
1

The Virtual Rendering System - a Toolkit
for Object-Oriented 3D Graphics

Juergen Doellner Klaus Hinrichs

FB 15, Informatik, Westfälische Wilhelms-Universität
Einsteinstr. 62, D - 48149 Münster, Germany

Phone & FAX: (++49) 251 / 83 - 3755; email: {dollner, khh}@math.uni-muenster.de

Abstract

3D applications are built on top of procedural low-level graphics packages which are difficult to
learn and to use because of their inherent complexity and their renderer oriented design. We present
a fine-grained object oriented model which views 3D graphics from the developer’s perspective.
Our approach is based on a logical decomposition of the elements of 3D graphics into three major
classes:Geometric primitives define shapes and their geometry. Rendering attributes specify qual-
ity and appearance of primitives and of the rendering process.Virtual rendering devices process
attributes and primitives through a set of generic rendering commands for different types of render-
ing techniques and packages. Virtual rendering devices encapsulate the functionality of most of
today’s graphics packages making them exchangeable even at runtime without the need to recode
the application. We have implemented our concepts in VRS, theVirtual Rendering System, as a por-
table C++ toolkit. Currently we have integrated the standard graphics packages OpenGL, PEX,
XGL, and Radiance.

Keywords: object-oriented 3D graphics, graphics software architecture, rendering techniques.

1 Introduction
3D graphics packages are increasingly important for the development of multimedia and virtual real-
ity applications. On the one hand new rendering techniques allow to create photorealistic scenes, and
fast high-performance graphics hardware enables us to render even complex scenes in real time. On
the other hand developers of such applications are confronted with low-level graphics systems which
still rely on the procedural programming paradigm. This leads to the following problems:

• Graphics packages are difficult to learn and hard to use because of the multitude of data structures
and subroutines the application developer has to understand before he can use these packages. In
particular, interfaces of graphics packages are oriented towards the rendering pipeline instead
towards the developer’s perspective, and they provide only a low level of abstraction. Even for
common graphics applications it requires a lot of experience to work efficiently with these libraries.

• Graphics packages are not fine-grained object-oriented, most packages are not object-oriented at
all. Object-oriented applications take full advantage of this programming paradigm only if its com-
ponents are object-oriented, too.

• Graphics applications are not portable across different graphics platforms. To port applications to
new graphics platforms, they must be redesigned completely. For instance, applications based on
an immediate-mode library cannot be ported easily to radiosity-based packages.

In general, we cannot expect to write a new object-oriented graphics system since standard libraries
contain a lot of well designed algorithms and access graphics hardware which is generally hard to
program. Therefore, we have to seek for an object-oriented framework which embeds these standard
libraries in such a way that we can take advantage of key object-oriented techniques such as classes,
encapsulation, polymorphism, and inheritance.

We present an object-oriented framework which generalizes the concepts of most of today’s graphics
packages. The VRS, theVirtual Rendering System, provides an extensible class hierarchy which
defines geometric primitives, geometric transformations, rendering attributes, and virtual rendering
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devices. Primitives, attributes, and transformations are processed by virtual rendering devices which
define a homogenous interface for rendering commands. VRS offers easy access to complex capabil-
ities of non-object-oriented graphics systems, and adds extensibility to these packages. We have
implemented VRS as a C++ toolkit which embeds the standard low-level graphics systems OpenGL
[13], PEX [9], XGL [10], and the physically-based lighting and simulation system Radiance [12].
Other packages are currently integrated.

2 Layers of Graphical Applications
Graphics applications can be divided logically
into three layers: rendering, modeling, and the
application layers (Fig.1). Application designers
normally interact with the modeling layer,
whereas developers of new rendering features
interact with the rendering layer.

Application Layer
The application layer handles application objects
which encapsulate all the relevant information of
the application, e.g. geographical 3D applications
maintain landscape objects (Fig.1). Information
stored in application objects is used by the mod-
eling layer for visualization.

Modeling Layer
The modeling layer mediates between the application layer and the rendering layer. It extracts and
interprets information provided by the application layer and transforms the information into objects
suitable for the rendering layer. For visualization and animation purposes the application has to
assign each application object modeling objects which may be composed of simpler modeling objects
in a hierarchical manner. However, the application does not have to care about rendering. The appli-
cation instructs the modeling objects to render themselves. In contrast to application objects, model-
ing objects only contain information needed for the visualization, and depend on application objects.
The modeling and the application layer may be tightly coupled. In our example, landscape surface
descriptions are extracted from landscape objects. These surface descriptions contain geometric coor-
dinates and surface properties.

Rendering Layer
The rendering layer provides the interface to an underlying rendering package. Modeling objects use
rendering objects as “assembler language” for 3D graphics. In traditional applications, data structures
and subroutines of rendering packages are used in this layer. The rendering layer is critical because it
strongly depends on the used package, and it is difficult to program even for experienced program-
mers. If applications use two or more different rendering packages, the implementation gets more
complicated because detailed knowledge about the individual rendering packages must be integrated,
and code can rarely be shared. In the example, landscape surfaces are implemented with triangle
mesh objects of the rendering layer. Virtual rendering devices render triangle meshes; however, the
modeling layer does not need to know how this rendering is performed.

Why separating the application in different layers?
Dividing the system into three major layers offers several advantages: Different renderers can be used
by the application to meet different needs. For example, fast low-quality renderers may be used to set
up scenes interactively, but the final image generation can be done by high-quality renderers.
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Figure  1: 3D Application Layers
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Exchangeability of renderers guarantees better portability of applications between different hardware
and software platforms.

Application designers benefit from the separation because they are not involved in the complex han-
dling of low-level graphics packages. They can concentrate on building modeling and application
objects. Modeling objects delegate most of the graphical operations to well-defined abstract graphical
data types, the rendering objects, which are provided by the rendering layer. Furthermore, the render-
ing layer can be extended by integrating other rendering packages, new rendering primitives, or new
rendering attributes. Existing rendering classes can therefore be subclassed.

Traditional graphics systems such as PHIGS [6] or HOOPS [15] do not separate modeling and ren-
dering. They provide a high-level application programming interface which, in general, is neither
efficient nor suitable for all kinds of graphical applications. For example, HOOPS cannot build new
types of primitives or attributes because it does not provide a class interface. PHIGS cannot be used
efficiently for interactive or time-critical applications due to the overhead of maintaining an internal
database. In contrast to PHIGS, OpenGL provides 3D hardware and rendering pipeline oriented low-
level commands which are generally to elementary to be used by application designers. The VRS
encapsulation for OpenGL, however, raises the level of abstraction and maintains full performance.

Only an object oriented and extensible rendering system can serve as base for different modeling lay-
ers. To achieve this, we define abstract graphical data types which are processed through a simple
pipeline model in virtual rendering devices.

3 Virtual Rendering System
VRS defines three object categories: geometric primitives, rendering attributes, and virtual rendering
devices. Geometric primitives store geometric shape information. Rendering attributes specify the
characteristics of geometric primitives and scenes, and specify coordinate systems through geometric
transformations. Virtual rendering devices draw three-dimensional compositions of primitives called
scenes. The core classes of VRS are shown in Fig. 2 (given in OMT notation [16]).

3.1 Virtual Rendering Devices
Virtual rendering devices generate scenes by
processing primitive and attribute objects
based on only three operations: push and pop
attributes, and render primitives. The render-
ing protocol defines this set of generic opera-
tions which are understood by all virtual
rendering devices understand (Fig. 3). They
can be grouped in scene management,
attribute management, rendering of primi-
tives, and capability information.

Rendering devices manage attributes with priority stacks (one for each attribute class). Priority
stacks provide access to the top element and to the element with the highest priority currently in the

RenderObject

Renderer
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PEXRenderer
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OpenGLRenderer
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Figure  2: VRS base classes.
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Figure  3: Rendering Protocol.

class Renderer : public RenderObject {
public:
virtual void begin_rendering();
virtual void end_rendering();

virtual void push(RAttribute*, float priority=0.0);
virtual void pop(RAttribute*);

virtual void render(RPrimitive*);

virtual Table<RCapability> supported_primitives();
virtual Table<RCapability> supported_attributes();
...

};
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stack. The priority is specified when the attribute is pushed. Pushing an attribute changes the current
value of that attribute type only if there is no attribute of the same type with higher priority. If primi-
tives are drawn, rendering devices apply to them all relevant attribute values having highest priority.

Rendering primitives are drawn by the render operation. In contrast to [4], we do not include transfor-
mation matrices in primitives; transformations are modeled by the ‘current modeling and transforma-
tion matrix’ attribute. Due to that we can share primitives instead of generating multiple instances.

3D applications typically maintain and manip-
ulate a set of rendering objects. Virtual render-
ing devices map rendering objects to
appropriate data structures and commands of
the underlying graphics package. This indirec-
tion hides all rendering technique specific
tasks and leads to a uniform rendering lan-
guage.

Fig. 4 shows how to represent and how to ren-
der a wood-texture table.RDecalTexture
objects are texture attributes,RBlocks are 3D
parallelepipeds. Virtual rendering devices are
objects of typeRenderer. In the example, the
rendering objects are sent to an OpenGL ren-
dering device.

Capability Information
The application can base its decision how to render modeling objects upon the capabilities of render-
ers given by theprimitive capability table and theattribute capability table. Table entries contain the
class name and the rendering efficiency of primitives and attributes. They inform which primitives
and attributes are supported, and which of them are accelerated. Renderer specific features, e.g. other
primitives or additional attributes, can be inquired of the capability table.

As in [2] a modeling object can provide an object conversion table. Its entries describe the primitives
to which the modeling object can be converted. The optimal rendering primitive to be used is the one
with the highest value obtained when multiplying the conversion priority with the rendering effi-
ciency.

Rendering devices guarantee that all VRS rendering primitives can be drawn. Those primitives which
cannot be mapped directly to primitives of the underlying rendering package are converted into
lower-level primitives. Attributes, however, are evaluated only to the degree possible for a specific
rendering device. Nevertheless, all attributes can be passed to all rendering devices.

Interaction
Input/output rendering devices support selection tests for primitives. To inquire which primitive
objects are inside a view plane area (e.g. an area around the cursor position) a hit area object is sent to
the rendering device. All primitives intersecting the hit area are stored in a pick path object. A pick
path contains pick information for all primitives which intersect the hit area. The pick information
consists of references to these primitive objects. Additionally, the pick information contains a list of
all pick name attribute objects which have been pushed when the hit occurred.

3.2 Rendering Primitives
The class hierarchy (Fig.5) of VRS is based on a logical decomposition of graphical 3D primitives. It
distinguishes between elementary primitives (e. g. points, lines), vertex-based primitives (e. g. trian-
gles, quadrilaterals), analytic primitives (e. g. spheres, cones), and surfaces (e. g. NURBS).
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Figure  4: Processing of Rendering Objects through
Virtual Rendering Devices
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In object-oriented graphics systems the class hierarchy for primitives is crucial since it determines
both efficiency and reusability of the system. Class hierarchies often suffer from the following disad-
vantages:

• Classes are inherited to share code although the derived classes are not true subtypes of their parent
classes. If the commonality in the internal representation is used as discriminator for inheritance (as
in [2] and [4]), we get semantic inconsistencies which must be resolved by blocking operations of
parent classes. For example, GRAMS derives boxes from parallelepipeds, and cubes from boxes,
but operations of parent classes contradict operations of derived classes, e.g. operations setting
width, height, and length derived from parallelepipeds cannot be applied to cubes.

• Primitives assume how rendering devices represent them. For example, GROOP [4] derives cones
from triangle meshes. Cones may be represented by triangle meshes but some rendering devices
can represent them directly. This leads to redundancy in the object representation and affects effi-
ciency. If objects assume how they are represented, and if they maintain this representation, they
are not lightweight enough to be used as abstract graphical data types in the whole application, par-
ticularly if they are used in large numbers. Additionally, high quality rendering packages even
accept analytic primitives in their parametric form.

• The appearance of primitives is defined by a fixed set of attributes stored as object data. However,
objects in general share most attributes. So, storing attributes as separated shared objects dramati-
cally reduces the space requirements of complex scenes. Additionally, application specific attribute
types can be applied to primitives.

The VRS primitive class hierarchy focuses on a redundancy free and logically decomposed represen-
tation of commonly available 3D primitives. We do not include higher-level graphics objects in these
primitive core classes. For example, particle systems may be implemented by point sets; in the VRS
concept, however, particle systems are considered as modeling objects which aggregate point sets as
object data.

Vertex-Based Primitives
A vertex-based primitive is characterized by its vertices and the data associated with each vertex, e.
g. vertex normals, vertex colors, vertex texture coordinates. Polygons describe a sequence of con-
nected line segments given by a list of vertices. Facets are defined by its planar boundary polygon.
Complex facets consist of a set of boundary loops. The interior of a complex facet is determined by
the odd-winding rule. Facets and complex facets aggregate polygon objects. Complex facets can be
extruded by sweeping the facet along a polygonal path. Rotational vertex-based primitives are cre-
ated by rotating a polygonal contour. The tessellation of these primitives is determined by the tessel-
lation attribute.

Figure  5: Primitive Class Hierarchy
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Polygons are reused to a high degree which simplifies both the usage as well as the implementation of
vertex-based primitives. For example, extruded (resp. lofted) objects are built by defining a close
polygon for the contour and a polyline for the sweep path. To extrude a given facet, we build an
extruded primitive passing the boundary polygon of the facet together with a sweep polyline (Fig.6).
Analogously, polygonal boundaries can be swept rotationally.

Other vertex primitives are triangle sets (sets of independent triangles), triangle strips (bands or fans
of adjacent triangles), quadrilateral sets (sets of independent quadrilaterals), quadrilateral strips and
quadrilateral meshes (sets of adjacent quadrilaterals). We distinguish these specialized facet sets to
reduce storage overhead and to take advantage of hardware acceleration which is typically provided
for triangle and quadrilateral based primitives.

Analytic Primitives
Analytic primitives include spheres, tori, cones, superquadrics, hyperboloids, and paraboloids. They
are defined by their analytic parameters and make no assumption about how rendering devices visual-
ize them. For instance, OpenGL and PEX generate triangular meshes for spheres. XGL uses triangu-
lar meshes too, but can improve the lighting calculation. Other renderers, e.g. Radiance, accept the
analytic description.

3.3 Rendering Attributes
Attributes modify the appearance and geometry of rendering primitives. Attributes encompass sur-
face characteristics (e. g. reflection coefficients, light emission, and textures), representation quality
(e.g. tessellation and shading), styles for edges and facets, and attributes applied to the whole scene,
e.g. fog and ambient light. VRS designs attributes as separate objects which are processed by render-
ing devices like primitives.

We opt for this concept

float coordinates[] = { ... };

RPolygon contour(10, coordinates);

RFacet planar_letter(contour);

RExtruded lofted_letter(
 planer_letter, Vector(0,0,-0.2)
);

RRotation rotated_letter(
 planar_letter, 0, 45
);

Figure  6: Sweeping Polygonial Contours.
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Figure  7: Attribute Class Hierarchy.
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• to provide a hierarchy of standardized attributes for different rendering packages and techniques,
• to decouple attribute and primitive management, and
• to provide base classes for new attributes or rendering device specific attributes.
The attribute hierarchy (Fig.7) raises the level of abstraction and provides a standardized access to
commonly available attributes. For example, solid texture (i.e. solid colors) attributes apply to points
as well as to lines, facets, or analytic primitives. PEX, however, distinguishes between edge color,
line color and “interior” color (for facets). Rendering devices evaluate attributes in a context-sensi-
tive mode, i.e. depending on the type of the primitive they decide how to map an attribute to the
underlying low-level graphics package.

Attributes can be created and manipulated independently from rendering primitives. Also, attributes
can be shared among a group of primitives. Concentrating the attribute management in attribute
classes raises the level of abstraction because logically-dependent attribute values are represented
together. For example, edge style attributes group together the edge width, the edge visibility flag,
and the edge color, whereas in PEX all these values represent individual attributes. Object-oriented
encapsulation simplifies the usage of attributes.

The attribute class hierarchy serves as base for new attribute classes. Due to that, VRS allows to
access rendering package specific features through the homogenous rendering protocol. Rendering
devices determine through runtime type information to which class attribute objects belong, and
decide how to evaluate these attribute objects. Particularly, high-performance or high-quality render-
ing devices provide their own attribute classes. No static attribute hierarchy could cover all possible
rendering features. For example, XGL additionally defines for edges antialiasing, join styles and cap
styles. The XGL edge style class is derived from the core edge style class. Only XGL rendering
devices interpret this attribute class; all other rendering devices treat XGL edge style objects as core
edge style objects.

Attribute Priorities
Rendering devices decide which of the available attribute types they apply to rendering primitives.
Attributes which cannot be evaluated by the rendering device are ignored. Attribute objects are
assigned priorities. For each evaluated attribute type, rendering devices assign that attribute object
with the highest priority. Priorities for attribute objects offer additional control over their global influ-
ence. Particularly, if we want to overwrite attribute objects defined in subparts of a rendering com-
mand sequence, we can conceal these attribute objects through higher priority. For example, to get a
wire-framed scene, a drawing style attribute object with infinite priority is pushed at the beginning of
the rendering command sequence.

Light Emission Attribute
Lightsources are modeled by primitives emitting light. The light emission depends on the primitive’s
shape. Emission attributes correspond to physical concepts. From the developer’s perspective, it is
more natural to think of physical lightsources as real objects instead of abstract lightsources without
geometry. In general, emission attribute objects are bound to rendering primitives. The primitive’s
position determines the position of the lightsource and its emission form. Only ambient light emis-
sions are not bound to rendering primitives.

Rendering devices decide how to map light emissions to primitives. Immediate-mode libraries can
map emission attribute objects based on the shape to which the emission is applied. Cones generate
spotlights, whereas blocks and spheres generate positional lightsources. Light emitting facets gener-
ate directional lights. Rendering devices with global illumination models, e. g. Radiance, model more
precisely the light distribution according to the shape of the primitive.
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Quality Attributes
Quality attributes determine the visual quality of rendering primitives and scenes. Shading attribute
objects define the shading method used to render primitives. Tessellation attribute objects define how
fine analytic primitives are approximated (if the rendering devices cannot accept them in their para-
metric form). Jagged edges of lines and polygonal objects can be smoothed by antialiasing objects.
Fog attribute objects add atmospheric effects to scenes. Not all renderers pay attention to quality
attributes, e.g. ray tracers can ignore tessellation attributes because they draw analytic primitives in
the best quality possible.

Cache Attribute
Cache attributes optimize the rendering process. They specify which of the rendering primitives are
cached in the rendering device. For instance, OpenGL compiles cached rendering primitives in dis-
play lists. PEX rendering devices cache polyhedral approximations of all analytic primitives. The
rendering protocol defines additional commands to control the object cache explicitly.

Transformation Attribute
The geometry of primitives is transformed by transformation attributes. Before primitives are ren-
dered they are transformed by the current modeling and transformation matrix (CMTM). The CMTM
consists of a local and a global 4x4 homogenous matrix. VRS defines several transformation classes
such as scaling, translation, reflection, rotation, and general transformations matrices. CMTMs are
used to build nested modeling coordinate systems. The world coordinate system is given by the
matrix product of the global and the local transformation matrix.

Projections
Projection attributes transform the world coordinate system to the normalized projection coordinate
system, i.e. they map the three-dimensional model space to two-dimensional screen pixels. VRS sup-
ports several types of projections:

• View: general projection specification [3] by view reference point, view plane normal, view up
vector, projection reference point, view plane width and height, view plane positions, projection
type (parallel or perspective).

• Camera view: Camera-model oriented view specification based on look-at point, eye point, dis-
tance, and field of view [14].

• Polar view: view specification in polar coordinates, i.e. azimuth and altitude.
• Orthogonal view: orthogonal projection.
Projection attributes maintain a view transformation matrix. VRS delegates the evaluation of projec-
tions to the rendering devices. Some rendering devices can map the parameters directly to rendering
commands, others compute their own viewing matrices based on this information. Projections are
elementary data types of the rendering layer. The modeling layer may provide high-level camera
objects which are implemented based on projection attributes.

4 Design Considerations

4.1 Lightweight Objects
Primitives, transformations, and attributes are modeled redundancy-free, i. e. they contain only data
which their type defines, and do not store context information such as transformation matrices or ren-
dering devices. For example, spheres define their midpoint and radius, but do not define color or
material properties. Instead, we supply context information through rendering devices or as argu-
ments in operations. This approach leads to lightweight objects, i. e. objects which are minimal in
their internal representation and which can therefore be used in large numbers [1]. They represent
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abstract graphical data types and can be used in the whole application comparable to integer or float-
ing point data types since they do not involve any storage overhead. Increasing the fineness of the
object-orientation increases the extensibility and reusability of the system. New attributes and new
primitives can be derived from existing classes with minimal overhead.

To reduce transfer and conversion costs, rendering objects can be shared. Whenever an object refer-
ences a shareable object, it increments the reference counter of this object. When the object derefer-
ences the shareable object, it decrements its reference counter. If a shareable object is unreferenced, it
is destructed automatically. Shareable objects provide a simple and efficient garbage collection.
Objects of the modeling layer typically create and reference its rendering objects.

All rendering objects are persistent, i.e. they define operations to write themselves in (C++) streams
textually, and to retrieve objects from streams. This persistency is used by objects of the modeling
layer and facilitates their own persistency management.

4.2 Object Factories
Decomposing 3D graphics into fine-grained
objects adds an additional amount of complexity
through the high number of classes. To facilitate
the access to rendering objects, VRS provides
object factories. Byobject factory we mean
classes which create objects of other classes.
They summarize object constructors and provide
a convenient interface to class hierarchies. The
VRS object factory supplies methods to con-
struct frequently used 3D objects. For example,
it provides methods to create cylinders, cones
with apex, and open tubes; all these objects are
cone primitives but they can be created easier
with the factory instead of calling the more com-
plicated cone primitive constructor. Fig.8 shows
part of the VRS factory.

Object factories take care of persistency. They
maintain a dictionary of known rendering classes
and constructors to create default objects. Also
rendering objects define persistency operations,
i.e. they are able to write themselves into streams
respectively they can retrieve their state from
streams.

Object factories register rendering classes, i.e. if a persistent rendering object is retrieved, the factory
recognizes the object’s class and constructs a default object. Then it delegates the retrieval process to
that object. All VRS classes are registered in the VRS factory; to add application specific rendering
classes, we register them at run time.

5 Example: The Landscape of Honolulu
In this example we build a VRS application which visualizes landscapes defined by triangle sets.
First, we create the landscape application class ‘XLandScape’. This class is derived from ‘XVRS’, a
framework class which provides the user interface. The redraw method specifies the rendering com-
mands applied to the virtual rendering device which is passed by XVRS as argument of the render
method. An ‘XLandScape’ objects contains a landscape surface object. The render method delegates

class VRSFactory : public Factory {
public:
 //shapes
 RCone* cylinder(Vector p, Vector q, float r);
 RCone* tube(Vector p, Vector q, float radius);
RCone* cone(Vector base, Vector apex, float r);
 RBlock* cube(Vector center, float length);
 ...
 // apearance
 RColor* rgb(float, float, float);
 RColor* hsv(float, float, float);
 RFacetStyle* hollow();
 RShading* smooth();
 RShading* flat();
 ...
 // transformations
 RXform* scale(float s);
 RXform* scale(float sx, float sy, float sz);
 RXform* rotate(float angle, Vector axis);
 ...
 // rendering devices
 IORenderer* opengl();
 IORenderer* pex();
 IORenderer* xgl();
 Renderer* radiance();

 // persistency
 RenderObject* read(istream&);
 void write(RenderObject*, ostream&);

void register_class(
 const char* classname, Constructor
);
 //...

}; Figure  8: The VRS Object Factory.
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most of the visualization to this object.

Next, we define the landscape surface class. Landscape surface objects store the geometry of land-
scapes and their properties (e.g. water level and course of rivers). If a landscape surface object is con-
structed, it reads the geometry data file and maps this information to rendering primitives and
rendering attributes. The mapping can be arbitrarily complex. ‘LandScapeSurface::render’ defines
how the primitives and attributes are evaluated by virtual rendering devices. If an application object
requests its landscape surface object to visualize itself, the landscape object sends its rendering
objects to the virtual rendering device (passed as argument).

In the example, we use a triangle set to store the surface geometry. According to the position of the
vertex and the slop of the triangle the vertex belongs to, we determine the vertex color of the vertex.

Finally, the main program consists in constructing an landscape object. The framework defines the
‘run’ method which starts the interface. The ‘XLandScape::redraw’ method is called implicitly if the
window is exposed. In Fig. 9, part of the landscape of Honolulu is visualized.

6 Implementation Details
VRS embeds OpenGL, PEX, XGL, and Radiance as rendering devices. Graphics package specific
features are modeled by subclassed attribute classes. These rendering device classes support all core
rendering primitives and attributes.

int main(int argc, char** argv) {
XLandScape L(argc, argv);
L.run();
return 0;

}

LandScapeSurface::LandScapeSurface(...) {
// read, scale and translate the raw data
// convert the data to triangle sets
// calculate vertex normals and vertex colors
}

void LandScapeSurface::render(Renderer& r) {
r.push(reflection_);
r.render(surface_);
r.pop(reflection_);
}

class LandScapeSurface : public SharedObject {
LandScapeSurface(
 char* file, Vector origin, Vector volume
);

virtual void render(Renderer&);

// management of surface properties
void set_water_level(float);
void set_beach_level(float);
//...
private:
VRS<RTriangleSet> surface_;
VRS<RReflection> reflection_;
float water_level_;
// more properties
};

class XLandScape : public XVRS {
public:
XLandScape(int argc, char** argv);
virtual void redraw(Renderer&);
private:
VRS<LandScapeSurface> surface_;
// more primitives and attributes
};

void XLandScape::redraw(Renderer& r) {
r.begin_rendering();
// push view, set background and lights
surface_->render(r);
r.end_rendering();
}

Figure  9: VRS Landscape Application. Part of the LandScape of Honolulu.
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Mapping Primitives and Attributes
The abstract graphical data types must be converted into low-level rendering commands. PEX and
XGL require their specific transfer format which involves a conversion overhead. No rendering
device can map extruded primitives, rotational primitives, and the analytic primitives. These primi-
tives are converted automatically by the rendering device base class into lower-level primitives, and
are cached internally. The PEX rendering device (PEX 5.1) must additionally convert point sets, tri-
angle fans, and quad strips. It cannot map antialiasing attributes because it does not define an accu-
mulation buffer. Also, it cannot map non-solid textures. The XGL rendering device (XGL 3.x) must
emulate point sets and quad strips. It supports all core attributes. The OpenGL rendering device pro-
vides the most efficient and elegant mapping of primitives and attributes since OpenGL commands
are elementary and do not require a specific transfer format.

Code Statistics
Table 1 shows the size of the VRS interface and implementation, and the size of the library headers of

standard packages. The VRS object-oriented interface is smaller and handier as the PEX and XGL
interface; it is larger than the OpenGL interface, but VRS raises the level of abstraction as compared
to OpenGL. VRS class headers cover simultaneously several different graphics packages, it
expresses the commonality between different rendering packages to a high degree. New rendering
packages can be integrated by approximately 2000 lines of code. The implementations of new ren-
dering devices benefit from the VRS core classes. Particularly, the Renderer base classes takes care of
the attribute management and provides tessellators for analytic primitives, extruded primitives, and
rotational primitives.

Performance
As compared to applications directly based on standard graphics packages, VRS applications provide
the same performance. Rendering devices optimize the rendering process through the following tech-
niques:

• Attributes are evaluated depending on the type of the primitive object. Typically, only a subset of
the attribute objects are applied to a rendering object. The evaluation of an attribute object is
delayed until a rendering object is rendered which actually depends on the attribute object’s values.

• Rendering devices evaluate an attribute object only if its current attribute values are different from
the attribute object applied before. Therefore, virtual rendering devices do not use the expensive
attribute stacks provided by most graphics packages.

• Rendering devices have direct access to the data of primitive objects. To maintain the encapsula-
tion, primitive objects define methods which export read-only references to their internal data. For
example, the OpenGL rendering devices traverse the data of all vertex-based primitives sending
these data directly to OpenGL commands.

a. Lines of codes are rounded.

Table 1: VRS Interface and Implementation

Lines of Codea Class Headers Implementations Library Headers

VRS 3100 6000 ---

PEX Rendering Device 90 2200 4400 (PEXlib.h)

XGL Rendering Device 90 1700 3400 (xgl.h)

OpenGL Rendering Device 90 2000 1400 (gl.h, glu.h)
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• Rendering devices save normalization and assertion tests because rendering primitives guarantee
that their geometry fulfils explicitly specified conditions. These conditions can be guaranteed since
primitive objects are encapsulated completely.

Compared to non-object oriented implementations, using the knowledge stored in objects can even
improve the performance of VRS applications compared to applications directly based on low-level
graphics packages.

7 Related Work
We use the following criterions to compare graphics systems:

• Access to key object-oriented techniques.
• Portability across different rendering techniques.
• Abstraction level of the interface.

GEO++
One of the first object-oriented low-level graphics systems is GEO++ [8], a Smalltalk-80-based sys-
tem which encapsulates parts of the functionality of PHIGS and GKS. The class library focuses on
supporting object hierarchies. All graphical entities are modeled by objects. Thus, key object-ori-
ented techniques such as inheritance and polymorphism, are available. Due to its experimental char-
acter, the class hierarchy does not cover 3D primitives and attributes; therefore the functionality is
limited to 2D graphics and cannot be compared to VRS. GEO++ is portable within Smalltalk-80, but
is not available for other graphics packages.

HOOPS
HOOPS [15], the hierarchical object-oriented programming system, is a portable subroutine library
similar to PHIGS. Object-orientation refers to the support of hierarchically composed objects, but it
is not implemented in an objected-oriented language and does not provide class hierarchies. Thus,
HOOPS applications cannot take advantage of class interfaces, objects, polymorphism, and inherit-
ance. Portability across all current hardware and software platforms is provided. HOOPS serves as
high-level application programming interface to computer graphics. It cannot be integrated smoothly
in object-oriented systems due to its declarative architecture and to the missing fine-grained access
and control over graphical entities.

GRAMS
GRAMS, an object-oriented 3D graphics system, focuses on the object-oriented paradigm. It raises
the level of abstraction for the application designer due to the logical division of graphical applica-
tions in three layers: application, graphics, and rendering layer. GRAMS defines formally the graph-
ics layer which interacts with the application layer and the rendering layer. The rendering layer can
be exchanged, but it is not based on general, abstract graphical data types as in VRS. In contrast to
GRAMS, VRS defines an application and a modeling layer; classes similar to GRAMS graphical
objects are part of the VRS rendering layer because these objects are atomic in the developer’s per-
spective, but standardized for all rendering devices.

The criterion used in GRAMS to build the class hierarchy is the commonality in the internal repre-
sentation of graphical objects. This leads to semantic inconsistencies and to not fully reusable class
hierarchies since operations of base classes may contradict the semantic of the derived classes. For
example, GRAMS models cones and cylinder in two sibling classes, VRS provides a general cone
class, and represents cylinders as cone objects with equal top and bottom radius.

Graphical objects in GRAMS contain shape, transformation, and attribute information. Attributes are
not modeled through an attribute class hierarchy. New attribute types cannot be derived or integrated
in graphical objects. Storing transformation matrices and attributes in graphical objects increases the
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object size, and prevents objects from being shared and used in large numbers.

GROOP
GROOP, another object-oriented 3D toolkit, derives its basic metaphors from movies: stage, actors,
light, and cameras. It separates rendering from modeling in two system components. However, it is
implemented only for OpenGL. Due to the class hierarchy which is based on implementation consid-
erations, GROOP cannot be ported easily to other rendering techniques. GROOP derives cylinders
from triangle meshes assuming that renderers are not capable of drawing cylinders as analytic primi-
tives (which is the case for all ray tracing and radiosity packages).

As in GRAMS there is one base class for all geometric objects which stores material properties and
transformations. This implies the same consequences as discussed above for GRAMS. Nevertheless,
the class hierarchy is fully accessible and can be used for deriving new types of geometric objects.

The abstraction level of GROOP is high, but the level of object-orientation is still coarse-grained. In
VRS terms, GROOP defines a modeling layer for computer animation, but does not define a separate
and object oriented rendering layer.

TBAG
TBAG [11] is based on a set of graphical abstract data types. It provides a high-level interface to
interactive 3D graphics. Scenes are composed by values of graphical abstract data types instead of
non-temporary objects. This is computationally expensive. To draw a scene, all graphical objects
used must be generated due to TBAG’s functional approach. Compared to VRS, TBAG’s concept
cannot be easily integrated into an object-oriented application model because the functional approach
to describe models is not suitable for real world scenes which in general can be described easier in a
declarative and hierarchical rather than a functional manner. TBAG does not support different render-
ing techniques.

8 Conclusion
We have presented an object-oriented virtual rendering system which embeds standard low-level 3D
graphics packages in an extensible class library. To serve for all kinds of graphical applications, VRS
standardizes the capabilities of graphics packages through abstract graphical data types which are
used to build modeling or application objects, and virtual rendering devices which operate on these
types. The VRS class hierarchy provides logically structured rendering objects including a rich set of
geometric primitives, rendering attributes, transformations, and rendering devices. These objects are
shareable and provide automatic storage management. The rendering language consists of only three
commands: push and pop of attributes, rendering of primitives. New rendering packages can be eas-
ily integrated by deriving specialized rendering device classes. Individual rendering features are inte-
grated by deriving new attribute and primitive classes. All rendering devices implement the rendering
protocol in order to guarantee a minimal set of rendering operations. Additionally, rendering capabil-
ities and costs can be inquired. VRS ensures extensibility and reusability by its open system architec-
ture. VRS is implemented as a C++ toolkit integrating OpenGL, PEX, XGL, and Radiance.
Currently, we extend the system by other packages including RenderMan [7] and POVRay[17].
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