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Abstract 
We present the blueprint rendering technique as an effective tool for interactively visualizing, exploring, and 
communicating the design and spatial structure of ancient architecture by outlining and enhancing their visible 
and occluded features. The term blueprint in its original meaning denotes “a photographic print in white on a 
bright blue ground or blue on a white ground used especially for copying maps, mechanical drawings, and archi-
tects' plans” (Merriam Webster). Blueprints consist of transparently rendered features, represented by their out-
lines. This way, blueprints allow for realizing complex, hierarchical object assemblies such as architectural 
drafts. Our technique renders 3D models of architecture to automatically generate blueprints that provide spatial 
insights, and generates plan views that provide a systematic overview, and enhances these drafts using glyphs. 
Additionally, blueprint rendering can highlight features of particular importance and their relation to the entire 
structure, and can reduce visual complexity if the structural complexity of the 3D model is excessive. 

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Applications 

1. Introduction 
This paper describes the novel and innovative blueprint 
rendering technique applied to architecture of cultural heri-
tage to effectively visualize and communicate their design 
and spatial structure. It represents a real-time non-
photorealistic rendering technique that enhances visually 
important edges of visible and occluded features of 3D 
models, e.g., architecture models. In contrast to a wire-
frame depiction, which complicates the visual perception of 
complex object assemblies because it does not differentiate 
between triangulation edges and actual outlines (e.g., sil-
houettes), and transparency renderings, whose outlines are 
hardly noticeable, in particular in regions of high depth 
complexity, the blueprint rendering technique generates 
vivid and expressive depictions that facilitate visual percep-
tion (Fig. 1). Furthermore, its resulting depictions can be 
combined with further 3D scene contents. In this way, 
blueprint rendering becomes an effective visualization tool 
in applications, e.g., CAD systems, for interactively com-
municating structure and relationships of ancient architec-
ture. 
2. Blueprint Rendering 
Blueprint rendering [ND04] extracts visible and non-visible 
edges of 3D models and then composes them in image-
space. Thereby, visible edges are edges directly seen by the 
virtual camera and non-visible edges are edges that are 
occluded by faces of the 3D model, i.e., they are not di-
rectly seen. Technically, blueprint rendering combines 
depth peeling [Eve01] and an image-space edge enhance-
ment algorithm [ND03] and can be implemented using 
hardware-acceleration [Kil04]. 
Layers of Unique Depth Complexity 
Depth peeling decomposes arbitrary 3D models into dis-
junctive 2D layers of depth-sorted order, that we call depth 
layers. Generally speaking, depth peeling successively 
“peels away” layers of unique depth complexity. 

Commonly used real-time rendering generates the first 
depth layer. That is, the frame-buffer content contains pix-
els having a minimal z-value if an ordinary depth test has 
been performed. But, in this way, we cannot determine 
depth layers that come second (or third, etc.). Hence, depth 
peeling as a multipass rendering technique performs an 
additional depth test to extract those layers with respect to 
depth complexity. Based on depth peeling, we step deeply 
into a 3D model subject to the number of rendering passes 
while capturing the contents of each layer. Thus, we can 
extract the first n layers by n rendering passes (Fig. 2). 
Performing Two Depth Tests 
In the first rendering pass we perform an ordinary depth test 
resulting in the first depth layer and then capture the z-
buffer and color buffer for further use. In consecutive ren-
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Figure 1: Blueprints of perspective and orthographic views of the 
Temple of Ramses II in Abydos enhanced with glyphs for guidance.
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dering passes we perform two depth tests. For it, we reuse 
the z-buffer of the previous rendering pass. We first test if a 
fragment is greater than the z-value of the targeted pixel 
location of the previous depth layer. If so, we, secondly, 
perform the ordinary depth test again. Otherwise, we reject 
that fragment prior. Finally, the frame-buffer content forms 
the next depth layer.  
Extracting Visible and Non-Visible Edges 
The edge enhancement algorithm extracts discontinuities in 
the normal buffer1 and z-buffer as intensity values that 
constitute visible edges of 3D models. The algorithm pre-
serves these edges as edge map for further use.  

Combining both, depth peeling and edge enhancement al-
lows us to extract edges for each depth layer. For it, we 
render encoded normal values instead of color values into 
the color buffer for a depth layer and, thus, can extract visi-
ble edges in each rendering pass because the z-buffer is 
already available. Furthermore, non-visible edges become 
visible when depth layers are peeled away successively. So, 
as a result, we can preserve visible and non-visible edges of 
3D models. 
Composing Blueprints 
Finally, we compose blueprints using visible and non-
visible edges stored in edge maps in depth-sorted order. We 
render each edge map as depth sprites into the frame-buffer. 
Thereby, we use color blending using edge intensities as 

                                                            
1 A normal buffer contains geometrical normals of a 3D model 
encoded as color values. 

blending factors and, e.g., a bluish, mixing color for provid-
ing depth complexity cues while keeping edges enhanced 
(Fig. 3). 
3. Highlighting Hidden Components in Blueprints 
We introduce depth masking to peel away a minimal num-
ber of depth layers until a specified fraction of occluded 
components of the 3D model become visible. For it, we 
construct a depth texture as depth mask of these compo-
nents and render it as depth sprite in each rendering pass. In 
this way, we peel away depth layers until a specified frac-
tion of these components become visible. Finally, we inte-
grate and highlight these components when composing 
blueprints. In general, depth masking dynamically adapts 
the number of rendering passes and reduces the visual 
complexity of blueprints if the structural complexity of 3D 
models is excessive (Fig. 2). 
4. Plan Views for Architectural Drafts 

Blueprints generate plan views automatically to outline 
architecture comprehensible. Composing plan views using 
an orthographic camera for rendering is a straightforward 
task. Edges and depth complexity cueing are suitable to 
differentiate single components in an overall composition. 
In the plan views of the temple (Fig. 3), we can identify 
chambers, pillars, and statues systematically. Thus, blue-
prints increase visual perception in these drafts. 
5. Relations and Locations in Architectural Depictions 

We enhance blueprints of architecture with glyphs to 
communicate hidden details, locations, and relations. That 
is, we include general 3D geometry in blueprints to provide 
additional knowledge in our depictions of architecture. The 
illustrations in Fig. 1 mark a hidden chamber (red box) in 
the rear part of the temple and the pathways to it (red ar-
rows). 
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Figure 2: Reducing the structural complexity in blueprints by considering a minimal number of depth layers with respect to a depth mask.
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Figure 3: Top and side views illustrate the layout of the temple. 


