Google’s web browser Chromium and an
industry tool for reconstructing 3D building models from laser
scan data.

As future work, we plan to evaluate the impact of our
visualization technique on the performance of developers. In
addition, we focus on trace comparison techniques such as
pattern matching or dynamic time warping. We also plan to
exploit data mining techniques to identify outliers in trace data,
which seems to be a promising approach to provide automated
support for locating root causes of race conditions.
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