
Automated Construction of Urban Terrain Models

Henrik Buchholz1, Jürgen Döllner1, Lutz Ross2, Birgit Kleinschmit2

1University of Potsdam and 2Technical University of Berlin

Abstract

Elements of urban terrain models such as streets, pavements, lawns, walls,
and fences are fundamental for effective recognition and convincing ap-
pearance of virtual 3D cities and virtual 3D landscapes. These elements
complement important other components such as 3D building models and
3D vegetation models. This paper introduces an object-oriented, rule-based
and heuristic-based approach for modeling detailed virtual 3D terrains in
an automated way. Terrain models are derived from 2D vector-based plans
based on generation rules, which can be controlled by attributes assigned
to 2D vector elements. The individual parts of the resulting urban terrain
models are represented as “first-class” objects. These objects remain
linked to the underlying 2D vector-based plan elements and, therefore,
preserve data semantics and associated thematic information. With urban
terrain models, we can achieve high-quality photorealistic 3D geovirtual
environments and support interactive creation and manipulation. The
automated construction represents a systematic solution for the bi-
directional linkage of 2D plans and 3D geovirtual environments and over-
comes cost-intensive CAD-based construction processes. The approach
both simplifies the geometric construction of detailed urban terrain models
and provides a seamless integration into traditional GIS-based workflows.
The resulting 3D geovirtual environments are well suited for a variety of
applications including urban and open-space planning, information sys-
tems for tourism and marketing, and navigation systems. As a case study,
we demonstrate our approach applied to an urban development area of
downtown Potsdam, Germany.

1. Introduction

Photorealistic virtual 3D city models and virtual 3D landscape models
form a basis for an increasing number of applications and systems. They
can be used, for example, in landscape and open-space planning to present

henrik.buchholz
Text Box
Internal Version (Early Draft)

planning scenarios to the public (e.g., Danahy 2005, Lange and Hehl-
Lange 2005, Stock and Bishop 2005, Warren-Kretzschmar and Tiedtke
2005, Werner et al. 2005) or in tourism to allow visitors exploring a city
virtually. Many geovirtual environments such as the example in Figure 1
(left) are based on a set of 3D building models and 2.5D terrain model
draped by aerial images to represent areas that are not covered by build-
ings. These areas consist of manmade surface structures (e.g., roads,
pavement, walls, stairs, or squares), natural terrain surfaces, which are of-
ten covered by vegetation (e.g., woodland, agricultural land, grassland, or
rocks) and water surfaces (e.g., rivers, canals, or lakes). Aerial images are
well suited for representing such surface cover information from a bird’s
eye view but do not provide sufficient detail for visualization from a pe-
destrian’s point-of-view (Figure 1 right). In addition, the represented ter-
rain elements cannot be analytically identified and modified because there
is no concise object-oriented representation of these elements and the link-
age between GIS planning data and virtual 3D model has been lost. This
makes aerial images unsuitable for land use related planning tasks. There-
fore, many applications require more detailed virtual 3D terrain models
(Figure 2).

There are three common approaches for creating detailed terrain surface
representations: manual modeling, triangulated irregular network (TIN)
models, and image draping.

Manual Modeling
Using standard 3D modeling tools or CAD tools for manual modeling of
terrain surface structures provides maximum flexibility. It involves, how-
ever, high manual efforts and requires a high degree of expertise. In addi-

Fig. 1. Aerial images are well suited for bird’s eye views (left) but fail for ground-
level views as illustrated by the flattened trees (right).

tion, the result consists of computer graphics 3D models that are detached
from any underlying 2D geo-data that have been originally used as a basis
for modeling. The following limitations result:

• No object-specific modeling techniques: For most elements of urban ter-
rain models, editing techniques could take advantage of object-specific
construction rules and constraints (e.g., distribution, form, or height of
stairs).

• No automated updating: The computer graphics 3D models cannot be
reused if the 2D geo-data changes.

• No geo-data context: The computer graphics 3D models have to be cre-
ated separately from related geo-data that could be helpful for editing.
For instance, showing aerial images or topographic maps can be useful
to validate a 3D model visually while editing. Since generic 3D editing
tools are not aware of the geo-spatial context of the data, they do not
provide such functionality.

• No geo-data linkage: The computer graphics 3D models do not preserve
data semantics and thematic information contained in or associated with
2D plans.

TIN-based Modeling
TIN models can also be used to represent detailed terrain models. They al-
low for integrating land use information and built surface structures by us-

Fig. 2. Snapshot of the automatically created urban terrain model of our case

study, a redevelopment of a downtown area in Potsdam.

ing line or polygon features as break lines and by assigning different colors
or textures to certain triangles. This way, detailed terrain models can be
created from GIS input data. The TIN-based approach, however, has two
major disadvantages:

• No linkage to 2D plan elements: No direct link is established between a
TIN and the original data from which it has been created. Therefore,
thematic and semantic information is lost and changing the original data
requires rebuilding the TIN.

• Restricted geometry: As an inherent limitation, vertical faces cannot be
modeled by TINs.

Modeling based on Image Draping
The most common approach to create detailed urban terrain models in
landscape visualization is based on the principles of image draping. Spe-
cialized modeling tools for virtual landscapes such as World Construction
Set, ArcScene, or VirtualGIS allow for integrating GIS data into the 3D
scene by draping vector-based information onto the terrain and assigning
colors or textures to the polygons. Such tools reduce the manual modeling
effort and are able to create satisfying results at landscape scale (Appleton
et al. 2002). In landscape planning, they are primarily used to visualize ter-
rain surfaces carrying vegetation by textures (Muhar 2001) and prototype
3D plant models. In addition, the tools mentioned above are suitable to
visualize roads or other manmade terrain surfaces. However, in order to in-
tegrate manmade surface structures that include textured vertical faces or
that have to be created from polylines by buffering a line feature, manual
modeling effort and extensive data preparation is required.

Smart Terrain Models
In this paper, we propose smart terrain models, an approach for generating
high-quality urban terrain models automatically from 2D vector-based
plans. Instead of converting available 2D data to new, detached 3D mod-
els, our approach is based on the idea to keep the original 2D data and to
add complementary information to enhance them to a complete 3D scene
specification. The approach is similar to the image draping method but ex-
tends it by defining specialized representations for typical terrain elements.
This increases the modeling flexibility while providing significant advan-
tages compared to generic 3D models:

• The underlying 2D vector data that form the core of the smart terrain
model specification can still be accessed and edited by external 2D GIS
tools and can be obtained and updated from 2D data sources.

• Thematic information and data semantics can be directly queried within
the 3D visualization.

• Due to the permanent link between 2D data and their 3D representation,
interactive visualization of the generated 3D models can be directly
combined with editing tools for the underlying 2D data. This way, the
effect of modifications of the 2D data can be directly shown in the 3D
model. Particularly, it allows for immediate corrections of any errors in
the underlying 2D data when they become visible in the 3D visualiza-
tion.

• Since the data semantics is preserved in the 3D representation, smart ter-
rain models form a basis for the development of visualization tools that
are aware of the data semantics and use it to apply specialized real-time
rendering techniques (e.g., Finch 2004, Shah et al. 2005) for certain sur-
face elements to optimize the rendering performance or to improve the
visual quality.

We demonstrate our approach in a case study, in which we modeled an ur-
ban area of downtown Potsdam, Germany. The combination of smart ter-
rain models with 3D building models, e.g., provided by Smart Buildings
(Döllner and Buchholz 2005) or CityGML (Kolbe et al. 2005), and 3D
vegetation models (Deussen 2003) leads to photorealistic 3D city models
that are suitable for real-time visualization at a pedestrian’s point-of-view.
Our approach has been implemented on the basis of the graphics library
VRS (Döllner and Hinrichs 2002) and the LandXplorer geovisualization
system (Döllner et al. 2003).

2. Smart Terrain Models

In this section, we describe our system for modeling and editing smart ter-
rain models. Section 2.1 gives an overview of the system and defines the
data components that specify the model. Section 2.2 gives a classification
of the terrain elements that constitute a smart terrain model. In section 2.3,
we describe the appearance specification for terrain elements.

2.1 System Overview

The principal workflow of our approach is illustrated in Fig. 3. The speci-
fication of a smart terrain model provides the complete information for

automatic generation of a 3D model representation and consists of two
parts, the base data and the generator configuration.

The base data consist of any 2D vector-based land use data containing
polylines and polygons, in the following referred to as base vector-objects,
with attached attribute tables. Each attribute table defines a set of numeri-
cal, textual, or Boolean values that can be accessed via certain attribute-
table key strings. The base data can be obtained from existing geo-data
bases but can also be edited directly in the 3D-editor, e.g., based on a
given aerial image. The base data can be specified in any format that al-
lows for describing 2D vector-data with associated attribute tables, e.g.,
ESRI shapefiles or GML.

The generator configuration specifies the way in which base data and
related attributes are interpreted to generate the 3D terrain model. For in-
stance, in a given base-data set polygons representing water areas may be
indicated by defining the value "Water" for the attribute-table key "Area
Type". The generator configuration also defines one or more material cata-
logues. A material catalogue consists of a set of material descriptions that
are referenced by 2D base vector-objects. Materials are discussed in Sec-

Fig. 3. System overview for the automated construction of urban terrain models.

tion 2.3. The generator configuration and the material catalogues are stored
as separate XML files.

The generator takes the smart terrain model specification as input and
creates a 3D representation of the terrain that is used for real-time render-
ing. The generator also maintains for each generated 3D object a reference
to the underlying base vector-object. This information is used by the editor
to support selection and editing of surface-model elements directly in the
3D scene.

The interactive 3D editor allows for creation and management of 2D
base data, generator configuration, and material catalogues. It provides
real-time visualization of both the underlying base data as well as the re-
sulting 3D representation (Fig. 4). The 2D base data can be displayed on

Fig. 4. Snapshot of the editor system: The user can switch between the 2D
view of the base data (top) and the resulting 3D representation (bottom).

the surface of a digital elevation model using the technique described by
Kersting and Döllner (2002). If a terrain element is selected and edited by
the user, the modification is applied to the underlying base data, and the
generator immediately updates the corresponding parts of the 3D represen-
tation, so that changes of the base data are directly visible in the 3D envi-
ronment. The 3D representation itself, however, is never changed by the
user but always fully determined by the smart terrain model specification.
Hence, editing effort is never lost when the 3D model has to be re-built by
the generator.

2.2 Smart Terrain Model Elements

The elements of a smart terrain model are organized in the classes
GroundArea, WaterArea, Stair, Wall, Kerb, and Barrier (Fig. 5).
Instances of these classes are not explicitly part of the specification but are
defined implicitly by the base vector-objects and their related attributes.
Most terrain elements correspond to exactly one base vector-object. The
only exception holds for irregular stairs, which require multiple polygons
for specification. The attributes of a base vector-object determine the class
of the corresponding terrain element. Depending on the respective class,
the required attributes for 3D shape and appearance of a terrain element
are also taken from the attribute table of the base vector-object.

Our primary design goal was to make the refinement of pure 2D base
vector-data to a full smart surface-model specification as simple as possi-
ble for typical cases. If the class model would provide the unrestricted
geometric flexibility of a generic 3D tool, it would not be possible any-
more to specify the terrain elements completely via 2D base data, and the
editing process would become very complicated. Thus, the main advan-

Fig. 5. Overview of the terrain element classes.

tages of the system would be lost. Therefore, we restricted the class model
to cases that can be intuitively described via 2D polygons or polylines and
support optional refinement of individual objects by external 3D tools. For
this, for each terrain element, the automatically generated 3D model can be
exported, externally refined, and finally referenced by the terrain element.
This way, the effort for fitting an externally created 3D model correctly in
the scene is avoided and the 3D model is still related to the underlying
base data.

Ground Areas

A GroundArea represents a polygonal surface on the ground that is dis-
played with a certain appearance. For instance, a ground area may repre-
sent a part of a street, a sidewalk, a lawn, or a wasteland area. Since the
GroundArea class covers several kinds of terrain elements, it could theo-
retically be split up into several subclasses but there are some reasons to
use a single class instead:

- To enforce a generic sub-classification of ground areas can be impos-
sible or ambiguous. For example, a single asphalted area might be in-
terpreted as a part of a parking area, a part of a street, or a part of a
square.

- From a technical point-of-view, a finer classification is not necessary
because the created 3D representations differ only by material.

- From a user’s point-of-view, a finer classification is not necessary be-
cause thematic classification can be obtained from the base vector-
objects’ attribute tables, and visually thematic sub-classification can be
achieved by assigning different materials.

Each GroundArea is defined by a single base-data polygon or a polyline
that is buffered to a certain width. If the data format used for the base data
supports 2,5D vector data, i.e., if it allows for specifying per-vertex height
values for each vector object, as in the case of shapefiles or GML, the sur-
face geometry can be completely defined by the geometry of the underly-
ing base vector-object. If height values are not provided by the initial base
data, they can either be automatically derived from a digital elevation
model or edited manually. To assign height values by projecting the data-
set onto a digital elevation model corresponds to the principle of image
draping and is a good solution for continuous surfaces without vertical
breaks.

In the general case, however, GroundAreas do not necessarily define
identical height values at their borders. Therefore, some GroundAreas

must be rendered with vertical border faces to avoid holes in the terrain
model. For this, an optional extrusion depth can be specified, by which the
surface is extruded downwards. If desired, a separate material can be
specified for the vertical border faces.

Water Areas

A WaterArea represents a polygonal surface that appears as a water sur-
face in the 3D visualization. The geometry of a WaterArea is specified in
the same way as a GroundArea but it must always be fully horizontally
and allows for specifying a desired flow direction of the water. We inte-
grated water areas as an own class to allow future viewing applications for
rendering the water different to solid surfaces, e.g., by animated water tex-
tures.

Stairs

In the general case, a Stair is described by multiple base-data polygons,
whereby each polygon represents a single step and is extruded downwards
(IrregularStair) to obtain the 3D shape of the step. Many stairs can be
described more simply via a single rectangular footprint by moving certain
edges of the rectangle inwards to describe the footprints of the upper steps
(RegularStair, Fig. 6). A RegularStair can be specified by a single
base-data polygon, whose attribute table defines number of steps, step
height, step width, and the information which edges to move inwards.
Each stair defines a material for its surface and optionally an additional
material for its vertical faces.

Fig. 6. Construction of a simple stair: The footprints of the upper steps are de-
fined by moving inwards certain edges of the full stair footprint (left). The 3D
shape is then defined by extruding each step polygon downwards (right).

Walls

The class Wall represents freestanding walls and retaining walls. Many
walls contain a separate top plate, which might differ from the rest of the
wall by another material and by slightly exceeding the wall footprint.
Therefore, the Wall class provides optional parameters to specify a sepa-
rate top plate. Fig. 7 shows an example. Walls are represented by polygons
or polylines of the base data and their attributes. By buffering line features
to a width that is specified by the attribute table, we obtain the footprint of
the wall (Fig. 7a). The 3D shape is now determined by the extrusion pa-
rameters shown in Fig. 7b, and finally, materials are specified for each side
(Fig. 7c).

Kerbs

The class Kerb represents boundary objects between two GroundAreas
with a separately specified appearance, e.g., by an own kind of stone or by
a different height (Fig. 8). This corresponds to typical construction meth-
ods for, e.g., pavements and roads, where a kerbstone is necessary to stabi-
lize the construction. A Kerb is defined by a polyline of the base-data set.

For the frequent case of two Kerbs along a single boundary line, both
Kerbs should appear side by side and not overlapping. For this, each Kerb
must specify one of the two adjacent GroundAreas as the parent area to
which the Kerb belongs. This defines the order in which the Kerbs appear
between the two adjacent GroundAreas. The parent area, i.e., its underly-
ing base vector-object, is referenced in the attribute table of the Kerb’s
underlying polyline. To allow for referencing, the base-data vector-objects

Fig. 7. Construction of walls: a) Specification of the footprint (left);
b) 3D extrusion parameters (middle); c) materials for each surface (right).

must provide unique ID values in their attribute tables. In the rare case of
three or more parallel boundary objects along a single boundary line, the
middle objects must be represented by additional GroundAreas.

The footprint of the Kerb’s 3D representation is obtained by buffering
the Kerb’s underlying poly-line to a certain width. Since the Kerb shall
appear completely as a part of its parent area, the buffering is performed
only in the direction pointing inside the parent area. Finally, the 3D shape
is obtained by extruding the footprint to a certain height. Buffering width
and extrusion height are specified via the attribute table.

Barriers

The class Barrier represents boundary objects such as fences or balus-
trades. In contrast to walls, barriers do not cover any area on the ground
but their footprint is only line-shaped. Each Barrier object is defined by
a polyline in the base-data set which specifies the height of the Barrier
in its attribute table. The generator provides a set of standard barrier types.
In our current implementation, Barriers are simply represented by ex-
truded lines covered with partially transparent texture-images. More ad-
vanced future Barrier types could include actual 3D detail geometry. If
the standard types are not sufficient, the Barrier can be refined by an ex-
ternal 3D modeling tool.

Fig. 8. Examples of kerbs along the border lines of streets and sidewalks.

2.3 Appearance Properties

The material catalogue provides a set of materials that can be referenced
by the base vector-objects via unique names. A material can be of one of
two types: Color and texture. A color material defines an RGB color
value.

A texture material defines a reference to a texture image file and scaling
parameters that define to which width and height the texture is stretched
when it is applied to a surface. Each terrain element that references a tex-
ture material must define an anchor point onto which the texture origin is
mapped in the 3D model and an orientation angle of the texture. Since
these values are usually different even for objects of the same material,
they are not stored as a part of the material itself.

3. Case Study

We used our approach in an open-space planning task concerning a part of
the German city Potsdam. The aim of our modeling project was to provide
a detailed photorealistic 3D geovirtual environment that could be explored
interactively. The result can be seen in Fig. 2 and Fig. 4.

The initial data of the modeling project were provided to us by the city
of Potsdam and were part of the digital municipal town map. These data
originate from ground survey, are geometrically very accurate, and hold
detailed information about buildings, surface cover, installations and vege-
tation. Information about the terrain surface cover is maintained in the data
by mapping borderlines between different surface types and placement of
cartographic symbols for different surface materials and vegetation areas.
Borderlines can either represent a change in surface materials or can repre-
sent kerbstones. Buildings are represented by polygons with attached in-
formation about the number of floors and additional information about
balconies and car passages. Walls and stairs are represented through poly-
lines or polygons depending on their size. Installations and trees are repre-
sented through point symbols.

To create a smart terrain model from the data, all features representing a
change in surface type or material were used to create an area wide poly-
gon dataset. Thematic information, stored in point features, was then trans-
ferred to the polygons through a point in polygon selection. Using the
original thematic information all objects were classified into the smart ter-
rain element classes. The resulting dataset contained all polygonal terrain
elements that were represented by the town map. In order to integrate walls
and kerbstones that were represented by polylines, these were classified

and specified as well. In the next step a material table was created and as-
signed to the features. It holds material names, the names of the texture
files and texture scaling parameters. Finally, height information was as-
signed to the terrain elements. Height information for GroundAreas and
Kerbs were derived by projecting the respective features onto a digital
elevation model. For features representing WaterAreas and Stairs con-
stant values were assigned. Objects representing walls were assigned con-
stant height values or the height was calculated as an offset of the terrain.

The resulting terrain model was combined with models for buildings
and plants as can be seen in Fig. 2. For the plants, we used plant models
and the plant rendering engine of the project Lenné3D (Paar & Rekittke
2005). For modeling and representation of buildings we used the approach
of Döllner and Buchholz (2005). The buildings were automatically gener-
ated from 2D GIS input data and refined afterwards, e.g., by textures for
roofs and facades. As the footprints of the buildings were used in creating
the terrain model, no inconsistencies could appear between buildings and
terrain. Furthermore any thematic information that was stored within the
attribute table of the input data was preserved.

4. Conclusions and Future Work

The presented approach simplifies and enhances the construction, manipu-
lation, and usage of complex urban terrain models. Its major advantages
include the persistent linkage to 2D vector-based plans, the rule-based and
heuristic-based automated model generation, and the inherent functionality
and smartness of urban terrain objects. Base 2D geo-data can be taken
from GIS and integrated seamlessly into the 3D modeling process. The
ability of smart terrain models to maintain semantic and thematic informa-
tion provides a technical basis for smart 3D geo-visualization tools. In ad-
dition, the approach represents a step towards 3D geovisualization from a
pedestrian’s point-of-view in contrast to “fly-through” based systems.

As future work, we are investigating the integration of algorithms for
procedural generation of textures and geometric details such as asphalted
streets or stone mosaics. In addition, we are working on related real-time
3D rendering techniques to improve photorealism, including complex 3D
vegetation models and shadows.

Acknowledgements

We would like to thank the urban surveying office Potsdam for the data set
used in our case study, the Remote Sensing Solutions GmbH
(www.rssgmbh.de) for the city model of Berlin used in Figure 1, and the
3D Geo GmbH (www.3dgeo.de) for providing us support to the landX-
plorer technology. We are also grateful to the German environmental
foundation Deutsche Bundesstiftung Umwelt for supporting our research
within the Lenne3D project (www.lenne3d.de) and to the Lenné3D GmbH
for providing the tree models used in Figure 2. Finally, we would like to
thank our students Oleg Dedkow, Anselm Kegel, Manuel Wellmann,
Wolfgang Braunisch, Christian Schubert, Andrea Hentschke, Sebastian
Kuhn, Jan Rehders, and Jan Zimmermann, who contributed to the Smart-
Terrain editor implementation.

References

Appleton K, Lovett A, Sünnenberg G, Dockerty D (2002) Rural landscape visuali-
sation from GIS: a comparison of approaches, options and problems. Com-
puter, Environment and Urban Systems 26, 141-162.

Danahy JW (2005) Negotiating public view protection and high density in urban
design. In: Bishop, I. & E. Lange (eds.), Visualization in landscape and envi-
ronmental planning, Spon Press, London: 203-211.

Deussen O. (2003) A framework for geometry generation and rendering of plants
with applications in landscape architecture. Landscape and urban planning 64
(1-2), 105-113.

Döllner J, Hinrichs K (2002) A generic rendering system. IEEE transactions on
visualization and computer graphics, 8(2):99-118.

Döllner J, Baumann K, Kersting O (2003) LandExplorer - ein System für interak-
tive 3D-Karten. Kartographische Schriften, Band 7, 67-76.

Döllner J, Buchholz H (2005) Continuous level-of-detail modelling of buildings in
Virtual 3D City Models. Proceedings of the 13th ACM International Sympo-
sium of Geographical Information Systems, ACM GIS 2005, 173-181.

Döllner J, Hagedorn B, Schmidt S (2005) An approach towards semantics-based
navigation in 3D city models on mobile devices. Proceedings of the 3rd sym-
posium on LBS & TeleCartography, Vienna (to appear).

Finch M (2004) Effective water simulation from physical models, GPU Gems,
Addison Wesley, 5-29.

Kersting O, Döllner J (2002) Interactive visualization of 3D vector data in GIS.
Proceedings of the ACM GIS 2002, ACM Press, 107-112.

Lange E, Hehl-Lange S (2005) Future scenarios of peri-urban green space. In:
Bishop, I. & E. Lange (eds.), Visualization in landscape and environmental
planning, Spon Press, London: 195-202.

Muhar A (2001) Three-dimensional modelling and visualisation of vegetation for
landscape simulation. Landscape and urban planning 54 (1-4), 5-17.

Paar P, Rekittke J (2005) Lenné3D - Walk-through visualization of planned land-
scapes. In: Bishop, I. & E. Lange (eds.), Visualization in landscape and envi-
ronmental planning, Spon Press, London: 152-162.

Shah MA, Kontinnen J, Pattanaik S (2005) Real-time rendering of realistic-
looking grass, Proceedings of the 3rd conference on computer graphics and in-
teractive techniques in Australasia and South East Asia, 77-82.

Stock C, Bishop I (2005) Helping rural communities envision their future. In:
Bishop, I. & Lange, E. (eds.): Visualization in landscape and environmental
planning – technology and applications. Taylor & Francis, Oxon, UK.

Warren-Kretzschmar B, Tiedtke S (2005) What role does visualization play in
communication with citizens. In: Buhmann, E., Paar, P., Bishop, I. & E. Lange
(eds.): Trends in real-time landscape visualization and participation. Proc. at
Anhalt University of Applied Science 2005. Wichmann Verlag, Heidelberg.

Werner A, Deussen O, Döllner J, Hege HC, Paar P, Rekittke J (2005) Lenné3D –
Walking through landscape plans. In: Buhmann, E., Paar, P., Bishop, I. & E.
Lange (eds.): Trends in real-time landscape visualization and participation.
Proc. at Anhalt University of Applied Science 2005. Wichmann Verlag, Hei-
delberg.

