
A Visual Analysis Approach to Support
Perfective Software Maintenance

Jonas Trümper Martin Beck Jürgen Döllner
Hasso-Plattner-Institute - University of Potsdam, Germany

{jonas.truemper|martin.beck|juergen.doellner}@hpi.uni-potsdam.de

Abstract—Ensuring code quality represents an essential task
in «perfective software maintenance», which aims at keeping
future maintenance costs low by facilitating adaptations of com-
plex software systems. For this purpose, changes and related
efforts have to be identified that imply high positive impact
on future maintainability. In this paper, we propose a novel
assessment method that applies visual analysis techniques to
combine multiple indicators for low maintainability, including
code complexity and entanglement with other parts of the
system, and recent changes applied to the code. The approach
generally helps to identify modules that impose a high risk by
causing increased future maintenance efforts. Consequently,
it allows for exploration, analysis, and planning of different
preventive measures that, e.g., most likely will have a high
return on investment. In our tool implementation, we use
circular bundle views, extended by the third dimension in
which indicators can be mapped to. We have evaluated our
approach by conducting a case study based on our tool for a
large-scale software system of an industry partner.

Keywords-Software maintenance; Visualization; Quality
management

I. INTRODUCTION

Adapting software systems to changing requirements is in-
evitable to keep them useful after their initial release [7, 21].
Repeated adaptation, however, typically leads to significantly
reduced maintainability, commonly termed decay [12]. Per-
fective and preventive software maintenance [1] both act
as established countermeasures, i.e., help to keep software
systems maintainable. They include a particularly important
objective, namely ensuring code quality. Nevertheless, re-
sponsible personnel often faces dilemmas, such as: Where
and how to invest the limited resources for an optimal
positive effect on future maintainability? The given resources
typically do not suffice to fix all quality issues in the
code. In addition, the most prominent quality issue may
well be the hardest to fix. So responsible personnel will
carefully consider the pros and cons of any action that
refers to code quality before it is undertaken. They will
only consider approving such action if its chance to increase
or ensure future maintainability outweighs its costs. Yet,
weighing these pros and cons in practice is typically based
on subjective judgment obtained by experience, discussions
with developers, etc. Interestingly, there is generally a lack
of specialized visualization techniques and tools.

Figure 1. Example visualization using a three-dimensional circular bundle
view. System structure is mapped to the outer rings; dependencies are
mapped to edges within the circle. Metrics are mapped to color, height
and width of ring elements.

Assuming any actions can be identified, approval by other
stakeholders, namely management, is still difficult to obtain.
Management tends to favor other, visible changes, e.g., to
external software quality such as new features or fixed
bugs [5]. This is due to a number of reasons, including
‘invisibility’ of internal software quality to non-development
staff and non-measurable return on investment for effort
devoted to it. Consequently, it is important not only to find
reasons why a number of actions should be undertaken first,
but these reasons also have to be visible to and reasonable
for all stakeholders.

We propose a novel decision-supporting technique that
uses enhanced circular bundle views [18] to help identify
modules1 that impose a high risk by causing increased
future maintenance efforts. It further enables exploration,
analysis and planning of preventive measures to modules
with maintainability problems that should be tackled first.
Insofar, our method provides clearly understandable indica-
tions within a single view. In particular, it serves to bridge

1Module describes a piece of code that implements specific functionality,
e.g., a class.

the communication gap between technical and non-technical
staff in software projects.

The visualization technique combines multiple indicators
such as current code complexity, past change frequency, and
entanglement (Fig. 1). In contrast to existing techniques,
integration of entanglement analysis facilitates estimating to
what degree other parts of a system rely on a module’s cor-
rect behavior. Moreover, combining the indicators in a single
view a) facilitates comparison of the indicators in a stable
context (the system structure) and b) supports identifying
phenomena that are related to not only modules, but to both
modules and dependencies, such as low maintainability of
a module and many dependencies to this module. We have
implemented the technique as a tool that uses circular bundle
views, extended by the third dimension, which adds a visual
dimension that indicators can be mapped to. Further, we
evaluate our approach and tool by a case study conducted
on a large-scale, grown software system.

II. RELATED WORK

Numerous approaches exist to estimate current maintain-
ability [26], future maintainability [23], future maintenance
activities [17], or even maintenance effort as person hours
or costs [15]. While they are typically based on statistical
methods such as principal component analysis or multi-
ple regression, some also use neural networks and fuzzy
logic. These approaches mostly do not capture entanglement,
which significantly influences maintainability, i.e., the effort
required for changes, and impact of changes. Further, they
compute estimates that refer to an entire system and thus are
too coarse-grained to identify potentials for improvements in
maintainability.

Visual approaches can be used as well as vehicle for
communication between technical (e.g., development) and
non-technical staff such as management. In addition, since
they typically do not compute a final result, expressed for
example by a single number, such as “class complexity”,
they allow for more detailed analysis on demand.

Baker and Eick [3] depict evolution of software metrics as
charts, visually embedded into a treemap’s nodes. Additional
animation allows for comparing different snapshots of a
system’s evolution. Balzer et al. [4] propose a Voronoi-based
treemap visualization that improves visibility of hierarchical
relationships, while our three-dimensional approach features
additional visual variables and supports entanglement analy-
sis. Langelier et al. [19] present three-dimensional treemaps
and sunbursts with metric values projected to software
artifacts’ visual representations. In addition, they visualize
evolution by depicting evolutionary steps next to each other.
Wettel and Lanza [31] also use treemaps to depict software
systems as virtual cities, although they do not analyze a
system’s evolutionary steps. Bohnet and Döllner [5] extend
these approaches by an additional timeline depicting change

frequency that allows for restricting the analyzed time inter-
val. We use a different visualization concept that additionally
supports entanglement as indicator.

Lanza and Ducasse [20] present “polymetric views” that
represent node-link diagrams with metrics mapped to visual
variables of nodes. In contrast, their technique does not
scale well for large graphs and typically suffers from visual
clutter caused by crossing edges. Eick et al. [11] use
multiple visualization techniques, such as (matrix) plots,
bar charts, and graphs, to depict metrics, code evolution,
and dependencies between change requests. The graphs
used, however, ignore essential hierarchical relationships of
analyzed software systems. Alam and Dugerdil [2] extend
treemaps by relationships that connect nodes with bended
edges from above. Yet, edges are not bundled, resulting
in visual clutter by many edge crossings and occlusion
of treemap structures. Gall et al. [14] use a visualization
similar to cone trees [24] to depict system structure and bar
representations to encode attribute percentages per module.
In contrast, their visualization does not support entanglement
analysis.

Lewerentz et al. [22] use clustered graphs with force-
directed layouts. They map metrics to visual variables of
nodes and to forces used to layout the graphs. The graphs,
however, quickly become cluttered by crossing edges and
nodes can occlude edges. Telea and Voinea [27] analyze
the inability of a software project to keep its planned time
frame in a case study. For it, they use circular bundle views
to identify architecture violations, but do not combine these
views with metrics or change history.

CppDepend2 is an industrial tool that enables visual
analysis of a software system’s metrics and dependencies.
However, analysis of evolution history is not supported,
and its dependency graph does not scale. Bourquin and
Keller [6] use Sotograph3 to manually identify architecture
violations as base for refactoring opportunities that have a
high-impact in terms of improved code quality. They ignore
code change data and, thereby, risk ‘generating’ unnecessary
maintenance effort on code that would otherwise not be part
of (future) maintenance activities. Wilhelm and Diehl [32]
compute layered layouts for node-link diagrams based on
design quality metrics such as abstractness to check for
forbidden edges that cross layers in the wrong direction.
The computed diagrams, in contrast, typically suffer from
crossing edges, especially with large input data.

III. VISUAL ANALYSIS BY COMBINING
MULTIPLE SOFTWARE QUALITY INDICATORS

Within the software maintenance cycle, regular coun-
termeasures against software decay are typically applied
(Fig. 2): (S1) Assessing maintainability problems, (S2) de-
termining a ranking of these problems, (S3) picking some

2http://www.cppdepend.com/, as of 01/26/2012
3http://www.hello2morrow.com/products/sotograph/, as of 01/27/2012

(S1)
Assess

Maintainability
Problems

List of problematic

modules
Ranked list(S2)

Rank list items based
on some criteria

Decayed

Software Artifacts

Improved
Software Artifacts

(S3)
Pick top items

and plan appropriate
actions

(S4)

Other
maintenance activities

Figure 2. Typical software maintenance cycle: Steps S1, S2 are (both
adressed by our technique) and S3 act as countermeasures against (acci-
dental) software decay (S4).

topmost items of that ranked list, and (S4) addressing them.
Our proposed method addresses steps 1 and 2 by combin-
ing multiple indicators for low maintainability in enhanced
circular bundle views (CBVs). Among other indicators, it
includes entanglement with other modules, which is a more
complex measure and traditional methods (such as metrics)
do not support its analysis.

A. Proper Entanglement Analysis is Crucial

Software metrics typically measure quality indicators,
such as encapsulation, at class or method level by computing
a single value. If entanglement is measured in this manner,
e.g., as fan-in, fan-out [13], or coupling between objects [9]
coefficient, a number of individual incoming or outgoing
dependencies of a module are reduced to a single value.
From the perspective of software architecture, some of these
dependencies are allowed, while others are not. Violating
dependencies can also have different severity, i.e., one for-
bidden dependency may be worse than another. A single
metric value does not properly reflect this since it lacks
precision and sufficient detail, i.e., provides only an abstract
or aggregated result. By detailed entanglement analysis, in
contrast, we are able to estimate to what degree other parts
of a system rely on a module’s correct behavior. That is,
the more entangled a module is, the more likely it is that
changes to its behavior break relying modules.

B. Context Dependency

For assessing internal software quality, analyzing a single
indicator (e.g., a complexity metric) is not sufficient [5].
More precisely, the 10 most complex code modules of a
software system do not necessarily represent the 10 most
important quality issues if they comprise only a few lines
of code. By contrast, if the 10 medium complex modules
have significantly more lines of code than the average
module, they are probably harder to understand. Conse-
quently, a combination of multiple software metrics allows
for more precise assessment of a system’s actual code-
quality problems. Even more, if a module is considered
complex according to multiple software metrics, it may be

only a small factor for maintenance: Less complex modules
that were recently touched (e.g., during the last months for
every third feature extension), and are weakly covered by
tests are probably a bigger quality problem that should be
tackled upfront. In other words, recent change frequency is
a good predictor for code maturity [8]: The more recent
changes affect a module, the less stable its implementation
is.

Still, proper interpretation of most software metrics is
typically a matter of context. For instance, there is no uni-
versal threshold that one could apply to determine whether
a module has low or high code complexity [5]. A module
that implements a complex algorithm is probably allowed
to have a relatively high complexity value while not being
considered too complex at the same time. Other modules
with lower complexity value, however, might be considered
to exhibit high complexity. Another example for context
dependency is that interpretation of a metric’s value for a
single module is dependent on all other modules within the
project. So, for identifying outliers it is necessary to relate
each value in a set of values to all other values in this set.

C. Visual Analysis: Extending Circular Bundle Views

Our approach provides visual analysis for support-
ing perfective maintenance by implementing an ex-
tended CBV [18]. CBV is a two-dimensional information-
visualization technique for layouting compound-directed
graphs, i.e., a hierarchical graph annotated with directed
relations between its nodes. CBVs are similar to icicle plots,
except that they use concentric rings instead of a rectangular
area to encode hierarchical containment of nodes. Node
attributes are typically mapped to the visual variables size
and color of ring elements. Non-hierarchical relationships
between nodes are then depicted in the free inner circular
area and relationship attributes are mostly mapped to their
visual variable color. As graph, we use a system’s hierarchi-
cal module structure and dependencies between modules as
relations.

We add two main extensions to the original CBV: First, we
extend its data model by additional attributes to each node.
They correspond to user-configurable software metrics or
developer activities, which are aggregated to parent nodes.
Although the type of aggregation is user-configurable, soft-
ware metrics have to be chosen with care because metrics
aggregation is subject to research and might be misleading
to users [29].

Second, we extend the original CBV by the third dimen-
sion (Fig. 3) to add an important visual dimension: height.
Being able to integrate more visual variables in a single view
than with the original CBV, less context switches to other
views are required for users to assess the same visualized
data. We further chose height instead of other, possible visual
variables (e.g., texture, color saturation or luminance) since
height can be better visually distinguished from already

(1a)

(1b)

(a) (b)

Figure 3. Conceptual sketch: a) Top view onto a ‘traditional’ circular
bundle view with hierarchical relationships projected to the outer circles
(1a) and non-hierarchical ones in the inner circle (1b). b) Side view, metric
values projected to node height.

present variables. In addition, variables such as texture may
interfere with text labels, rendering the latter unreadable.

Humans generally compare three-dimensional objects – if
there is no particular context – by their volumes instead of
by their three separate dimensions [28]. Here, however, the
context defines that the dimensions width and height of a
3-dimensional ring element have a distinct meaning and can
thus be taken into account separately when comparing two
objects. Adding height, however, introduces an occlusion
problem: High modules may occlude child modules or even
dependency edges. We address this by (1) only mapping
values to a module’s height on the innermost ring because we
argue that those modules are more important than modules
on the outer rings and (2) making modules transparent when
users hover those modules or other modules connected by a
dependency edge.

To be able to analyze different hierarchy levels concur-
rently and to compare attribute values across these different
levels, we normalize attribute values of all visible modules
on the innermost ring. The lowest value is mapped to zero
and the highest value to one. Consequently, the mapping is
recomputed each time the set of visible modules changes.

The ExtraVis CBV implementation [10] added collapsing
of modules to aggregate its submodules and dependencies to
and from them. However, it routes all incoming and outgoing
dependencies to the center of a collapsed module, which
hinders assessing the distribution of dependencies to hidden
submodules. To alleviate this, we fan out all dependencies
across the full angular size of collapsed modules.

We further complement the CBV technique with a drill-
down approach instead of full-detail views as in the original
CBV. We argue that users are more interested in gain-
ing an overview of a software system’s structure in the
first place. Three drill-down operations are available: (1)
Collapse/expand single subtree enables users to selectively
drill down into a subtree of the overall hierarchy. (2) Col-
lapse/expand per depth level allows for step-wise analysis
per level of a hierarchy. Descending one level shows deeper

Figure 4. Timeline plot of development activity. Selected timerange
(08/2011 to 10/2011) is highlighted.

nested modules while still retaining an overview of present
dependencies. (3) Restrict to subtree takes a module as
input and reduces the depicted hierarchy to children of this
module for detailed analysis. While reducing visual clutter
and helping to focus on details of the subtree, it also hides
dependencies to and from modules outside of the selected
subtree.

An additional timeline plot shows development activity
(Fig. 4): The bar chart plots the number of commits for
each day of development. Using the plot, users can select a
time range and thereby filter displayed data by this range.

D. Benefits of Our Approach

Depicting the whole system structure and all modules’
measured attribute values in three dimensions, and depen-
dencies simultaneously, provides the following benefits:

1) Communicating analysis results to all participating
stakeholders is facilitated. With outliers in all mea-
sured indicator dimensions becoming visible and rec-
ognizable, developers, software architects, and man-
agers get means to communicate about internal soft-
ware quality that can be discussed and interpreted by
all parties. In addition, analysis results are embedded
into the architectural context of analyzed systems.

2) Visual analysis is lightweight, fast and uses quasi-
standard indicators. Management can use our tech-
nique as an instrument for determining the success
of actions for improving internal software quality on
a regular basis.

3) Our approach enables a human’s visual system to fully
exploit one of its strengths, namely identifying outliers
using pre-attentive perception [16, 30]. Outliers in
metric values are easily distinguishable by notably
different height or color. Due to the CBV’s edge
bundling, outliers in dependencies visually differ from
other dependencies by not being bundled.

4) Ad-hoc interconnection of multiple indicators that
does not require a defined mathematical operation
for interconnection becomes possible by mapping the
indicator’s values to visual variables.

5) By filtering indicators by time range, their progression
over time can be analyzed. By this, trends can be
spotted and preventive actions can be taken before
outliers become a serious problem.

(1)

(a)

(1) (2)

(b)

(1)

(2) (3)

(c)

Figure 5. Drilling down into the module hierarchy of Francotyp Postalia’s controlling software. We descend in the hierarchy (a and b) and restrict the
view to a subtree in c).

IV. CASE STUDY

We have performed a case study for an industrially
developed software system using a prototypical implemen-
tation of our tool. Francotyp Postalia GmbH4 is one of the
world’s largest vendors for franking machines. We analyzed
an embedded software system for one of their machines.
This software system is written in C/C++ and consists of
approximately 900,000 SLOC (source lines of code) with an
average of 10 developers working on it for more than two
years. While most of its development takes place internally,
some modules and libraries were purchased from third party
vendors.

A. Setup and Configuration

Our tool extracts an attributed compound-directed graph
from a C/C++ software system by retrieving its file system
hierarchy, static dependencies, and file-related software met-
rics. While dependencies are directly mapped to the CBV’s
edges, we attribute the graph with metrics per file and map
them (7→) to visual variables as follows:

• Code complexity 7→ module color (green to yellow to
red): is computed as ratio of number of statements in
nesting level three and deeper, NL3+ [if(...) { if(...)
{ while(...) { } } }], to source lines of code (SLOC).
Deeply nested code is commonly considered to be hard
to understand and, thus, a high percentage of deeply
nested code implies high complexity.

• Relation direction 7→ edge color (green: start, red:
end): Similar to the color-coding of modules, poten-
tially dangerous relations of a module (i.e., incoming
- other modules rely on that module’s implementation)
visually stand out.

• Change frequency 7→ module height: includes any mod-
ifications applied to a file within the last 6 months ac-
cording to a project’s source-code management (SCM)
system.

• Size 7→ angular size of module: is computed as SLOC.

4http://www.francotyp.com/, as of 01/25/2012

Thereby, we can easily identify large, complex modules
that have recently been touched by developers. By sizing
up incoming and outgoing dependencies, we can assess a
module’s entanglement with the rest of the system.

In our use case, we adopted a common color scheme
of the domain, i.e., the traffic-light metaphor. Nevertheless,
the scheme can be modified as necessary, e.g., to bypass
deficiencies in human color perception [25].

B. Tool Use in Practice

During Francotyp Postalia’s review sprints, their devel-
opment teams typically perform quality-improving tasks
such as refactorings or reengineerings. Developers collect
these tasks over time during their daily work and, at the
beginning of each sprint, managers, project leaders, and
developers prioritize them together. However, this task list
is not necessarily comprehensive because developers tend
to focus on code-centric improvements. By contrast, project
leaders and managers want to concentrate on modules that
are relevant for future maintainability but they lack detailed
system knowledge. Thus, misunderstandings about relevance
and priority of a task are common.

We have applied the tool to improve this situation and
support Francotyp Postalia’s managers and project leaders
with understanding potential maintainability risks in their
software systems. Fig. 5 illustrates an exemplary analysis
process for their franking machine’s software system using
our extended CBVs: We start by analyzing the software
system at its uppermost hierarchy level. At the first level,
(Fig. 5a), we can distinguish two modules: A large, complex
module that contains product-specific code (1 in Fig. 5a)
and a smaller, medium complex module that represents
Francotyp Postalia’s product-independent libraries. While
the former has been modified frequently, the library module
has barely been touched, indicating mature code. However,
comparing code sizes, we can see that the base library is
very small as opposed to a large product-specific code base.
There might be potential for increasing code reuse between
different franking machines.

Descending another level within the software system’s
modular structure (Fig. 5b) reveals that the product-specific
code is composed of multiple sub-projects, which depend on
each other. However, predominant projects from a manager’s
point of view such as country-specific application projects
are hardly visible here because they consist of only a few
lines of configuration code. Instead, visual focus lies on two
large support projects (1 and 2 in Fig. 5b) that have been
heavily modified and expose high complexity in relation to
others.

To further analyze these modules, we investigate the more
complex one first (Fig. 5c): We apply the “restrict to subtree”
operation to this module, thereby hiding all other modules
but the selected module and its submodules. Disturbing
information about currently irrelevant modules is hidden and
leaves additional space for submodules on the inner rings.
Here, we can see a large module with mid complexity (1).
However, it exhibits a relatively low change frequency. This
module is a third-party library that takes care of display
devices and manages the graphical user interface. Despite its
high complexity and strong entanglement with the system,
this module should not be a major subject to quality-
improving measures because it is modified infrequently and,
thus, seems to be in good shape.

Instead, there are two other modules visible that expose
high change frequencies, medium and low complexity, and
that are relatively large (2 and 3 in Fig. 5c). Both of them
deal with the franking machine’s user interface and control
the franking machine’s human interface. Bugs at this level
will definitely affect customer satisfaction. Thus, they should
be subject to perfective maintenance.

To check these two modules’ entanglement with other
modules, we switch back to an overview of the full software
system with a hierarchy depth of three. We notice a strong
entanglement of both modules (1 and 2 in Fig. 6), which
indicates that other parts of the system are relying on them.
Yet, this overview reveals other relevant modules: First, the
largest module from Fig. 5b is separated into its submod-
ules. An outlier among them exposes high complexity and
medium change frequency (3).

Second, we can easily distinguish the two most complex
modules within this view because their red color contrasts
with surrounding green modules (4 in Fig. 6). Furthermore,
they also have a strong system entanglement. However, their
size in relation to other modules on this hierarchy level
shown is rather small and they have almost no modifications
during the last six months. Nevertheless, they are both
submodules of a printing module within Francotyp Postalia’s
product-independent library, which renders them crucial
for franking machines. Although the probability of future
maintenance work within these modules seems to be low,
we suggest further investigating why these libraries have
such high complexity.

(1)

(2)

(4)

(3)

Figure 6. An overview of Francotyp Postalia’s software system at hierarchy
level three enables to identify outliers in change frequency and complexity.

During our discussions with the development teams,
project leaders, and managers, our images and interactive
visualization tools proved as a viable vehicle for communi-
cation. By hiding irrelevant information such as very small
modules we could focus on outliers with high complexity,
strong entanglement with the system, and frequent modifi-
cations. Furthermore, in the extended CBV, our users had
no problems comparing the distinct variable dimensions
width and height of the three-dimensional ring elements
separately. We still noticed a few wishes for enhancements
that targeted supporting widgets and analysis functional-
ity. Among others, theses included highlighting forbidden
dependencies that violate the intended system architecture
(which first requires a white- or blacklist for dependencies),
more flexible undo/redo functionality, and support for storing
and restoring view configurations across sessions.

Overall, visually combining multiple indicators, which are
easy to explain and understand, helped the team gain new
insights and encouraged further discussions: “emphasizes
problems not recognized before”. In the meantime, we
improved the implementation, and the tool is now actively
used.

C. Threats to Validity

Our case studies’ validity is prone to several threats. First
of all, the studies can hardly provide a proof for maintenance
costs reduction. Yet, we argue that we showed multiple
benefits of our approach by selecting a single but reasonable
complexity metric (nesting level), demonstrating our analy-
sis process, and by providing multiple indicators to a few
places within the source code. Although our selected metrics,
i.e., SLOC for module size, NL3+/SLOC for complexity, and
recent modifications for developer activity, are arguable, our
concept is not limited to these specific metrics.

V. LIMITATIONS

While conducting the case studies, we identified a number
of limitations of our approach; however, most of them can
be at least alleviated. First, the human visual system has
difficulties in discerning different color intensities, especially
when the visual difference is small [30]. Hence, modules
with attribute values that are numerically close to each
other, but not equal, may nevertheless be seen as having
equal values by humans. However, our tool permits to freely
configure the color mapping so that it can be adjusted to
discern numerically close values as well. Moreover, users
cannot configure if attributes mapped to angular size shall
be aggregated and how and aggregation of angular size
automatically propagates up to higher levels in the depicted
hierarchy. This limitation, however, is inherent to the visu-
alization concept.

Since attribute values are first normalized before being
mapped to visual variables, absolute values cannot be ‘read’
from the visual representation. This limitation can be mit-
igated, if not solved, by tooltips showing absolute values,
which are displayed while hovering over modules. Yet,
they were rarely used during our case studies. Additionally,
dependencies that are invisible at compile time, such as those
introduced by late binding, cannot be analyzed.

CONCLUSIONS

We have presented a novel approach that uses visual
analysis to help identifying and prioritizing code-quality
issues based on enhanced circular bundle views. The tech-
nique combines several important indicators for causes
of increased maintenance costs, namely code complexity,
frequent and recent changes to the respective code, and
entanglement among modules. Indicators are encoded in a
way that is easy to assess and understand. Even for non-
experts in software engineering, the visual representation fa-
cilitates a general understanding of the underlying processes
and available decisions. We have evaluated our approach
by means of a case study conducted on an industrial-size
software system. The case study showed that our method
is scalable and, in conjunction with the used indicators,
yields added value. Other indicators can as well be used
in a canonical way.

As future work, we plan to add evolution analysis of met-
ric values. By that, unusual change rates can be identified.
Furthermore, we want to introduce indicators other than file-
related software metrics, such as attributing edges as well:
The more (upward) layers an edge crosses to reach its des-
tination, the more suspicious it is. Hence, by measuring an
edge’s suspiciousness, we could emphasize suspicious edges
visually. As another example, depicting test coverage for
each module might point users towards untested code that is
potentially more error-prone. Moreover, we plan to improve
occlusion handling, e.g., by implementing a transparency
lens that only affects hovered parts of a module instead of

the entire module. By conducting controlled experiments,
we plan to further investigate the benefits of our approach.

ACKNOWLEDGEMENTS

We would like to thank Francotyp Postalia GmbH for
providing their code base and performing the case study
with us. This work was supported by the ZIM program of
the Federal Goverment of Germany (BMWi).

REFERENCES

[1] IEEE Standard Glossary of Software Engineering Ter-
minology 610.12-1990, 1990.

[2] Sazzadul Alam and Philippe Dugerdil. Evospaces: 3d
visualization of software architecture. In Proc. SEKE,
pages 500–505, 2007.

[3] Marla J. Baker and Stephen G. Eick. Space-filling
software visualization. J VLC, 6:119–133, 1995.

[4] Michael Balzer, Oliver Deussen, and Claus Lewerentz.
Voronoi treemaps for the visualization of software
metrics. In Proc. SOFTVIS, pages 165–172, 2005.

[5] Johannes Bohnet and Jürgen Döllner. Monitoring code
quality and development activity by software maps. In
Proc. MTD, pages 9–16, 2011.

[6] Fabrice Bourquin and Rudolf K. Keller. High-impact
refactoring based on architecture violations. In Proc.
CSMR, pages 149–158, 2007.

[7] F.P. Brooks. No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20(4):10–19,
1987.

[8] Andrea Capiluppi, Alvaro E. Faria, and Juan F. Ramil.
Exploring the relationship between cumulative change
and complexity in an open source system. In Proc.
CSMR, pages 21–29, 2005.

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE TSE, 20:476–493, June
1994.

[10] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon
Moonen, Jarke J. van Wijk, and Arie van Deursen. Un-
derstanding execution traces using massive sequence
and circular bundle views. In Proc. ICPC, pages 49–
58, 2007.

[11] S. G. Eick, T. L. Graves, A. F. Karr, A. Mockus, and
P. Schuster. Visualizing software changes. IEEE TSE,
28:396–412, April 2002.

[12] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and
A. Mockus. Does code decay? assessing the evidence
from change management data. IEEE TSE, 27(1):1–12,
January 2001.

[13] N. Fenton and S.L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing
Co., 1997.

[14] Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visu-
alizing software release histories: The use of color and

third dimension. In Proc. ICSM, pages 99–108. IEEE
Computer Society, 1999.

[15] Jane Huffman Hayes, Sandip C. Patel, and Liming
Zhao. A metrics-based software maintenance effort
model. In Proc. CSMR, pages 254–258, 2004.

[16] Christopher G. Healey, Kellogg S. Booth, and James T.
Enns. High-speed visual estimation using preattentive
processing. ACM Transactions on Human-Computer
Interaction, 3(2):107–135, 1996.

[17] Sallie Henry and Steve Wake. Predicting maintainabil-
ity with software quality metrics. J SOFTW MAINT
RE-PR, 3(3):129–143, 1991.

[18] Danny Holten. Hierarchical edge bundles: Visualiza-
tion of adjacency relations in hierarchical data. IEEE
TVCG, 12:741–748, 2006.

[19] Guillaume Langelier, Houari Sahraoui, and Pierre
Poulin. Visualization-based analysis of quality for
large-scale software systems. In Proc. ASE, pages 214–
223, 2005.

[20] Michele Lanza and Stéphane Ducasse. Polymetric
views-a lightweight visual approach to reverse engi-
neering. IEEE TSE, 29(9):782–795, 2003.

[21] M. M. Lehman and L. A. Belady, editors. Program
evolution: processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[22] Claus Lewerentz, Frank Simon, and Frank Steinbrück-
ner. Crococosmos. In Graph Drawing, volume 2265
of LNCS, pages 72–76. Springer, 2002.

[23] S. Muthanna, K. Ponnambalam, K. Kontogiannis, and
B. Stacey. A maintainability model for industrial
software systems using design level metrics. In Proc.
WCRE, pages 248–256, 2000.

[24] George G. Robertson, Jock D. Mackinlay, and Stuart K.
Card. Cone trees: Animated 3d visualizations of
hierarchical information. In Proc. CHI, pages 189–
194. ACM, 1991.

[25] Samuel Silva, Joaquim Madeira, and Beatriz Sousa
Santos. There is more to color scales than meets the
eye: A review on the use of color in visualization.
In Proc. IV, pages 943–950. IEEE Computer Society,
2007.

[26] Yogesh Singh, Pradeep Kumar Bhatia, and Omprakash
Sangwan. Predicting software maintenance using fuzzy
model. ACM SIGSOFT, 34:1–6, July 2009.

[27] Alexandru Telea and Lucian Voinea. Case study: Visual
analytics in software product assessments. In Proc.
VISSOFT, pages 65–72, 2009.

[28] Edward R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, May 2001.

[29] Bogdan Vasilescu, Alexander Serebrenik, and Mark
van den Brand. You can’t control the unfamiliar: A
study on the relations between aggregation techniques
for software metrics. In Proc. ICSM, pages 313–322,
2011.

[30] Colin Ware. Information Visualization: Perception for
Design. Morgan Kaufmann Publishers, 2nd edition,
2004.

[31] Richard Wettel and Michele Lanza. Visually localizing
design problems with disharmony maps. In Proc.
SOFTVIS, pages 155–164, 2008.

[32] M. Wilhelm and S. Diehl. Dependency viewer - a tool
for visualizing package design quality metrics. In Proc.
VISSOFT, pages 34–35, 2005.

This is a preprint version of the paper. The official print version can be obtained from the IEEE
Computer Society. When citing the paper, please use the following BibTeX entry:

@inproceedings{TBD2012,
author = { Jonas Trümper and Martin Beck and Jürgen Döllner },
title = { A Visual Analysis Approach to Support Perfective Software
Maintenance },
booktitle = { Proceedings of the 16th International Conference on
Information Visualisation },
year = { 2012 },
publisher = { IEEE Computer Society }
}

