
High-Quality Non-Planar Projections Using
Real-Time Piecewise Perspective Projections

Haik Lorenz and Jürgen Döllner

Hasso-Plattner-Institute, University of Potsdam, Germany

{haik.lorenz, doellner}@hpi.uni-potsdam.de

Abstract. This paper presents an approach to real-time rendering of non-planar

projections with a single center and straight projection rays. Its goal is to provide

the same optimal and consistent image quality GPUs deliver for perspective pro-

jections. It therefor renders the result directly without image resampling. In con-

trast to most object-space approaches, it does not evaluate non-linear functions on

the GPU, but approximates the projection itself by a set of perspective projection

pieces. Within each piece, graphics hardware can provide optimal image quality.

The result is a coherent and crisp rendering. Procedural textures and stylization

effects greatly benefit from our method as they usually rely on screen-space op-

erations. The real-time implementation runs entirely on GPU. It replicates input

primitives on demand and renders them into all relevant projection pieces. The

method is independent of the input mesh density and is not restricted to static

meshes. Thus, it is well suited for interactive applications. We demonstrate an

analytic and a freely designed projection based on our method.

Key words: Non-planar projections, geometry shaders, geometry amplification,

non-photorealistic rendering

1 Introduction

Automatic depiction of three-dimensional worlds, being real or virtual, requires a cam-

era. What is the construction and inner workings of a real camera becomes the camera

model and projection for the virtual camera. From all possible models, the pinhole cam-

era model is the most widely used model. Today’s graphics hardware is tailored to the

underlying projection types: planar perspective or orthographic projections. Nonethe-

less, numerous applications in computer graphics require other, non-pinhole projection

types:

• Non-planar displays, such as cylindrical or spherical walls, require non-linear pro-

jections to compensate for distortions [1].
• Some natural phenomena, such as caustics, reflections, or refractions off curved

surfaces, can be described by projections [2].
• Visualizations benefit from adapted projections, such as increased field of view,

lens effects, or reduced panorama distortions [3–5]. Such deliberate distortions can

provide improved perception of a virtual environment.
• Arts and non-photorealism achieve dramatic effects using irregular projections [6–

9].

Fig. 1. A 360◦ cylindrical view of a city rendered using a piecewise perspective projection.

The city model contains 35,000 triangles. The projection uses 160 pieces. At a resolution of

1600×1200, an NVidia 8800GTS achieves 55 fps with 16x anisotropic texture filtering and 16x

antialiasing. Our technique enables the use of screen-space-dependent rendering effects such as

solid wireframe [16] or pen-and-ink style [17].

• Images of particular projection types serve as storage for parts of the plenoptic

function [10]. Most commonly, these are cubical, spherical, or paraboloidal images

used for rendering reflections or refractions in real-time [11, 12].

Non-pinhole projections have been discussed extensively in literature, resulting in

various camera models, e.g., [4, 13, 14]. They cannot be rendered directly with today’s

graphics hardware. Instead, ray-tracing is commonly used [13]. A large body of work

exists on implementing ray-tracing on GPU for various phenomena and scene condi-

tions. Wei et al. [2] and Popov et al. [15] present recent approaches and good surveys of

related methods. Mostly, they use the GPU as powerful stream processor instead of as

rasterization device and thus rarely benefit from built-in capabilities such as anisotropic

texture filtering, perspective-correct interpolation, or screen-space derivatives.

1.1 Real-time Non-pinhole Projections on GPU Without Raytracing

A straightforward and efficient approach is the implementation as image-based post-

processing effect [18, 19]. The rendering consists of two steps: First, a perspective pro-

jection is rendered into an offscreen buffer. Second, this buffer is used as texture for

rendering a deformed mesh. The offscreen buffer can contain a cube map to enable

360◦ views. This approach is capable of rendering projections with a single center and

straight projection rays (Single Center Of Projection – SCOP) only. It is image-based

since the actual deformation happens after, not during, rendering the scene. Its advan-

tages are easy implementation and good support by graphics hardware. The major draw-

back is image quality. The resampling in the second step inevitably introduces blurring

artifacts that especially degrade edges, detailed geometry, procedural textures, and styl-

ization effects. Today’s hardware capability of antialiasing through multi-sampling does

not improve image quality substantially as it applies before resampling.

Object-space approaches do not suffer from image resampling artifacts and are not

limited to SCOP effects as they render the image directly. A simple solution is applying

the non-pinhole projection in the vertex shader [20]. Then, a triangle’s vertices are pro-

jected correctly, but the interior and edges are rasterized incorrectly in a linear fashion.

This is acceptable as long as a triangle’s size on screen and thus the rasterization error

is limited. To ensure this property, interactive environments require dynamic refine-

ment. Approaches include precomputed static levels of detail [21], progressive meshes

[22], adaptive mesh refinement [23, 24], render-to-vertex-buffer [25], dynamic mesh re-

finement [26], or hardware tessellation units [27, 28]. They vary in the distribution of

computation between CPU and GPU. The rendered mesh must be free of T-junctions

to prevent artifacts due to correct vertex location but incorrect edge rasterization. Even

with refinement, the incorrect rasterization greatly amplifies Z-Buffer artifacts, such as

inaccurate near plane clipping and interpenetrations of parallel triangles. A solution is

emitting correct depth values in the fragment shader. This reduces depth test perfor-

mance and increases fragment processing overhead due to a disabled early z-test [29].

A more sophisticated solution is using non-linear rasterization. Since the rasterizer

uses hardwired linear interpolation, Hou et al. [30] and Gascuel et al. [31] replace each

primitive by a bounding shape and use ray intersection in a fragment shader to com-

pute the actual fragments and all their attributes under non-pinhole projections within

that shape. As a consequence, these methods cannot benefit from high quality screen-

space-dependent operations built into modern graphics hardware, such as mipmapping,

anisotropic filtering, or screen-space derivatives.

This paper focuses on enabling these high quality rasterization capabilities of cur-

rent GPUs for non-pinhole projections. Our approach achieves a significantly improved

and consistent image quality regardless of the input mesh while maintaining real-time

performance (Fig. 1). We enable the rasterization hardware to work under perspective

projections exclusively and, hence, obtain optimal image quality. As a result, procedural

textures and stylization effects can be used instantly regardless of the actual projection.

1.2 Piecewise Perspective Projection Overview

Piecewise perspective projections use an idea proposed in [30]: approximate a com-

plex projection by a set of simpler projections. We refer to these simpler projections

as projection pieces. The pieces’ projection frusta are connected but disjoint with their

union approximating the original projection volume. Hou et al. [30] rely on triangle
cameras, simple non-pinhole projections, which make this method capable of render-

ing multi-perspective views but prevent it from exploiting hardware functionality. We

restrict the projection pieces to using perspective projections exclusively, which limits

our technique to SCOP effects.

Key advantage of our construction compared to other object-space approaches is the

absence of non-linearities during rasterization. All non-linear aspects of the non-pinhole

projection are encoded into the layout of the piecewise approximation. Consequently,

rasterization and all high quality screen-space-dependent operations work with optimal

quality within each piece. Similarly, existing shaders, particularly procedural textures

and stylization effects, can be used instantly. The resulting images do not exhibit blur-

ring artifacts and capture the non-pinhole projection regardless of the input mesh and

rendering effect. There is no need for refinement. In addition, Z-buffer artifacts are not

amplified.

The increase in image quality comes at the cost of increased geometry processing

overhead. Each primitive needs to be rendered into each projection piece it is visible in.

Hence, it needs to be processed multiple times per frame. Depending on the number of

pieces in an approximation, this can result in a substantial overhead.

The remaining paper is organized as follows: the next section provides an in-depth

discussion of the idea of piecewise perspective projections, devises a real-time im-

plementation using geometry shaders, and gives an implementation outline for future

GPUs. Sec. 3 provides two example applications. Sec. 4 provides experimental results

and compares them to alternative approaches. Sec. 5 concludes.

2 Piecewise Perspective Projection

The key idea of piecewise perspective projections is the approximation of a non-pinhole

projection volume by a set of connected but disjoint perspective projection frusta, so-

called projection pieces. Each projection piece uses a regular perspective projection

clipped to the piece’s boundaries for image formation. Thus, the rendering encounters

no non-linearities and hardware rasterization generates a correct image at optimal qual-

ity for each piece. The combination of all piece images creates an approximation of

the desired non-pinhole projection. The number of pieces defines the approximation

quality.

Our method can reproduce the same projection effects as the image-based approach

of [18]. Their intermediate rendering uses a perspective projection described by a matrix

MP. The triangle mesh used for deforming this rendering implicitly defines an affine

transformation M(t) from the source area of each triangle t to the screen. An equivalent

piecewise perspective projection can be constructed of triangular pieces by clipping a

perspective projection M(t)∗MP to the deformed triangle’s boundaries for all t.
For implementing this idea, three challenges need to be addressed:

1. Approximation of the non-pinhole projection with projection pieces,
2. Rendering of a primitive in all projection pieces it is visible in, and
3. Clipping of a primitive’s rendering to the projection piece’s boundaries.

Approximation An artifact-free approximation is only possible for SCOP effects, as

other projections lead to overlapping piece frusta. In general, each projection piece

p uses an individual projection matrix MP(p), such that neighboring pieces pro-

duce matching renderings at their shared boundary. Matrix computation depends

on the particular projection and happens once in a preprocessing step. Two typical

approaches are exemplified in Section 3.
Rendering A simple implementation renders the whole model for each projection

piece with the respective projection matrix and clipping in effect. Rendering should

use additional culling to account for a projection piece’s small screen area but does

not require any changes to shaders or meshes to deal with a non-pinhole projection.

Clipping Clipping can rely on viewport clipping if all pieces are rectangular or on user

clip planes for convex pieces. Since both possibilities are performed by the raster-

ization hardware, no explicit clipping needs to be implemented in a shader. The

resulting piece images are non-overlapping and thus they can be rendered directly

to the framebuffer without the need for a dedicated composition step.

Due to additional culling and a large number of draw calls, this straight-forward

implementation suffers from increased CPU load. At the same time, GPU efficiency

is reduced as each draw call renders to a small screen portion only. Thus, rendering

becomes CPU-bound and real-time performance is limited to projection approximations

with very small piece counts.

2.1 Real-time Implementation

Our real-time implementation reverses the rendering approach to make it GPU-friendly.

Instead of determining all primitives for a projection piece through culling, we deter-

mine all relevant, i.e., covered, pieces for a primitive. We can then render the final image

in a single draw call by replicating each primitive to all its relevant pieces. Projection

matrices are stored in buffer textures for shader access. User clip planes cannot be up-

dated by a shader. The alternative is to define a standard clip space with fixed clip planes

and provide a transformation from camera space to clip space for each projection piece.

Since a primitive can fill the whole screen, the maximum replication count is the

projection piece count. Hence, a straight forward replication using geometry shaders,

which are currently limited to at most 128 output vertices, is not possible. In [26] a

solution to a similar problem has been described. They use a fixed three-pass scheme

for per-primitive view-dependent tessellation on GPU and achieve arbitrary and un-

bounded geometry amplification without CPU intervention. Core of their scheme is a

continuously updated intermediate mesh of barycentric subtriangles. This transforms

the geometry shader’s output limit from a mesh size limit to a per-frame growth limit.

Since we only require replicated, not tessellated, primitives, we replace their intermedi-

ate mesh with a primitive index and accompanying replication numbers. Both are stored

in separate ping-pong buffers. The primitive index works similar to a traditional vertex

index. The accompanying replication number consecutively numbers all a single prim-

itive’s occurences in the index. Together, they enable indexed access to a primitive’s

vertex attributes in the vertex shader (e.g., by passing all 3 positions for a triangle at

once) but also allow for distinguishing replications of a single primitive in the geome-

try shader.

In the following, we provide a brief description of the rendering process (Fig. 2).

For details, refer to [26]. In the first pass, all original primitives are processed by a

geometry shader to determine the number of covered projection pieces. This informa-

tion is stored in a buffer using transform feedback. The second pass takes the previous

frame’s primitive index and produces a new primitive index and matching replication

numbers, such that each primitive is replicated according to the counts calculated in

pass 1. Pass 3 finally renders all replicated primitives. It uses the primitive index to

fetch all a primitive’s vertex attributes from vertex buffers and the replication number

to select the projection piece with projection and clip matrix. Additional vertex, geom-

etry and fragment processing can implement any effect as if no piecewise perspective

projection was in effect. Thus, existing shaders are easily incorporated.

pass 3: indexed rendering
each original primitive is passed as point with all attributes into the rendering pipeline and indexed
by the primitive index; a geometry shader convertes each replication into a rendering primitive

primitive
attributes

 vertex shader
geometry shader

(in: points,
out: any primitive)

vertex
cache fragment shader

G
L_

PO
IN

TS

gl_PrimitiveIDIn

per-primitive
repetition

count
vertex shader

geometry shader
(in: any primitive,

out: points)

per-primitive
replication

count

pass 1: amplification calculation
calculates and writes one replication count per input primitive

gl_PrimitiveIDIn

repetition
numbers

pass 2: primitive index update
uses the existing primitive index as index into replication
counts; each copy of a replication count generates a fraction of the new primitive index

vertex
cache

primitive
index

 vertex shader
geometry shader

(in: points,
out: points)

G
L_

PO
IN

TS

gl_PrimitiveIDIn

read as buffer texture (index at tip)
read as attribute / varying

write through transform feedback
write through raster operation

framebuffer

buffer shaderping-pong
buffer

read as index

projection &
clip matrices f(replication number)

replication
numbers (e.g.
0,1,0,0,1,2,…)

primitive
index (e.g.

0,0,1,2,2,2,…)

Fig. 2. Primitive replication algorithm overview and data flow. Pass 3 can implement any render-

ing effect.

This scheme applies to arbitrary “primitive soups” since no connectivity informa-

tion or topological restriction is assumed. Key for rendering is the determination of

covered projection pieces (pass 1) and their enumeration (pass 3). Both depend on

the desired non-pinhole projection. Two aspects need to be considered: First, while

rendering primitives to irrelevant pieces does not influence image quality, it degrades

performance since additional replications are created and processed only to become

clipped again. Thus, the determination is not required to be exact. Nevertheless, poor

estimation reduces performance. Second, given a primitive and its replication number,

the target projection piece needs to be identified in O(1) time in a shader (function

f (replicationnumber) in Fig. 2). The mapping can be supported by additional informa-

tion generated in pass 1. In Sec. 3, we present two approaches.

2.2 Single-Pass Implementation With a Configurable Tessellator Unit

The next generation of GPUs will include a configurable tessellator unit [28]. In con-

juction with two new shader stages, hull and domain shaders, it becomes possible to

generate up to 8192 triangles for a single input primitive. This unit is expected to pro-

vide much better performance regarding geometry amplification than geometry shaders.

In this section, we outline an implementation of piecewise perspective projections based

on the tessellator unit in Direct3D 11 (Fig. 3). As there is no supporting hardware avail-

able so far, the implementation has been tested using the Microsoft reference rasterizer.

Thus, it should be considered a proof-of-concept and a starting point for optimizations.

Basic implementation idea is the mapping of all computations found in Fig. 2 to

the new pipeline stages. Amplification calculation is handled by the hull shader, which

rendering
fetch all primitive attributes, recover projection
piece from subtriangle uv coordinates, apply trans-
formation, and emit primitive with clip coordinates.

primitive
attributes

geometry shader
(in: triangles,

out: any primitive)
fragment shadervertex shader hull shader

amplification calculation
calculate replication count per input primitive and
convert to tessellation factors.

geometry amplification
let the tessellator create a sufficient number of
subtriangles

tessellator
(configurable) framebuffer

projection &
clip matrices

f(subtriangle)

domain shader

SV_PrimitiveID

Fig. 3. Single-pass piecewise perspective projections based on Direct3D 11. The three passes

from Fig. 2 clearly map to Direct3D 11’s extended graphics pipeline. This figure uses the same

notation as Fig. 2.

determines the number of covered projection pieces. It then selects corresponding tes-

sellation factors for each primitive, such that the tessellator creates the required number

of subtriangles. Since Direct3D 11 does not guarantee specific tessellation rules so far,

we use a table that contains tessellation factors for each possible subtriangle count. This

table is filled in advance. The domain shader computes vertices of these subtriangles.

Since we use the tessellator to replicate the input primitive, not to create a contigu-

ous mesh, the domain shader only passes the produced uv-coordinates to the geome-

try shader. The geometry shader loads the primitive’s attributes from a buffer texture

using the primitive id and determines the projection and clip matrices using the uv-

coordinates. The geometry shader cannot rely on a replication number (pass 3 in Fig.

2) as it is not provided by the tessellator. After transformation the replicated triangle is

emitted. The pixel shader, again, is not influenced by our method and can implement

any rendering style without taking into account the non-pinhole projection.

A pitfall in this implementation is the limitation to 8192 replications per primitive.

If the projection approximation uses more than 8192 pieces, a primitive could exceed

this limitation if it fills the whole screen. As a workaround, the geometry shader can

emit multiple replications per subtriangle to retain the single-pass scheme.

Compared to the implementation from Sec. 2.1, the tessellator-based implementa-

tion has various advantages: It can cull primitives early by specifying negative tessel-

lation factors. It does not require intermediate buffers and overflow control. Finally,

it does not require ping-pong buffers and thus has no interframe dependencies. As a

result, this implementation is much better suited for integration in existing graphics

frameworks and for use in multi-GPU environments.

3 Applications

Our real-time implementation involves two application-dependent parts: projection

piece definition and projection piece coverage determination/enumeration. We demon-

strate the use for two typical applications: a horizontal cylindrical projection, which

can be described analytically, and a texture-based view deformation, which improves

the camera texture technique of [20].

3.1 Cylindrical Projection

A horizontal cylindrical projection uses a perspective projection in the vertical direction

but a non-planar projection horizontally. Thus, it suffices to limit the horizontal edge

length to control an approximation’s quality. The piecewise perspective projection then

splits the curved projection volume into narrow rectangular slices. Figure 4 sketches

this setting.

cylindrical
projection volume

piecewise perspective
approximation

projection surface projection planes

Fig. 4. Top-down view of the cylindrical projection volume and its approximation with perspec-

tive projections.

Projection piece coverage determination and enumeration for rendering is rather

simple as a single primitive normally covers a consecutive range of projection pieces. It

suffices to find the leftmost and rightmost point of the primitive’s projection and render

it to all pieces in between. Wrap-arounds require special care. A special case occurs

when cylinder axis and primitive intersect. In that case, the primitive is potentially vis-

ible in all projection pieces. Finally, pass 1 outputs both start piece index (which can

be to the right of the end index) and piece count. Pass 3 uses a primitive’s replication

number plus the start index modulo n – the number of projection pieces – as target

projection piece.

The projection matrix M of a piece p can be described by a series of transformations:

M(p) = Mtx(p)∗Msx ∗MP ∗Mry(p) (1)

Mry rotates the center axis of a projection piece about the y axis onto the negative

z axis. MP is a perspective projection matrix with a horizontal field of view ϕp = ϕc/n,

where ϕc denotes the cylindrical field of view. Msx scales the standard postprojective

space to fit the piece’s width on the screen. Mtx finally moves the piece’s projection

from the screen center to its actual location on screen.

Clipping requires a standard clip space to enable fixed clip planes. The following

transformation leads to such a space:

Mclip(p) = Ms(MP11
;MP22

;1)∗Mry(p) (2)

Ms is a scaling operation that uses the first (MP11
) and second (MP22

) value from

the projection matrix’s diagonal. The complete transformation effectively transforms

into the normalized space used for perspective division. The corresponding four clip

planes define an infinite pyramid with the tip being located in the origin and the opening

pointing down the negative z axis with an opening angle of 90◦ both vertically and

horizontally.

Fig. 5. Rendering of a piecewise perspective 360◦ cylindrical projection with an overlayed thick

white wireframe. Piece borders are marked with thin black lines.

Fig. 5 depicts a sample image with highlighted piece boundaries and primitive

edges. For clarity, it uses only 32 pieces with a width of 50 pixels. Experiments show,

that pieces of width 10-20 pixels provide a good approximation. The average replica-

tion count in that case is less than 2, while the maximum replication is the total piece

count n.

3.2 Texture-based View Deformation

View deformation [19] uses one or more standard perspective views (e.g., a cube map)

and distorts them to create the final image. The distortion is either analytical, such as a

paraboloid mapping, or freely defined, such as camera textures [20]. Both approaches

use a rectangular two-dimensional grid in the perspective view(s) and map it to a de-

formed mesh on the screen. The construction of a piecewise perspective projection fol-

lows the description in Section 2. In the following, we provide details for an improved

implementation of camera textures. They encode the distortion as offset vectors in a

2D texture (Fig. 6). A point’s deformed projection is found by using its perspective

projection for texture lookup and adding the resulting offset vector to that perspective

projection. In contrast to the original implementation, ours is independent of mesh den-

sity. Regardless of a primitive’s projected size, all details of the distortion are captured

in the primitive’s interior.

Piecewise perspective projections require splitting the rectangular grid into trian-

gles. Even though it is possible to specify a projective mapping from a two-dimensional

rectangle to an arbitrary quadrangle, it is not possible to guarantee a matching mapping

for shared edges. This property would require a bilinear transformation [32] current ras-

terizers cannot deal with. Splitting the rectangle into two triangles leads to two affine

camera
texture

input grid distorted grid

Fig. 6. Projection plane splitting and subsequent distortion using a 16×16 pixel camera texture.

The model is rendered directly into the distorted grid.

transformations and a continuous approximation. Nevertheless, considering pairs of tri-

angluar projection pieces as one cell is benefical regarding coverage determination and

enumeration. It enables operating on a simple rectangular grid in pass 1. View deforma-

tion is irrelevant to pass 1 as it does not change visibility. Pass 2 replicates primitives

for cells. Pass 3 finally emits each primitive twice – once for each triangle in a cell –

with the respective transformation matrices in effect.

A simple solution for determining the coverage of a primitive is using its bounding

box in the undistorted projection plane. All cells intersected by the bounding box are

considered as being covered. Thus, the output of pass 1 is the position of the lower

left cell cll and width w and height h of the bounding box in cell units. For efficient

storage, all four values use 16-bit integers and are packed into two 32-bit integers.

Pass 3 can map the replication number r to a cell at position (cll .x + r mod w ; cll .y +
�r/w�). This two-dimensional index can be used for lookup in a texture containing the

affine transformation matrices for both projection pieces in this cell. Since the bounding

box coverage determination is very conservative, we added culling to pass 3 to discard

invisible primitives before rasterization setup.

The derivation of affine transformation matrices can be found in [32]. During ren-

dering, it is applied subsequent to the original model-view-projection matrix. Clipping

uses an approach similar to the cylindrical projection. Here, only three clip planes are

in effect which form a triangular pyramid. To clip both pieces of one cell to the same

clip planes, one piece’s clip coordinates are rotated about the z axis by 180◦.

Fig. 7 shows a 64× 64 camera texture (similar to Fig. 6) applied to a view of a

city model. A thin black wireframe indicates the triangular projection cells, thick white

lines highlight primitive edges. Our implementation of texture-based view deformation

allows for animating the deformation effect, as this only involves updating the matrices.

4 Results

We compare piecewise perspective projections with image-based implementations for

both applications presented in Section 3. The implementations use native OpenGL 2.0

with relevant extensions. All measurements have been taken on a desktop PC running

Windows XP with an AMD Athlon 64 X2 4200+ processor, 2GB RAM, and an NVidia

GeForce 8800 GTS with 640 MB RAM. The tests use a path through the textured city

Fig. 7. Rendering using the camera texture shown in Fig. 6 at a resolution of 64×64. Thin black

lines indicate projection pieces. Thick white lines highlight primitive edges.

model data shown in Figures 5 and 7. It consists of 35,000 triangles in 14 state groups.

The viewport resolution is 1600×1200. In contrast to [26], no latency hiding has been

used since it showed no improvements. Besides the frame rate, we provide the num-

ber of triangles used for rendering (av. tri. count), their replication ratio to the original

triangle count (av. repl. ratio), and the total size of all vertex buffers used for render-

ing (Vbuf.). High quality (HQ) measurements use 16x anisotropic texture filtering and

16xQ antialiasing.

Table 1. Rendering statistics. Our piecewise perspective projection (PPP) outperforms the image-

based implementation (IB) for the 360◦ cylindrical camera. For view deformation, IB provides

higher frame rates. In terms of image quality, PPP is always superior (Fig. 8).

360◦ cylindrical camera (160 pieces) view deformation (9,322 pieces)

Impl Fps Av. tri. Av. repl. Vbuf. Fps Av. tri. Av. repl. Vbuf.

count ratio (kB) count ratio (kB)

IB 41.7 21,151 0.61 1,081 206.2 34,596 1 1,081

PPP 84.7 67,675 1.96 2,672 22.1 351,954 10.17 7,661

IB HQ 33.8 21,151 0.61 1,081 95.8 34,596 1 1,081

PPP HQ 54.8 67,675 1.96 2,672 20.9 351,954 10.17 7,661

The image-based implementation of the 360◦ cylindrical camera uses a dynamic

2048 × 2048 cubemap that is created in a single pass through layered rendering. It

implements frustum and backface culling in the geometry shader [29] which explains

the replication count less than 1. The piecewise perspective projection uses strips of

10 pixels, i.e., 160 pieces, for approximation. On average, each triangle is visible in

only two strips. The increased memory footprint results from the intermediate mesh,

which requires 16 bytes per rendered primitive. In total, our method outperforms the

image-based approach while providing higher image quality (Fig. 8). Even for smaller

cubemaps, the image-based approach does not overtake ours, but image quality further

degrades.

For the texture-based view deformation, the image-based technique uses only a 2D

texture, no cubemap. Therefor, it achieves higher frame rates than for the cylindrical

projection. In contrast, our method needs to render a significantly higher amount of tri-

angles, which translates to a reduced speed. Each input triangle spans on average about

10 of the 9,322 projection pieces. While delivering interactive frame rates, the vertex

processing overhead is substantial. The bottleneck here is pass 3. Primitive replication

performed in pass 1 and 2 accounts for less than 10% of the total workload. Conse-

quently, a more aggressive coverage determination than the bounding box test could

significantly improve performance. In addition, a projection piece size of 20×20 pixels

suffices for good approximations, i.e., the camera texture resolution should be adapted

to the viewport resolution. In our example, we use a 80 × 60 camera texture. For a

128× 128 camera texture, the replication ratio jumps from 10 to about 21 (i.e., about

725,000 triangles per frame) and the frame rate drops to 8.2 fps.

Fig. 8. Comparision of image quality. Closeups of screen shots for PPP (top) and IB (bottom).

Left to right: cylindrical camera pen-and-ink style, cylindrical camera solid wireframe, view de-

formation pen-and-ink style, view deformation solid wireframe.

Figure 8 shows the difference in image quality. The image-based implementation

cannot produce a consistent result due to the separate image resampling. Accordingly,

stroke width for the solid wireframe and stroke distance for the pen-and-ink style vary

across the image. Our piecewise perspective projection, in contrast, delivers consistent

results even in highly distorted areas without the effect being “aware” of the non-pinhole

projection.

A supplemental demo of the texture-based view deformation is available online

[33]. It uses OpenGL 2.1 and requires Windows XP or later and a NVidia GPU 8000

series or better.

5 Conclusions

This paper has presented a novel approach to rendering non-pinhole projections with a

single projection center. The piecewise perspective projection technique removes non-

linearities from rendering by approximating a projection with a set of perspective pro-

jections. The distorted image is formed directly on screen without intermediate ren-

dering steps. As a result, all image quality optimizations provided by modern graphics

hardware that assume a perspective projection continue to operate with regular preci-

sion. Particularly, antialiasing, procedural textures, and stylization effects profit from

our technique. It can be implemented on any graphics hardware but requires Direct3D

10 features for real-time performance. Core is on-demand replication of primitives on

the GPU using geometry shaders and transform feedback, such that a primitive is ren-

dered only into projection pieces it actually covers. A demo is available online [33].

The technique’s drawback is a high geometry processing overhead. Primitive repli-

cation itself is rather efficient. The major bottleneck is vertex processing in pass 3 since

a rendered primitive covers at most a single projection piece. In the future, we seek

to improve the performance of pass 3 by better coverage determination. A second di-

rection of research is evaluating applicability to other types of projections, such as slit

or pushbroom cameras. The rendering scheme might also prove useful for other algo-

rithms, e.g., [30]. Finally, we need to verify and tune our tessellator-based single-pass

implementation (Sec. 2.2) as soon as respective GPUs become available.

Acknowledgements

This work has been funded by the German Federal Ministry of Education and Research

(BMBF) as part of the InnoProfile research group “3D Geoinformation” (www.3dgi.de).

References

1. Jo, K., Minamizawa, K., Nii, H., Kawakami, N., Tachi, S.: A GPU-based real-time rendering

method for immersive stereoscopic displays. In: ACM SIGGRAPH 2008 posters, ACM

(2008) 1

2. Wei, L.Y., Liu, B., Yang, X., Ma, C., Xu, Y.Q., Guo, B.: Nonlinear beam tracing on a GPU.

Technical report, Microsoft, MSR-TR-2007-168 (2007)

3. Popescu, V., Aliaga, D.G.: The depth discontinuity occlusion camera. In: SI3D, ACM (2006)

139–143

4. Brosz, J., Samavati, F.F., Sheelagh, M.T.C., Sousa, M.C.: Single camera flexible projection.

In: Proc. of NPAR ’07, ACM (2007) 33–42

5. Kopf, J., Lischinski, D., Deussen, O., Cohen-Or, D., Cohen, M.: Locally Adapted Projections

to Reduce Panorama Distortions. Computer Graphics Forum (Proceedings of EGSR 2009)

28(4) (2009) to appear

6. Wood, D.N., Finkelstein, A., Hughes, J.F., Thayer, C.E., Salesin, D.H.: Multiperspective

panoramas for cel animation. In: Proc. of ACM SIGGRAPH ’97, ACM Press/Addison-

Wesley Publishing Co. (1997) 243–250

7. Agrawala, M., Zorin, D., Munzner, T.: Artistic multiprojection rendering. In: Proc. of the

Eurographics Workshop on Rendering Techniques 2000, Springer-Verlag (2000) 125–136

8. Glassner, A.S.: Digital cubism. IEEE Computer Graphics and Applications 24(3) (2004)

82–90
9. Glassner, A.S.: Digital cubism, part 2. IEEE Computer Graphics and Applications 24(4)

(2004) 84–95
10. Rademacher, P., Bishop, G.: Multiple-center-of-projection images. In: SIGGRAPH. (1998)

199–206
11. Heidrich, W., Seidel, H.P.: View-independent environment maps. In: HWWS ’98: ACM

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, ACM (1998) 39–45
12. Wan, L., Wong, T.T., Leung, C.S.: Isocube: Exploiting the cubemap hardware. IEEE Trans.

on Vis. and Comp. Graphics 13(4) (2007) 720–731
13. Löffelmann, H., Gröller, E.: Ray tracing with extended cameras. Journal of Visualization

and Computer Animation 7(4) (1996) 211–227
14. Yu, J., McMillan, L.: General linear cameras. In: ECCV (2). Volume 3022 of Lecture Notes

in Computer Science., Springer (2004) 14–27
15. Popov, S., Gunther, J., Seidel, H.P., Slusallek, P.: Stackless kd-tree traversal for high perfor-

mance gpu ray tracing. Computer Graphics Forum 26 (2007) 415–424
16. Bærentzen, A., Nielsen, S.L., Gjøl, M., Larsen, B.D., Christensen, N.J.: Single-pass wire-

frame rendering. In: ACM SIGGRAPH 2006 Sketches, ACM (2006) 149
17. Freudenberg, B., Masuch, M., Strothotte, T.: Walk-through illustrations: Frame-coherent

pen-and-ink in game engine. In: Proc. of Eurographics 2001. (2001) 184–191
18. Yang, Y., Chen, J.X., Beheshti, M.: Nonlinear perspective projections and magic lenses: 3d

view deformation. IEEE Comput. Graph. Appl. 25(1) (2005) 76–84
19. Trapp, M., Döllner, J.: A generalization approach for 3d viewing deformations of single-

center projections. In: Proc. of GRAPP 2008, INSTICC Press (January 2008) 162–170
20. Spindler, M., Bubke, M., Germer, T., Strothotte, T.: Camera textures. In: Proc. of the 4th

GRAPHITE, ACM (2006) 295–302
21. Sander, P.V., Mitchell, J.L.: Progressive Buffers: View-dependent Geometry and Texture for

LOD Rendering. In: Symposium on Geometry Processing, Eurographics Association (2005)

129–138
22. Hoppe, H.: Progressive meshes. In: Proc. of SIGGRAPH ’96, ACM (1996) 99–108
23. Boubekeur, T., Schlick, C.: A flexible kernel for adaptive mesh refinement on GPU. Com-

puter Graphics Forum 27(1) (2008) 102–114
24. Tatarinov, A.: Instanced tessellation in DirectX10. In: GDC ’08: Game Developers’ Confer-

ence 2008. (2008)
25. Yu, X., Yu, J., McMillan, L.: Towards multi-perspective rasterization. Vis. Comput. 25(5-7)

(2009) 549–557
26. Lorenz, H., Döllner, J.: Dynamic mesh refinement on GPU using geometry shaders. In: Proc.

of the 16th WSCG. (2008)
27. Tatarchuk, N.: Real-time tessellation on GPU. In: Course 28: Advanced Real-Time Render-

ing in 3D Graphics and Games. ACM SIGGRAPH 2007. (2007)
28. Castaño, I.: Tesselation of displaced subdivision surfaces in DX11. In: XNA Gamefest 2008.

(2008)
29. Persson, E.: ATI radeon HD2000 programming guide. Technical report, AMD, Inc. (2007)
30. Hou, X., Wei, L.Y., Shum, H.Y., Guo, B.: Real-time multi-perspective rendering on graphics

hardware. In: EUROGRAPHICS Symposium on Rendering, Blackwell Publishing (2006)
31. Gascuel, J.D., Holzschuch, N., Fournier, G., Péroche, B.: Fast non-linear projections using

graphics hardware. In: Symposium on Interactive 3D graphics and games SI3D ’08, ACM

(2008) 107–114
32. Heckbert, P.S.: Fundamentals of texture mapping and image warping. Technical report,

University of California at Berkeley, Berkeley, CA, USA (1989)
33. Lorenz, H.: PPP demo. http://www.haik-lorenz.de/geometryshaders.html (2009)

