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Abstract—In software comprehension, program traces are
important to gain insight into certain aspects of concurrent
runtime behavior, e.g., thread-interplay. Here, key tasks are
finding usages of blocking operations, such as synchronization
and I/O operations, assessing temporal order of such operations,
and analyzing their effects. This is a hard task for large
and complex program traces due to their size and number of
threads involved. In this paper, we present SYNCTRACE, a new
visualization technique based on (bended) activity diagrams and
edge bundles that allows for parallel analysis of multiple threads
and their inter-thread correspondences. We demonstrate how the
technique, implemented as a tool, can be applied on real-world
trace datasets to support understanding concurrent behavior.

Index Terms—Trace analysis, Software visualization, Program
comprehension, Concurrency.

I. INTRODUCTION

In the software engineering lifecycle, software maintenance
is a crucial part [13], [28]. Studies report that over 40% of
the total maintenance efforts are spent on program comprehen-
sion [6]. One key reason for this is the complexity of programs
and their behavior, which is particularly true for concurrent
programs. Here, in addition to static analysis, dynamic analysis
is a valuable tool for program comprehension [5], [15], [45].
Understanding the interplay of threads by (non-)blocking
operations in specific scenarios is thereby a key strategy in
program comprehension of concurrent programs [7]. While
static analysis of a program’s code base can only reveal a
sound dataset that is valid for all executions of a program [9],
dynamic analysis, or program tracing, can capture runtime
information (program traces) relating to specific scenarios
during execution [45]. Such recorded traces help explaining
used concurrency patterns and thread responsibilities, locate
performance bottlenecks as well as root causes of bugs caused
by non-determinism and incorrect synchronization. Moreover,
such traces can be used to verify/falsify hypotheses about the
(mis-)usage of blocking operations in a given program.

Behavior analysis of concurrent programs is difficult for
several reasons. Recorded program traces are massive data
that pose several analysis and representation challenges [45].
Moreover, we need to show much information per thread, such
as call relationships, timestamps, order of synchronization
points as well as I/O operations, and related blocking system
calls (including wait duration). Due to limited screen space
and certain aspects of human cognition, it is hard to present
this information for many threads in parallel.
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In this paper, we present a visualization technique for the
interactive analysis of large traces from concurrent programs.
Our visualization design enables the parallel analysis of many
threads’ runtime behavior and inter-relationships by a hy-
brid focus+context visualization approach: A combination of
straight (focus) and bended (context) activity diagrams depicts
intra-thread call relationships, and edge bundles show inter-
thread relationships caused by blocking operations, such as
synchronization. We further support the exploratory nature
of the underlying task and address visual scalability by a
multiscale design that allows for trace analysis on several lev-
els of abstraction, and complementary specialized interaction
techniques.

II. RELATED WORK

Concurrency analysis and understanding is an established
research domain since the first parallel computers were
introduced, and can be classified as follows.

Activity Views: (Concurrent) runtime behavior, if given as
hierarchical sequences, is commonly depicted by variants
of icicle plots [21] where the horizontal axis is mapped
to time and the vertical axis to ‘location’, such as stack
depth [38] or memory block range [24]. Rotated variants
are also used to visualize acyclic object graphs, such as
the Java heap [29]. In a similar way, variants of UML
sequence diagrams can be used [8], which, however, are less
efficient than icicle plots in terms of space usage. Scatter
plots, as a multivariate visualization, help correlate items in
high-dimensional datasets, such as peer-to-peer download
metrics [41] or program traces [30].

Concurrency Analysis: Visualization techniques focus either
on multi-machine (distributed) or single-machine (shared-
memory) systems. While the two share many concepts, there
are important differences — such as the means used for commu-
nication and synchronization. Visualization of shared-memory
systems typically does not include network communication,
but visualization for multi-machine systems does [16], [26],
[27], [46]. Moreover, for multi-machine systems, runtime
behavior is often analyzed on a coarser scale, i.e., the runtime
behavior of single processes or threads is rarely of interest. In
the following, we discuss only visualization of shared-memory
systems.

Stasko and Kraemer [34] visualize concurrent executions (as
call graphs) and synchronization, but do not show call stacks
over time as we do. Several visualization support analysis



of threaded computing from the scheduling perspective by
focusing on thread states (running, suspended etc.) [3],
[4], [19], [47]. Several tools use variants or extension of
UML sequence or activity diagrams to depict activity and
inter-thread communication [1], [23]. While UML diagrams
typically allow for detailed analysis [12], [44], they do not
scale well for large traces and/or high number of threads:
They quickly become unusable due to visual clutter. For
example, showing inter-thread relationships between non-
adjacent threads often creates many edge crossings.

Correspondence Visualization: Various techniques
for depicting correspondences (e.g., correlations or
communication) on hierarchical sequences, such as

program traces, exist [14]. Several techniques use node-
link diagrams [20], [43] to show correspondences in
concurrent executions. Such diagrams are generally more
prone to visual clutter than other techniques since they
cause massive edge crossings. TreeJuxtaposer [25] draws
two trees side-by-side and highlights related tree nodes by
color and interaction. Holten et al. [18] build upon this idea
by connecting two juxtaposed icicle plots (having uniform
visual depth) with hierarchically bundled edges [17], which
represent the correspondences. The similar CodeFlows [36]
technique works on multiple trees with non-uniform depth
by placing the trees (drawn as rotated icicle plots) next
to each other. By this, the technique can only show
correspondences between each two adjacent trees. Beck et
al. [2] use a similar approach than CodeFlows, but use it
for analyzing multi-dimensional correlations on one tree.
Artho et al. [1] use extended UML sequence diagrams to
show concurrency-specific correspondences between threads.
The technique is able to show correspondences between
more than two neighbored threads by using overdrawing,
which often results in cluttered diagrams for larger traces.
Several recent approaches provide advanced line rendering,
e.g., by applying ambient occlusion [10] or screen-space
line aggregation [48]. Image-based edge bundling [37] and
TraceDiff [39] (for hierarchical edge bundles) improve upon
the above techniques by implicitly encoding the width of
correlated elements using 2D tubes instead of 1D curves to
show the correspondences.

Our concurrency-analysis use-case joins these challenges:
Visualize both activity (call stacks) and inter-relationships
(blocking operations) of multiple threads in parallel, while
enabling interactive (and synchronized) manipulation of the
shown subsequences and threads. Moreover, due to the car-
dinality of the trace data, the visualization has to support
multiscale analysis of the trace data, and allow for context-
preserving transitions between those scales.

III. TRACE-DATA PROCESSING

We next describe the trace-data model and how we capture
this data at runtime. Based on this model, we will subsequently
describe our visualization design and related interaction tech-
niques.

A. Data Model

We model a program trace as a set P = {T,,} of thread
traces, where m is considered the thread id. A thread trace is
in turn a tree T = {f} of function calls

f=(N, eR " t*cR Y, peT,C,0CI) (1)

with
C={cieT} I={l}. 2)

In f, N depicts an identifier of the function call, such
as the function name. The call’s start and end moments are
represented by t°, respectively #¢, where ¢* < ¢¢. Additionally,
p is considered the caller of f. If f is the root of T, then p is
undefined. The set C contains all calls that f called to, ordered
by call time. Further, we distinguish four kinds of calls:

1) S, is the set of all calls to a synchronization function
that waits for the objects in O.

2) S, is the set of all calls to a synchronization function
that releases the objects in O.

3) S, is the set of all calls to a function that issues I/O
requests, i.e. writes or reads a file.

4) S. is the set of all calls to any other function.

For any f, with S ¢ S., O is a set of objects on which the
function call f operates. Hence, the set of all objects in trace
P is called I. The objects may be mutexes, semaphores, files,
or other objects related to synchronization or 1/O.

In addition, we introduce the following functions:

dur(f)=1°—1¢ 3)

[ dur(f) if f€ Sy
dur'(f) = { Yeec(r) dur®(c) otherwise @)

where x in {0,w,r}; dur(f) can be interpreted as the duration
of a function call f. Similarly, dur”, dur” and dur® tell the
duration that f spent doing synchronization, respectively I/O.
Further, the stack depth of f is defined as:

0 if p(f) = undef
depth(p(f))+1 otherwise

B. Data Extraction

depth(f) = { 5)

In order to record a program’s behavior we use a dynamic
binary instrumentation approach. We built a pinfool using
the Pin instrumentation framework [22] that employs function
boundary tracing to log function entry and exit events. To
be notified upon function exit, Pin instruments all return in-
structions. However, functions can return from within another
function due to compiler optimization. We further instrument
all return instructions in a module to avoid missing any exit
notifications [11].

To discern synchronization and I/O function calls from other
calls, we instrument the operating system’s synchronization
and I/O API routines. In addition, we evaluate some of the
functions’ parameters to determine the set O of objects on
which the function calls operate on.



IV. VISUALIZATION DESIGN
A. Exploration Workflow

With our design, we follow the common understanding
of exploration strategies applied in program comprehension:
Users applying top-down and bottom-up exploration (with
frequent switches between both) and cross-referencing [35],
[42]. By a multiscale representation of the trace data, we can,
at a coarse scale, identify synchronization patterns and outliers,
as well as the concurrency patterns used in a program, such as
farmer/worker, leader/followers etc. [32]. At medium and fine
scale, by contrast, detailed analysis of thread synchronization
is possible.

We start by selecting a number of threads to visualize, each
containing hundreds of thousands of events. Next, we see
an overview visualization of the trace data, which allows for
identifying which are the main synchronization relationships
between which threads, which thread 7; waits mostly on which
other thread Tj, and who waits longest. Subsequently, we
can drill-down (top-down exploration) using zoomé&pan to
analyze subsets of the trace data in more detail. We can now
see where (stack level, function f) and when a thread waits
or releases by drawn overlays. Aggregation techniques allow
for compressing less interesting activity (stack levels) using
simple pan interaction. On the waiting side, we can further
investigate the amount of time spent waiting (and further
details on demand), and which thread did release the waited
object. On the release side, we can assess what happens while
the locked object is being waited on. Visual attributes allow
for discerning different wait types, such as I/O cycles and
synchronization.

At any point in our analysis, we can switch to bottom-up ex-
ploration using the provided zoom facilities and directly jump
to other subsets of the trace data using overview navigation.

B. Visualization Concept

The visualization is split into three parts: Overview window,
main view and context view (Fig. 1). The overview window
is placed at the top, and linked with the main view in a
focus+context fashion. The main view displays one thread
trace at a time as an icicle plot where each bar in the plot
has a start and end coordinate (By, B.), as well as a discrete
level (Fig. 2). Every function call f of a thread trace T is
then mapped to a bar B, where By and B, correspond to t°,
respectively #¢, and depth(f) is mapped to the bar’s level. Also,
the end B; may be augmented with a shaded texture, which
helps finding repetitive patterns with respect to the duration
of function calls.

The context view is placed at the bottom and displays a
variable number of thread traces. All thread traces together
form a semicircle where each thread trace is assigned an equal
section by default. To see which thread trace is visualized
in a section, the section is labeled with the thread id as
colored circle, each thread T having one color col(T) out
of a predefined set of colors. Although such assignment of
colors is not bijective, we constrain the assignment such that
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Fig. 1. Overview of the SYNCTRACE main window.
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Fig. 2. Bar A has the start coordinate Ay, end coordinate A,, and level 0.

no two adjacent threads can have the same color. By this, we
ensure that repetitions of thread colors can only occur for two
spatially distant (in terms of angle on the semicircle) threads.
Like the thread trace in the main view, the thread traces
in the context view are displayed as icicle plots. However, in
contrast to the main view, the icicle plots are bended (similar
to the SunBurst visualization [33]). Therefore, all thread traces
in the context view share a common circle center C and
radius Z for level 0 (Fig. 1). Instead of mapping the levels
to the y-coordinate, we here map them to the radius of a
circle centered in C. Level O is assigned the zero-level radius
Z, and subsequent levels are assigned increasing radii such
that the icicle plots grow from the center of the circle to the
outside. The start and end coordinates of a bar are mapped to
an angle. As a result, deeper stack levels are assigned more
space for the same time span. So, although deeper levels often
consist of shorter function calls, the additional space on the
circumference in effect provides more space for labels. Hence,
even short low-level function calls can have readable labels.
1) Correspondences Among Thread Traces: In the area
surrounding the circle center, the curves, each connecting
two thread traces, represent synchronization correspondences
between the threads. Such a correspondence always consists of
a function call f,, that waited for a resource and another call f,
that released (or signaled) the resource such that f,, can stop
waiting. More precisely, a correspondence corr(f,,, f) exists
for any two (fy, fr) € S\ X S, if an object o exists such that

0 € 0(f,)NO(f,) and ©)
B (f) € [0 (fu)o (fi). Q)
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Fig. 3. Detailed view of a single correspondence curve.

In general, a function call may wait on or release more than
one object. In those cases, a correspondence curve is rendered
if wait and release call share at least one object. Wait calls
on multiple objects may be classified into those that wait for
all objects and those that wait for any. The first kind returns
if all objects are released, and the latter kind returns as soon
as a single object is released. To differentiate them, we render
a distinct function name for each. Note that in the following
text we often refer only to a single object instead of a set of
objects to simplify explanations.

The correspondence curve is rendered as a shape with
three anchor points (Fig. 3). Two of them mark the start
and end waiting moments of f,,, and the third marks the
release moment in f,. In addition, a circle highlights the
release moment, and the correspondence — on its way from
one thread trace to the other — is drawn towards the circle
center. Together, these result in an asymmetric curve shape
that allows for identifying who waits on and who releases
an object. The curve is painted in the color col(T;,), where
T,, is the waiting thread trace (f,, € T,,). This enables us to
distinguish correspondence curves originating from different
thread traces. Further, a curve is rendered semi-transparent to
make it easier to follow them in case of crossings.

Additionally, a wait marker (see Fig. 3) is rendered on
top of the releasing thread trace T,, where f, € T,. It shows
the waiting time range [r*(f,,),2°(fv)] as a semi-transparent
overlay bar on 7,. This enables us to examine what happens
in 7, while f,, is waiting for an object owned by T,.

Since wait markers of different thread traces may overlap, it
is not clear anymore where a wait marking starts. To overcome
this ambiguity, we render a start shading (see Fig. 3) in the
color of the waiting thread (col(T;,)). This aids in keeping track
of the waiting trace while exploring the area surrounding the
start of the wait marker. This is especially helpful when the
release moment is outside of the viewport and, thus, many
release markers overlap at the edge of the viewport.

2) Spatial Aggregation: We next describe two spatial
aggregation strategies that we use to implement the multiscale
design. We first discuss how to aggregate icicle plots and
subsequently how we aggregate correspondence curves.

time time
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Fig. 4. Spatial aggregation strategy for icicle plots: (a) Bars which are too
small to display, and their corresponding bounding box; (b) the replacement
cluster indicating the aggregation.

Icicle-Plot Aggregation: For large traces, especially in
zoomed-out mode, many short-duration function calls would
be too small to be rendered accurately, and eventually cause
moiré effects. Moreover, rendering many such (sub-)pixel
sized bars has a significant performance impact without de-
livering added value. We therefore reduce the amount of bars
to draw by aggregating smaller ones (less than a few pixels)
by the following spatial aggregation strategy: We first compute
clusters of very small and adjacent bars. Next, for each cluster
a bounding box is computed, where the box encloses all bars in
the cluster (Fig. 4a). Finally, a replacement cluster is rendered:
For every level that the bounding box surrounds (Fig. 4b), we
draw a bar with the horizontal extents of the bounding box.
These bars are rendered in a lighter color to differentiate them
from bars representing single function calls. In addition, with
increasing depth their color becomes even lighter.
Correspondence-Curve Aggregation: To avoid overloading the
visualization, it is further necessary to aggregate synchroniza-
tion correspondences, too. Therefore, correspondence curves
for aggregated synchronization calls f with S(f) = S, are
rendered differently. We consider an aggregation cluster A as
the set of all function calls in such a cluster. For every thread
trace T, € P we compute

rela(Tn) = {t* ()| fr € Tu A fw €A AcOrr(fi, fr)} (8)

Here, rels (T,,) can be interpreted as the set of all release mo-
ments that should be drawn to 7, from the function calls in A.
Now, for each thread 7;, a compound correspondence-curve is
rendered. It consists of a filled path from the aggregation start
moment to its end moment, the maximum release moment,
and the minimum release moment back to the start.

The appearance of such path’s ends, though, is asymmetric
on purpose to keep such correspondences’ wait side distin-
guishable from their release side: On the release side of the
path, the curve is bended slightly to the circle center, thereby
forming a concave shape. To prevent the aggregated paths’
larger area (compared to their non-aggregated counterparts)
to draw too much attention, we render the non-aggregated
correspondences opaquely on the canvas’ background, below
their non-aggregated counterparts.

3) Attribute Mapping: All function calls in the icicle plots
are rendered in one of three hues (green, red and brown).
A function call is colored brown if neither it nor any of its
descendants is doing I/O or waiting for an object. In contrast,
a call f which performs I/O (synchronization) operations or
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Fig. 5. In object color mode, hovering over a wait call shows correspondences
that refer to the same objects.

has any descendants doing so, is colored depending on the
ratio w,(f) = (‘;I‘EOT((}})): For w,(f) < 0.5, it is colored red, and
green otherwise. . )

The intensity of green/red is proportional to d&ﬁr(%), %‘er (ff))
respectively. That is, calls that exclusively wait or perform 1/O
are rendered with the highest intensity.

For correspondence curves, we provide two mapping modes
to emphasize specifics of multithreaded behavior. The first
mode, thread color mode, colors correspondence curves ac-
cording to the color of the waiting thread T (see, e.g., Fig. 1).
This helps finding who waits on whom and who releases locks
for whom. The second mode, object color mode, highlights
shared synchronization objects which are waited on in multiple
threads. These emphasize and point to relationships between
such two waiting threads (Fig. 5).

In this mode, an object’s correspondences are grayed out if
only a single thread waited on that object, ever. In contrast
to aggregations, however, they still have an outline and are
semi-transparent. Upon hovering over a wait call for a shared
object, the following color mapping is applied to the respective
correspondences:

A correspondence is colored

1) red, if it belongs to a wait call that operates on the same

set of objects as the hovered one,

2) brown, if its wait call shares at least one object with the

hovered call,

3) and gray otherwise

C. Interaction

After loading a program trace, thread traces can be selected
from the selection window (see Fig. 1). Every newly selected
thread trace is then displayed in the main view and any
previously displayed thread trace is moved to the context view.

Both, the main and the context view are equipped with pan
and zoom, so the viewport for every thread trace can be set
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Fig. 6. Stack folding: Panning upwards successively shrinks upper stack levels
one-by-one (folding); panning downwards successively resets the size of upper
stack levels to normal one-by-one (unfolding)
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Fig. 7. ‘Focusing’ a thread-trace in the context view: The section of one
selected thread trace on the semicircle is temporarily increased for more
detailed analysis.

Focus view

individually. Furthermore, the main thread trace is reflected in
the overview bar in a focus+context fashion.

Instead of standard vertical scrolling, we fold the levels of
a thread trace by panning towards the top (Fig. 6) and unfold
them by panning towards the bottom. We basically apply a
graphical fisheye view [31] with a single-step magnification
function where the step is moved by panning. That is, by
folding, stack levels of the icicle plot successively shrink in
height, beginning from the top. So, panning upwards succes-
sively shrinks upper stack levels one-by-one to a minimum
size; panning downwards successively resets the size of upper
stack levels to normal one-by-one. This enables us to see
the bottom of very deep thread traces without scrolling while
maintaining the high-level context.

To allow for an on-demand partitioning of the screen space,
main view and context view are separated by a vertically
movable splitter. Also the zero-level radius is adjustable to
either increase the space for showing correspondences or to
show more stack levels in the context view. Further, a thread
trace in the context view may be focused to give it more space
than the others (Fig. 7). For that thread trace an overview
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Fig. 9. The tooltip reveals which function calls are contained in the
aggregation. In addition, the associated correspondence of the hovered call
is displayed.

version is rendered in the overview bar and the focus area is
indicated as for the main view.

To reorder thread traces we can drag&drop a trace on top of
another. Those two traces are then swapped (Fig. 8). Thread
traces can be reordered from context view to focus view or
within the focus view to different sections on the semicircle.
In case we want to quickly filter out several thread traces, we
double click on the thread-id label to hide the corresponding
thread trace.

When we hover over a function call a tooltip with detailed
information is shown. In case we hover over an aggregation,
the function call under the cursor is estimated and detailed
information is presented, too. In addition, whenever the call is
a wait call, the associated correspondence is rendered (Fig. 9).

In general, correspondences are only rendered if at least a
part of the corresponding wait call is in the viewport. This
includes correspondences whose release moment is not in the
viewport. Those correspondences are rendered more trans-
parent and the circle around the release moment is omitted.
However, it is possible that a wait marker is still visible while
the release marker is outside of the visible time range. To still
see which correspondence belongs to which wait marker, the
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Fig. 10. Initial program trace overview after loading all thread traces.

end of the correspondence is kept in the same stack level as the
wait marker. Here, the missing circle indicates, that the end of
the correspondence doesn’t mark the release time. While the
wait marker can leave the viewport on the other side as well,
users can notice that by the missing start-shading (see Fig. 3).
If all aggregated correspondences would be rendered
(opaque and without borders) for many selected thread traces,
the resulting image would be unreadable due to visual clutter.
Therefore, aggregated correspondences are rendered only for
the thread trace which the mouse is currently hovering (detail
on demand). In fact, only the correspondences on which
function calls in the thread trace had to wait are visible.

V. APPLICATIONS

We explain the usage of SYNCTRACE with the help of a
program trace captured from the web-browser Firefox! (ver-
sion 12.0.1) while it loads and renders a page of search results
from Google. After removing the most often called 5190
functions, the remaining trace consists of approximately 14
million function calls in 43 threads. For all threads about 2700
synchronization and I/O calls were recorded. If all 149,869
functions were instrumented, the time required for loading the
results page varied in between 15 to 33 seconds (8 seconds
without I/O); without instrumentation, loading the page took 1-
2 seconds. Each setting was executed 5 times. Instrumentation
(with 1/0) slowed the execution by a factor of 7 to 15. We
therefore conclude that I/O is largely responsible for the mas-
sive 15 times slowdown, since execution slowdown without
I/O was almost constant throughout our measurements. For a
discussion of these overheads and possible solutions, see Sec.
VI

After loading the trace and displaying all thread traces at
once, we see an overview representation of the synchronization
dependencies (Fig. 10). We see that some threads don’t wait
for synchronization primitives at all (threads 9, 5, 19, 24, etc.),
whereas many of the other threads are waiting for a long and
continuous period (threads 3, 12, 32, ..., 35, 7). We can deduce
that, because only one wide correspondence curve is rendered
for the latter threads. Further, the visualization shows that all

Uhttps://www.mozilla.org/firefox/, last accessed 07/11/2013
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Fig. 11. Defunct hang monitor in Firefox: The hang monitor waits during its
entire lifetime for an object to be released.

major wait calls are released by thread 0. This is an indication
for a farmer/worker pattern, with thread 0 being the farmer. If
so, we can tell by the long continuous wait calls, that many
workers are mostly idle, and, hence, that too many workers
were spawned initially.

Since some of the threads expose interrupted wait periods,
they actually did some work in between. If there is in fact
a farmer/worker pattern present and all waiting threads are
workers, this indicates a workload imbalance among them.

To verify the farmer/worker hypothesis we examine the
stack trace of those threads. For this, we drag one thread
after another into the focus view to examine its activ-
ity and function names in more detail. Some of the
threads execute nsThread::ThreadFunc, which in turn calls
nsThread::processNextEvent. So, there are in fact threads that
just do work item processing, and which have no other

dependencies.
However, we found other kinds of threads. One
of them drew our attention, since it executed

mozilla::HangMonitor::ThreadMain, but was waiting for
thread O to release it during its entire lifetime (Fig. 11). The
function’s name indicated that it is responsible for observing
the rest of the application and to come into action if the
software was hung. However, if the application would actually
be hung, nobody could notify (i.e., wake up) the thread, so
it is crucial that it wakes up periodically by itself to check
whether the application is still responsive. By hovering over
the waiting function call, the tooltip revealed that this thread
is not waiting for a timer, but a semaphore. This rules out the
possibility that we were simply not patient enough to see the
thread wake up, i.e., the thread could not wake up by itself.
Finally, by examining source code of HangMonitor we found
that the wake up timeout was set to infinity and, thus, the
hang monitor was effectively disabled.

Another thread (15) always called
Jjs::SourceCompressorThread: :internal Compress after waiting
for thread 0. Obviously, this is a dedicated Javascript
compression thread. Since it always waited for thread O, it

Fig. 13. Call stack of thread O folder for an overview. Release calls are made
on varying stack levels.

seems to process compression tasks generated by thread 0. We
expected a compression task not to do any synchronization or
I/0. This hypothesis was supported by the brown shading of
the compression functions, which would have been colored
green or red otherwise.

Since we did not load a Javascript-rich website, the com-
pressor thread was mostly unoccupied and in many cases the
compression tasks took less time than notifying thread 0 of
the result (Fig. 12). This mostly idle thread suggests a waste
of operating system resources. In addition, its very short task
processing times may be too short to actually speed up the
application or might even slow it down compared to a single
threaded version.

Next, we focused on thread O since all of the other threads’
long wait calls are released by it. To get an overview, we
dragged thread O to the main view and folded all stack levels.
If there were a loop, for example, we expected to see that
releases would be made in the same stack levels, resulting in
visible patterns. However, the resulting image did not show
such patterns (Fig. 13).

This, in contrast to our hypothesis, suggests that thread 0
processes many separate (i.e., independent) tasks throughout
its lifetime. So, the distribution of release moments, together
with the variable stack depth of releases may be indicators for
the behavioral complexity of the thread.

Since there are no visible wait correspondences going from
thread O to another thread, thread O spent the majority of its
lifetime computing instead of waiting. This is supported by the
fact that only a few sections of its activity are colored green
and if they are, they are only slightly saturated. Hovering over
the thread’s start function reveals that only 0.5% of its lifetime
is spent waiting.

We recall that function calls which are influenced by block-
ing calls are highlighted in red or green, and the intensity
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Fig. 12. A (mostly idle) worker thread responsible for compressing Javascript.
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indicates the amount of blocking. The green color of do_main
signals that its descendants had to wait somewhere for a
synchronization object.

To find out which parts of thread 0 are influenced by
blocking calls (calls that could lead the scheduler to suspend
the thread for a while) we follow the green function bars
(wait calls) downwards (increasing stack level). By panning
and zooming to the region of interest, aggregations reveal
their content and previously aggregated correspondences are
rendered individually. This enables us to follow single cor-
respondences. For example, we can see that creating a new
thread via nsThreadManager::NewThread implied waiting for
the new thread to leave a monitor (synchronization) Fig. 14.

In addition to synchronization calls, I/O operations may
block a thread, too. To find out more about the software
portions that perform I/O, we follow the red colored functions
bars as we did for the green ones before. We find that much of
the I/0 operations are performed by the SQLite database layer,
where, in the most cases, I/O accounts only for a small fraction
of the time spent for such database operation. However, we

Fig. 15. Repetitive pattern of polling calls, strongly variable call duration.

found an intensely red-colored aggregated activity that took
approx 500ms to finish. The call stack reveals that it belongs
to nsDocShell::AddURIVisit. Here, the tooltip further revealed
that AddURIVisit takes around 0.1ms on average, only a tiny
fraction of this 500ms outlier. Investigating other occurrences
of AddURIVisit reveals that it normally performs only short-
lived I/O operations or none at all. Consequently, calling
AddURIVisit is sometimes a costly operation in terms of
runtime, although, in the most cases, it is not. Since this call
happened in the user interface thread, we suspect it was as
cause for rendering Firefox temporarily unresponsive.

By dragging thread 10 to the main view we see a repetitive
call pattern (Fig. 15). Zooming in a bit to read the function
names, shows that this thread is polling every second. The
stack pattern resembles that on the left of the visible part of
the trace. However, while a single poll iteration took a minute,
the frequency has now increased to a poll every second. This
indicates that the poll interval was reduced in between.

To reveal object sharing among threads, we switch into the
object color mode (see Sec. IV-B3). Fig. 16 shows that all
connections are greyed out, which indicates that Firefox uses
separate synchronization objects for every thread.

This is in contrast to, for example WordPad, that makes
excessive use of shared objects (see Fig. 5).

The visual analysis outlined above took about 15 minutes.
We note the added value of the stack folding technique, which



Fig. 16. Object color mode in the Firefox program trace: Since all connections
are grayed out every thread has its own synchronization objects to wait on.

enabled us to quickly gain an overview in which levels in
the call stack synchronization objects are released. The start
shading for function bars enabled to find small-scale repetitive
patterns which we would have missed otherwise. Despite
some crossings in the correspondence curves, we were able
to discern the threads’ individual correspondences with the
help of our interaction techniques and the provided attribute
mappings.

VI. DISCUSSION

Generality: While we demonstrate our approach on large
program traces, it can be used to visualize any given set of
hierarchical sequences with correlations. The correlations
are not restricted to leaf nodes, i.e., they can be one-to-one
matches on any hierarchy level.

Visual Scalability: Our enhanced spatial layout enables the
parallel depiction of many threads’ activities and inter-
correspondences between those threads. We reduce visual
clutter by specific interaction and multiscale aggregation
techniques. This lets us visually analyze hundreds of
thousands of calls and correspondences in multiple thread
traces in an interactive manner.

Ease of Use: The zoomé&pan interaction techniques enable
users to freely adjust the shown subsequences and level
of detail. Drag&drop can be used to quickly re-define the
focused thread as well as to reposition threads in the context
view. Moreover, removing uninteresting threads from the
current analysis set is as easy as double clicking their visual
representation.

Limitations: With the visual design being more flexible than
CodeFlows (we can show correspondences between any two
trees) and more scalable than TraceDiff (we can show more

than two trees), it as well has its limits in terms of very large
traces or massively multithreaded traces.

Due to the way we extract wait correspondences, we are
limited to analyzing blocking system calls. In contrast, library
calls on already-released objects, which are non-blocking,
can thus not be analyzed.

Practicality: In general, the execution overhead imposed by
tracing may influence the thread-interplay and program be-
havior and can also vary per thread depending on the number
of instrumented functions and function calls. Also, as seen in
Sec. V, slow (trace) disk I/O can interfere with the execution.
To reduce this influence, the pintool uses only non-blocking
calls. More importantly, while dynamic instrumentation, which
we use, is more versatile than static instrumentation, it is also
known to be significantly slower at runtime. Hence, tracing
overhead can be much lower in scenarios where a less versatile
tracing solution is acceptable. Nevertheless, and in particular
for very short execution durations where the tracing overhead
is relatively high compared to the original execution duration,
the measured durations may be misleading. For instance,
highly active threads, that execute many calls, might execute
slower than less active threads doing less calls. If such less
active thread waits on a highly active thread, this could lead
to more or longer waiting calls in the less active thread. This
can be partially alleviated by excluding such low-level utility
calls from tracing [5], [40].

VII. CONCLUSIONS

We presented SYNCTRACE, a visualization technique for
the analysis of dependencies between threads of execution
in concurrent programs. We combine common straight and
bended icicle plots in a hybrid juxtaposed view to implement
a focus+context approach. By this, we are able to depict more
threads of execution in the same screen space than existing
techniques. Moreover, by the juxtaposition, we can use the
center of the viewport to depict relationships between any
two threads of execution as multiscale edge bundles. We use
attribute mapping to colors and shape of the edge bundles to
encode important runtime meta-data.

As future work, we will examine different designs of the
edge bundles to depict additional attributes. Furthermore,
we intend to evaluate the benefit of additional interaction
techniques such as gestures.
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