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Abstract  

Elements of urban terrain models such as streets, pavements, lawns, walls, 
and fences are fundamental for effective recognition and convincing ap-
pearance of virtual 3D cities and virtual 3D landscapes. These elements 
complement important other components such as 3D building models and 
3D vegetation models. This paper introduces an object-oriented, rule-based 
and heuristic-based approach for modeling detailed virtual 3D terrains in 
an automated way. Terrain models are derived from 2D vector-based plans 
based on generation rules, which can be controlled by attributes assigned 
to 2D vector elements. The individual parts of the resulting urban terrain 
models are represented as “first-class” objects. These objects remain 
linked to the underlying 2D vector-based plan elements and, therefore, 
preserve data semantics and associated thematic information. With urban 
terrain models, we can achieve high-quality photorealistic 3D geovirtual 
environments and support interactive creation and manipulation. The 
automated construction represents a systematic solution for the bi-
directional linkage of 2D plans and 3D geovirtual environments and over-
comes cost-intensive CAD-based construction processes. The approach 
both simplifies the geometric construction of detailed urban terrain models 
and provides a seamless integration into traditional GIS-based workflows. 
The resulting 3D geovirtual environments are well suited for a variety of 
applications including urban and open-space planning, information sys-
tems for tourism and marketing, and navigation systems. As a case study, 
we demonstrate our approach applied to an urban development area of 
downtown Potsdam, Germany. 

1. Introduction 

Photorealistic virtual 3D city models and virtual 3D landscape models 
form a basis for an increasing number of applications and systems. They 
can be used, for example, in landscape and open-space planning to present 
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planning scenarios to the public (e.g., Danahy 2005, Lange and Hehl-
Lange 2005, Stock and Bishop 2005, Warren-Kretzschmar and Tiedtke 
2005, Werner et al. 2005) or in tourism to allow visitors exploring a city 
virtually. Many geovirtual environments such as the example in Figure 1 
(left) are based on a set of 3D building models and 2.5D terrain model 
draped by aerial images to represent areas that are not covered by build-
ings. These areas consist of manmade surface structures (e.g., roads, 
pavement, walls, stairs, or squares), natural terrain surfaces, which are of-
ten covered by vegetation (e.g., woodland, agricultural land, grassland, or 
rocks) and water surfaces (e.g., rivers, canals, or lakes). Aerial images are 
well suited for representing such surface cover information from a bird’s 
eye view but do not provide sufficient detail for visualization from a pe-
destrian’s point-of-view (Figure 1 right). In addition, the represented ter-
rain elements cannot be analytically identified and modified because there 
is no concise object-oriented representation of these elements and the link-
age between GIS planning data and virtual 3D model has been lost. This 
makes aerial images unsuitable for land use related planning tasks. There-
fore, many applications require more detailed virtual 3D terrain models 
(Figure 2).  

There are three common approaches for creating detailed terrain surface 
representations: manual modeling, triangulated irregular network (TIN) 
models, and image draping. 

Manual Modeling 
Using standard 3D modeling tools or CAD tools for manual modeling of 
terrain surface structures provides maximum flexibility. It involves, how-
ever, high manual efforts and requires a high degree of expertise. In addi-

       
Fig. 1. Aerial images are well suited for bird’s eye views (left) but fail for ground-
level views as illustrated by the flattened trees (right). 



tion, the result consists of computer graphics 3D models that are detached 
from any underlying 2D geo-data that have been originally used as a basis 
for modeling. The following limitations result: 

• No object-specific modeling techniques: For most elements of urban ter-
rain models, editing techniques could take advantage of object-specific 
construction rules and constraints (e.g., distribution, form, or height of 
stairs).  

• No automated updating: The computer graphics 3D models cannot be 
reused if the 2D geo-data changes. 

• No geo-data context: The computer graphics 3D models have to be cre-
ated separately from related geo-data that could be helpful for editing. 
For instance, showing aerial images or topographic maps can be useful 
to validate a 3D model visually while editing. Since generic 3D editing 
tools are not aware of the geo-spatial context of the data, they do not 
provide such functionality. 

• No geo-data linkage: The computer graphics 3D models do not preserve 
data semantics and thematic information contained in or associated with 
2D plans. 

TIN-based Modeling 
TIN models can also be used to represent detailed terrain models. They al-
low for integrating land use information and built surface structures by us-

 
Fig. 2. Snapshot of the automatically created urban terrain model of our case 

study, a redevelopment of a downtown area in Potsdam. 



ing line or polygon features as break lines and by assigning different colors 
or textures to certain triangles. This way, detailed terrain models can be 
created from GIS input data. The TIN-based approach, however, has two 
major disadvantages:  

• No linkage to 2D plan elements: No direct link is established between a 
TIN and the original data from which it has been created. Therefore, 
thematic and semantic information is lost and changing the original data 
requires rebuilding the TIN. 

• Restricted geometry: As an inherent limitation, vertical faces cannot be 
modeled by TINs.  

Modeling based on Image Draping 
The most common approach to create detailed urban terrain models in 
landscape visualization is based on the principles of image draping. Spe-
cialized modeling tools for virtual landscapes such as World Construction 
Set, ArcScene, or VirtualGIS allow for integrating GIS data into the 3D 
scene by draping vector-based information onto the terrain and assigning 
colors or textures to the polygons. Such tools reduce the manual modeling 
effort and are able to create satisfying results at landscape scale (Appleton 
et al. 2002). In landscape planning, they are primarily used to visualize ter-
rain surfaces carrying vegetation by textures (Muhar 2001) and prototype 
3D plant models. In addition, the tools mentioned above are suitable to 
visualize roads or other manmade terrain surfaces. However, in order to in-
tegrate manmade surface structures that include textured vertical faces or 
that have to be created from polylines by buffering a line feature, manual 
modeling effort and extensive data preparation is required. 

Smart Terrain Models 
In this paper, we propose smart terrain models, an approach for generating 
high-quality urban terrain models automatically from 2D vector-based 
plans. Instead of converting available 2D data to new, detached 3D mod-
els, our approach is based on the idea to keep the original 2D data and to 
add complementary information to enhance them to a complete 3D scene 
specification. The approach is similar to the image draping method but ex-
tends it by defining specialized representations for typical terrain elements. 
This increases the modeling flexibility while providing significant advan-
tages compared to generic 3D models: 

• The underlying 2D vector data that form the core of the smart terrain 
model specification can still be accessed and edited by external 2D GIS 
tools and can be obtained and updated from 2D data sources. 



• Thematic information and data semantics can be directly queried within 
the 3D visualization. 

• Due to the permanent link between 2D data and their 3D representation, 
interactive visualization of the generated 3D models can be directly 
combined with editing tools for the underlying 2D data. This way, the 
effect of modifications of the 2D data can be directly shown in the 3D 
model. Particularly, it allows for immediate corrections of any errors in 
the underlying 2D data when they become visible in the 3D visualiza-
tion. 

• Since the data semantics is preserved in the 3D representation, smart ter-
rain models form a basis for the development of visualization tools that 
are aware of the data semantics and use it to apply specialized real-time 
rendering techniques (e.g., Finch 2004, Shah et al. 2005) for certain sur-
face elements to optimize the rendering performance or to improve the 
visual quality. 

We demonstrate our approach in a case study, in which we modeled an ur-
ban area of downtown Potsdam, Germany. The combination of smart ter-
rain models with 3D building models, e.g., provided by Smart Buildings 
(Döllner and Buchholz 2005) or CityGML (Kolbe et al. 2005), and 3D 
vegetation models (Deussen 2003) leads to photorealistic 3D city models 
that are suitable for real-time visualization at a pedestrian’s point-of-view. 
Our approach has been implemented on the basis of the graphics library 
VRS (Döllner and Hinrichs 2002) and the LandXplorer geovisualization 
system (Döllner et al. 2003).  

2. Smart Terrain Models 

In this section, we describe our system for modeling and editing smart ter-
rain models. Section 2.1 gives an overview of the system and defines the 
data components that specify the model. Section 2.2 gives a classification 
of the terrain elements that constitute a smart terrain model. In section 2.3, 
we describe the appearance specification for terrain elements.  

2.1 System Overview 

The principal workflow of our approach is illustrated in Fig. 3. The speci-
fication of a smart terrain model provides the complete information for 



automatic generation of a 3D model representation and consists of two 
parts, the base data and the generator configuration.  

The base data consist of any 2D vector-based land use data containing 
polylines and polygons, in the following referred to as base vector-objects, 
with attached attribute tables. Each attribute table defines a set of numeri-
cal, textual, or Boolean values that can be accessed via certain attribute-
table key strings. The base data can be obtained from existing geo-data 
bases but can also be edited directly in the 3D-editor, e.g., based on a 
given aerial image. The base data can be specified in any format that al-
lows for describing 2D vector-data with associated attribute tables, e.g., 
ESRI shapefiles or GML.  

The generator configuration specifies the way in which base data and 
related attributes are interpreted to generate the 3D terrain model. For in-
stance, in a given base-data set polygons representing water areas may be 
indicated by defining the value "Water" for the attribute-table key "Area 
Type". The generator configuration also defines one or more material cata-
logues. A material catalogue consists of a set of material descriptions that 
are referenced by 2D base vector-objects. Materials are discussed in Sec-

 
Fig. 3. System overview for the automated construction of urban terrain models. 

 



tion 2.3. The generator configuration and the material catalogues are stored 
as separate XML files. 

The generator takes the smart terrain model specification as input and 
creates a 3D representation of the terrain that is used for real-time render-
ing. The generator also maintains for each generated 3D object a reference 
to the underlying base vector-object. This information is used by the editor 
to support selection and editing of surface-model elements directly in the 
3D scene. 

The interactive 3D editor allows for creation and management of 2D 
base data, generator configuration, and material catalogues. It provides 
real-time visualization of both the underlying base data as well as the re-
sulting 3D representation (Fig. 4). The 2D base data can be displayed on 

 
 

 
Fig. 4. Snapshot of the editor system: The user can switch between the 2D 
view of the base data (top) and the resulting 3D representation (bottom). 



the surface of a digital elevation model using the technique described by 
Kersting and Döllner (2002). If a terrain element is selected and edited by 
the user, the modification is applied to the underlying base data, and the 
generator immediately updates the corresponding parts of the 3D represen-
tation, so that changes of the base data are directly visible in the 3D envi-
ronment. The 3D representation itself, however, is never changed by the 
user but always fully determined by the smart terrain model specification. 
Hence, editing effort is never lost when the 3D model has to be re-built by 
the generator. 

2.2 Smart Terrain Model Elements 

The elements of a smart terrain model are organized in the classes 
GroundArea, WaterArea, Stair, Wall, Kerb, and Barrier (Fig. 5). 
Instances of these classes are not explicitly part of the specification but are 
defined implicitly by the base vector-objects and their related attributes. 
Most terrain elements correspond to exactly one base vector-object. The 
only exception holds for irregular stairs, which require multiple polygons 
for specification. The attributes of a base vector-object determine the class 
of the corresponding terrain element. Depending on the respective class, 
the required attributes for 3D shape and appearance of a terrain element 
are also taken from the attribute table of the base vector-object. 

Our primary design goal was to make the refinement of pure 2D base 
vector-data to a full smart surface-model specification as simple as possi-
ble for typical cases. If the class model would provide the unrestricted 
geometric flexibility of a generic 3D tool, it would not be possible any-
more to specify the terrain elements completely via 2D base data, and the 
editing process would become very complicated. Thus, the main advan-

 
Fig. 5. Overview of the terrain element classes. 



tages of the system would be lost. Therefore, we restricted the class model 
to cases that can be intuitively described via 2D polygons or polylines and 
support optional refinement of individual objects by external 3D tools. For 
this, for each terrain element, the automatically generated 3D model can be 
exported, externally refined, and finally referenced by the terrain element. 
This way, the effort for fitting an externally created 3D model correctly in 
the scene is avoided and the 3D model is still related to the underlying 
base data.  

Ground Areas 

A GroundArea represents a polygonal surface on the ground that is dis-
played with a certain appearance. For instance, a ground area may repre-
sent a part of a street, a sidewalk, a lawn, or a wasteland area. Since the 
GroundArea class covers several kinds of terrain elements, it could theo-
retically be split up into several subclasses but there are some reasons to 
use a single class instead: 

- To enforce a generic sub-classification of ground areas can be impos-
sible or ambiguous. For example, a single asphalted area might be in-
terpreted as a part of a parking area, a part of a street, or a part of a 
square.  

- From a technical point-of-view, a finer classification is not necessary 
because the created 3D representations differ only by material. 

- From a user’s point-of-view, a finer classification is not necessary be-
cause thematic classification can be obtained from the base vector-
objects’ attribute tables, and visually thematic sub-classification can be 
achieved by assigning different materials. 

Each GroundArea is defined by a single base-data polygon or a polyline 
that is buffered to a certain width. If the data format used for the base data 
supports 2,5D vector data, i.e., if it allows for specifying per-vertex height 
values for each vector object, as in the case of shapefiles or GML, the sur-
face geometry can be completely defined by the geometry of the underly-
ing base vector-object. If height values are not provided by the initial base 
data, they can either be automatically derived from a digital elevation 
model or edited manually. To assign height values by projecting the data-
set onto a digital elevation model corresponds to the principle of image 
draping and is a good solution for continuous surfaces without vertical 
breaks.  

In the general case, however, GroundAreas do not necessarily define 
identical height values at their borders. Therefore, some GroundAreas 



must be rendered with vertical border faces to avoid holes in the terrain 
model. For this, an optional extrusion depth can be specified, by which the 
surface is extruded downwards. If desired, a separate material can be 
specified for the vertical border faces.  

Water Areas 

A WaterArea represents a polygonal surface that appears as a water sur-
face in the 3D visualization. The geometry of a WaterArea is specified in 
the same way as a GroundArea but it must always be fully horizontally 
and allows for specifying a desired flow direction of the water. We inte-
grated water areas as an own class to allow future viewing applications for 
rendering the water different to solid surfaces, e.g., by animated water tex-
tures.  

Stairs 

In the general case, a Stair is described by multiple base-data polygons, 
whereby each polygon represents a single step and is extruded downwards 
(IrregularStair) to obtain the 3D shape of the step. Many stairs can be 
described more simply via a single rectangular footprint by moving certain 
edges of the rectangle inwards to describe the footprints of the upper steps 
(RegularStair, Fig. 6). A RegularStair can be specified by a single 
base-data polygon, whose attribute table defines number of steps, step 
height, step width, and the information which edges to move inwards. 
Each stair defines a material for its surface and optionally an additional 
material for its vertical faces. 

   
 

Fig. 6. Construction of a simple stair: The footprints of the upper steps are de-
fined by moving inwards certain edges of the full stair footprint (left). The 3D 
shape is then defined by extruding each step polygon downwards (right). 



Walls 

The class Wall represents freestanding walls and retaining walls. Many 
walls contain a separate top plate, which might differ from the rest of the 
wall by another material and by slightly exceeding the wall footprint. 
Therefore, the Wall class provides optional parameters to specify a sepa-
rate top plate. Fig. 7 shows an example. Walls are represented by polygons 
or polylines of the base data and their attributes. By buffering line features 
to a width that is specified by the attribute table, we obtain the footprint of 
the wall (Fig. 7a). The 3D shape is now determined by the extrusion pa-
rameters shown in Fig. 7b, and finally, materials are specified for each side 
(Fig. 7c). 

Kerbs 

The class Kerb represents boundary objects between two GroundAreas 
with a separately specified appearance, e.g., by an own kind of stone or by 
a different height (Fig. 8). This corresponds to typical construction meth-
ods for, e.g., pavements and roads, where a kerbstone is necessary to stabi-
lize the construction. A Kerb is defined by a polyline of the base-data set.  

For the frequent case of two Kerbs along a single boundary line, both 
Kerbs should appear side by side and not overlapping. For this, each Kerb 
must specify one of the two adjacent GroundAreas as the parent area to 
which the Kerb belongs. This defines the order in which the Kerbs appear 
between the two adjacent GroundAreas. The parent area, i.e., its underly-
ing base vector-object, is referenced in the attribute table of the Kerb’s 
underlying polyline. To allow for referencing, the base-data vector-objects 

 
Fig. 7. Construction of walls: a) Specification of the footprint (left);  
b) 3D extrusion parameters (middle); c) materials for each surface (right). 



must provide unique ID values in their attribute tables. In the rare case of 
three or more parallel boundary objects along a single boundary line, the 
middle objects must be represented by additional GroundAreas. 

The footprint of the Kerb’s 3D representation is obtained by buffering 
the Kerb’s underlying poly-line to a certain width. Since the Kerb shall 
appear completely as a part of its parent area, the buffering is performed 
only in the direction pointing inside the parent area. Finally, the 3D shape 
is obtained by extruding the footprint to a certain height. Buffering width 
and extrusion height are specified via the attribute table. 

Barriers 

The class Barrier represents boundary objects such as fences or balus-
trades. In contrast to walls, barriers do not cover any area on the ground 
but their footprint is only line-shaped. Each Barrier object is defined by 
a polyline in the base-data set which specifies the height of the Barrier 
in its attribute table. The generator provides a set of standard barrier types. 
In our current implementation, Barriers are simply represented by ex-
truded lines covered with partially transparent texture-images. More ad-
vanced future Barrier types could include actual 3D detail geometry. If 
the standard types are not sufficient, the Barrier can be refined by an ex-
ternal 3D modeling tool. 

 
Fig. 8. Examples of kerbs along the border lines of streets and sidewalks. 



2.3 Appearance Properties 

The material catalogue provides a set of materials that can be referenced 
by the base vector-objects via unique names. A material can be of one of 
two types: Color and texture. A color material defines an RGB color 
value.  

A texture material defines a reference to a texture image file and scaling 
parameters that define to which width and height the texture is stretched 
when it is applied to a surface. Each terrain element that references a tex-
ture material must define an anchor point onto which the texture origin is 
mapped in the 3D model and an orientation angle of the texture. Since 
these values are usually different even for objects of the same material, 
they are not stored as a part of the material itself. 

3. Case Study 

We used our approach in an open-space planning task concerning a part of 
the German city Potsdam. The aim of our modeling project was to provide 
a detailed photorealistic 3D geovirtual environment that could be explored 
interactively. The result can be seen in Fig. 2 and Fig. 4. 

The initial data of the modeling project were provided to us by the city 
of Potsdam and were part of the digital municipal town map. These data 
originate from ground survey, are geometrically very accurate, and hold 
detailed information about buildings, surface cover, installations and vege-
tation. Information about the terrain surface cover is maintained in the data 
by mapping borderlines between different surface types and placement of 
cartographic symbols for different surface materials and vegetation areas. 
Borderlines can either represent a change in surface materials or can repre-
sent kerbstones. Buildings are represented by polygons with attached in-
formation about the number of floors and additional information about 
balconies and car passages. Walls and stairs are represented through poly-
lines or polygons depending on their size. Installations and trees are repre-
sented through point symbols. 

To create a smart terrain model from the data, all features representing a 
change in surface type or material were used to create an area wide poly-
gon dataset. Thematic information, stored in point features, was then trans-
ferred to the polygons through a point in polygon selection. Using the 
original thematic information all objects were classified into the smart ter-
rain element classes. The resulting dataset contained all polygonal terrain 
elements that were represented by the town map. In order to integrate walls 
and kerbstones that were represented by polylines, these were classified 



and specified as well. In the next step a material table was created and as-
signed to the features. It holds material names, the names of the texture 
files and texture scaling parameters. Finally, height information was as-
signed to the terrain elements. Height information for GroundAreas and 
Kerbs were derived by projecting the respective features onto a digital 
elevation model. For features representing WaterAreas and Stairs con-
stant values were assigned. Objects representing walls were assigned con-
stant height values or the height was calculated as an offset of the terrain.  

The resulting terrain model was combined with models for buildings 
and plants as can be seen in Fig. 2. For the plants, we used plant models 
and the plant rendering engine of the project Lenné3D (Paar & Rekittke 
2005). For modeling and representation of buildings we used the approach 
of Döllner and Buchholz (2005). The buildings were automatically gener-
ated from 2D GIS input data and refined afterwards, e.g., by textures for 
roofs and facades. As the footprints of the buildings were used in creating 
the terrain model, no inconsistencies could appear between buildings and 
terrain. Furthermore any thematic information that was stored within the 
attribute table of the input data was preserved. 

4. Conclusions and Future Work 

The presented approach simplifies and enhances the construction, manipu-
lation, and usage of complex urban terrain models. Its major advantages 
include the persistent linkage to 2D vector-based plans, the rule-based and 
heuristic-based automated model generation, and the inherent functionality 
and smartness of urban terrain objects. Base 2D geo-data can be taken 
from GIS and integrated seamlessly into the 3D modeling process. The 
ability of smart terrain models to maintain semantic and thematic informa-
tion provides a technical basis for smart 3D geo-visualization tools. In ad-
dition, the approach represents a step towards 3D geovisualization from a 
pedestrian’s point-of-view in contrast to “fly-through” based systems.  

As future work, we are investigating the integration of algorithms for 
procedural generation of textures and geometric details such as asphalted 
streets or stone mosaics. In addition, we are working on related real-time 
3D rendering techniques to improve photorealism, including complex 3D 
vegetation models and shadows.  
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