
A Service-Oriented Platform for Interactive 3D Web Mapping

Jan Klimke, Benjamin Hagedorn, Jürgen Döllner

Hasso-Plattner-Institut, University of Potsdam

{jan.klimke, benjamin.hagedorn, doellner}@hpi.uni-potsdam.de

Biography

Keywords: Service-oriented 3D Mapping, 3D Map Creation, 3D Map Delivery, 3D Map Styling, 3D City Models

Abstract: Design, implementation, and operation of interactive 3D map services are faced with a large number of
challenges including (a) processing and integration of massive amounts of heterogeneous and distributed 2D and 3D
geodata such as terrain models, buildings models, and thematic georeferenced data, (b) assembling, styling, and
rendering 3D map contents according to application requirements and design principles, and (c) interactive
provisioning of created 3D maps on mobile devices and thin clients as well as their integration as third-party
components into domain-specific web and information systems. This paper discusses concept and implementation of
a service-oriented platform that addresses these major requirements of 3D web mapping systems. It is based on a
separation of concerns for data management, 3D rendering, application logic, and user interaction. The main idea is
to divide 3D rendering process into two stages. In the first stage, at the server side, we construct an image-based,
omni-directional approximation of the 3D scene by means of multi-layered virtual 3D panoramas; in the second
stage, at the client side, we interactively reconstruct the 3D scene based on the panorama. We demonstrate the
prototype implementation for real-time 3D rendering service and related iOS 3D client applications. In our case
study, we show how to interactively visualize a complex, large-scale 3D city model based on our service-oriented
platform.

Introduction	
The availability of 3D geodata, its volume and its quality are constantly growing. Therefore, a high quality 3D
visualization of massive and detailed data sets represents a computationally expensive task: It consumes large
amounts of main memory, disk, network, CPU, and GPU resources in order to deliver an interactive user experience
and a good visual quality. For distribution of such 3D contents in a web environment, two principal concepts can be
found in existing 3D web mapping approaches, client-side 3D rendering, i.e., assembly and streaming of 3D display
elements such as 3D geometry and textures by a 3D server, whereby the corresponding 3D clients manage scene
graphs and perform real-time 3D scene rendering (e.g., Google Earth, OGC W3DS); and server-side 3D rendering,
i.e., assembly and rendering of 3D display elements by the 3D server, which delivers views of 3D scenes to
lightweight clients (e.g., OGC WVS).

Taking into account the increasing complexity and size of geodata for 3D maps (e.g., complex 3D city models), the
need for high-quality visualization (e.g., illustrative or photorealistic rendering), and rapidly growing use of mobile
applications (e.g., smart phones and tablets), these principal concepts are faced by fundamental limitations: client-
side 3D rendering fails to provide fast access to massive models due to bandwidth limitations and cannot guarantee
high-quality rendering results as the graphics capabilities of nearly all mobile devices differ significantly, while a
pure server-side 3D rendering is inherently limited with respect to interactivity and does not take advantage of
today’s mobile device graphics capabilities.

In this paper, we present a service-oriented platform for interactive 3D web mapping based on a separation of
concerns for data management, 3D rendering, application logic, and user interaction. The main idea, in a nutshell, is
to divide the 3D rendering process into two stages. In the first stage, at the server side, we construct an image-based,

omni-directional approximation of the 3D scene by means of multi-layered virtual 3D panoramas; in the second
stage, at the client side, we reconstruct the 3D scene based on the panorama. This approach profits from both: The
high quality, server-side image generation and the increasing graphics capabilities of client devices.

Background	and	Related	Work	
The interoperability of systems and applications dealing with geodata is an central issue in order to build systems out
of interoperable software components for geodata access, processing, and visualization.

Beside a common understanding on information models (Bishr, 1998), definitions of service interfaces are necessary.
The Open Geospatial Consortium (OGC) defines a set of standardized services, models, and formats for geodata
encoding and processing. For example, a Web Feature Service (WFS) (Vretanos, 2005) can provide geodata,
encoded in the Geography Markup Language (GML) (Portele, 2007) or City Geography Markup Language
(CityGML) (Gröger et al., 2012), and processed by a Web Processing Service (WPS) (Schutt, 2007).

For geovisualization processes a general portrayal model is provided by the OGC that describes three principle
approaches for distributing the tasks of the general visualization pipeline between portrayal services and consuming
applications (Altmaier and Kolbe, 2003; Haber and McNabb, 1990). While the OGC Web Map Service (WMS),
providing map-like representations of 2D geodata, is widely adapted and used, 3D geovisualization services have not
been elaborated to a similar degree. Several approaches for 3D portrayal have been presented (Basanow at al., 2008).
Two types of 3D portrayal services, currently discussed in the OGC context, can be distinguished:

• Web 3D Service (W3DS) (Schilling and Kolbe, 2010): It handles geodata access and mapping to renderable
computer graphics primitives (e.g., textured 3D geometry represented by scene graphs) and their delivery to
client applications.

• Web View Service (WVS) (Hagedorn, 2010): It encapsulates the image generation process (i.e., it
implements the geovisualization pipeline) of 3D models, delivering rendered image representations
("portrayals") to client applications.

By focusing on developing international standards for 3D Portrayal, an interoperable, service-based system can be
built, that allows replacing component implementations selectively with other implementations. Further, system
components, especially a 3D rendering service or a W3DS instance can be reused in other systems.

Several approaches exist for remote rendering of 3D virtual environments (Boukerche and Pazzi, 2006; Paravati et
al., 2011). Mostly, they rely on constant transmission of single images (Wessels et al., 2011) or video streams
(Lamberti and Sanna, 2007; Pajak et al., 2012) to client applications. In contrast to those applications that are
completely dependent on the current data throughput of the network connection, our approach uses a latency hiding
technique. This technique allows for a continuous user interaction operating on the locally available data also in
situations with very low data transmission rates between 3D rendering server and clients.

Another approach is to manage and render a low resolution 3D model on client side, to allow users to explore the
model interactively; when interaction stops, remote rendering is used to create and display an image of the high-
resolution 3D model (Koller et al., 2004). For delivery of, e.g., large-scale textured 3D city models, this approach is
not suitable, since a transmission and rendering of low resolution model representations on client-side would still
exceed network and client-side rendering capabilities. In approach an image-based 3D approximation of a model is
created by the client, using image data transmitted from a 3D rendering service.

3D	Web	Mapping	Requirements	
Design, implementation, and operation of interactive 3D map services are faced with a large number of challenges
including:

(a) Data processing and integration: Massive amounts of heterogeneous and distributed 2D and 3D geodata such as
terrain models, buildings models, and thematic georeferenced data form the basis for 3D maps. This data has to
be processed for visualization and integrated into the overall visualization system in order to be combined in a
3D map.

(b) 3D map content assembly, rendering and styling: To communicate spatial and georeferenced information, 3D
map content must be selected, styled and rendered according to application requirements and design principles.

(c) Interactive provisioning: Created 3D maps should be available on mobile devices and thin clients in an
interactive manner. Further, third-party vendors should be able to integrate 3D maps as components into their
domain-specific web and information systems.

(d) Interoperability: A system for 3D web mapping should rely on established standards in terms of data formats
and service interfaces.

In particular, challenge (c) influences the way a service-oriented system for 3D mapping can be built. Large amounts
of data have to be transmitted, processed, and stored for generating a useful 3D map, common client applications
have to scale with the size of the underlying 3D model, because they deal with the massive amounts and the
complexity of model data on client side. In order to provision 3D maps on a large variety of devices with
heterogeneous hardware and software capabilities and undefined as network connection speed, the effort of
processing, transfer, and rendering of 3D map content should be decoupled from a client application, while still
providing a user with an interactive user experience. This diversity and performance considerations is especially an
issue, when designing applications for mobile devices or browser-based 3D mapping solutions. Clients for these
platforms should provide a equally high visual quality, regardless of the capabilities of the individual device or
platform.

Access to a variety of 3D content and its task and user specific styling is crucial when using a 3D map application. A
3D web mapping system should therefore provide an interface to configure the 3D map in a way that allows to adjust
data selection and styling per data set. Further, from a service-oriented point of view, service interfaces should rely
on standards, as far as they exist, to enable implementation reuse and interoperability between different
implementations of the same service.

A	Service-Oriented	Platform	for	3D	Web	Mapping	
In order to address the requirements mentioned above, we propose a service-oriented decomposition of the 3D
mapping process into independent stages: Server-side data processing and 3D rendering and client-side interactive
provisioning of 3D contents (Figure 1). In contrast to common approaches for remote 3D visualization of 3D
geodata, our approach is based on transmission of images in standard image formats. The complexity of geodata
management and 3D rendering is encapsulated on server side. A 3D client uses a Web View Service interface,
provided by the 3D rendering server, to request an image-based, omni-directional approximation of the 3D scene by
means of multi-layered virtual 3D panoramas (Figure 2). Based on these panoramas, a 3D client reconstructs a
lightweight 3D representation of the server-side data.

Figure 1: Working principle of the system for interactive 3D mapping. Handling of complex, massive 3D geodata is
encapsulated on server side, while clients reconstruct the 3D environment using images generated by a 3D rendering

server.

Our system architecture offers a number of key properties that facilitate construction and deployment of interactive
3D web mapping solutions.

• Scalability: The approach allows for visualizing virtually arbitrary complex, server-side 3D models on clients by
decoupling the complexity of the 3D model data from the complexity of streamed data and therefore rendering
complexity on client side: regardless of the model complexity, the streamed virtual 3D panoramas are of fixed
size.

• Configurability: Features and styles of 3D web mapping can be requested and configured by style parameters in
the interface. For example, new stylization techniques can be provided by the 3D server for existing clients
without any redeployment or client-side installations.

• Stability: The implementation of the core 3D rendering process is based on the a-priori known server hardware
and software. In particular, advanced real-time 3D rendering techniques, such as stylization and illustrative
techniques, can be implemented in a stable and efficient way. Since image-generation of 3D geodata is
performed completely on server side,

• Robustness: A client always operates on its cached virtual 3D panoramas. Therefore, the client can guarantee
full interactivity regardless of data transmission latency.

• Extensibility: Application-specific extensions can be integrated by additional information layers in the virtual 3D
panoramas and by additional client-side functions. Examples include selectable model elements (e.g., planning
variants in 3D city models), rendering styles per layer, image-based stylings, or placemarks (predefined scene
views).

• Interoperability: The rendering service implements the Web View Service (WVS) interface for image-based 3D
portrayal of Geodata, which currently in the standardization process within the OGC. Further, we support
CityGML as standard format for 3D city models through our preprocessing component.

Figure 2: Different image layers of the same view. From left to right: Color image, object id image, depth image.

Architecture	
The core component of our architecture is an image-based 3D rendering service that adheres to the Web View
Service (WVS) specification and represents a 3D portrayal service that is currently in the standardization process in
the OGC. It provides an extendable interface to retrieve rendered images of a 3D scene. It is used by corresponding
client applications to request different image layers (e.g., depth or object id of visible image pixels) encoded in
standard image formats. The rendering service encapsulates a server-side visualization pipeline. All processing,
filtering, styling, and rendering of 3D map contents are hidden from clients and can be controlled through the
extensible WVS interface.

Since, massive 3D geodata is not suitable for efficient 3D rendering in its original form, a preprocessor component
exists for converting 3D geodata formats, such as CityGML, into a structure optimized for rendering. This structure
then holds a compactified representation of geometry and textures that is specific for the techniques for texturing,
styling, and object identity management of the rendering service. The preprocessing service represents an
independent piece of functionality and could also be implemented as web processing service. The preprocessor is
able to convert a range of different formats for 3D models to the same optimized representation. This enables the
rendering service to support rendering of models encoded in a wide range of different 3D formats.

Besides the optimized representation, CityGML source data is kept accessible in a database together with the
association information between rendering ID (object ID) and CityGML feature identifier. In this way, the system is
able to deliver feature data for each rendered object. Thematic data for 3D content that was integrated into the
visualization process can be accessed externally by using corresponding Web Feature Services.

A client application implements the user interface. It provides features for both: Camera interaction and query of
feature data. A client application works with the image data provided by the rendering service. Due to the different
information encoded in image layers (color, depth, object ID, and normals) clients may provide far more possibilities
to users compared to a server-side rendering of color information only.

Application specific data is managed through an application config service. This service delivers configuration
documents for the client applications, defining, e.g., available model layers, layer-style combinations, image styles,
as well as relevant camera positions and orientations for the specific use case. These documents are defined using a
web-based administration interface. This additional indirection for the configuration of client applications allows
using the same application for different use cases without touching the actual client code.

Figure 3: Architecture diagram of the service-oriented platform for web mapping.

Data	Integration	
Several possibilities for integration of different data types exist on server side as well as on client side. Besides a 3D
base model, i.e. a textured 3D city model, other 3D model data, e.g., for visualization of planning variants could be
integrated in a visualization to provide valuable 3D applications. Further, 2D maps can be applied to the 3D digital
terrain model (DTM). Both, extra 3D model data and terrain textures can be fetched from external services. For
texturing of the DTM, map data is requested on demand from a Web Map Service. To optimize the server's response
times, caching strategies are applied in order to optimize the number of requests to be processed by the external
WMS and therefore to optimize rendering performance of the server.

Additional 3D content can be integrated either by using the preprocessing service to create an out-of-core data
structure optimized for rendering or, in the case of smaller data sets, directly into the visualization process of the
rendering server. The additional contents for map generation can be fetched from a W3DS or loaded from files. The
server is configured with a set of 3D models using a configuration file on startup. Additional contents can be loaded
during runtime. This allows a fairly flexible image generation of a broad range of 3D content. Since this type of data
integration only demands server-side effort, client applications using the service can easily work with new, updated
or altered data. While updated data does not need any changes on client-side, additional data sets need an additional
parameter for client requests. This has to be considered when clients should be able to request additional datasets
from the rendering service.

Server	Side	Rendering		
The 3D rendering service is responsible for scene management and image synthesis. It accesses the optimized 2D
and 3D geodata, constructs and optimizes the corresponding scene graph, and implements the core 3D rendering
algorithms. State-of-the-art 3D rendering techniques for 3D models are characterized by a strong use of the
programmable rendering pipeline. To achieve high-quality results in real-time, implementations are typically based
on tightly dependent shader programs, scene graph representations, spatial data structures, level-of-detail techniques,
and multi-pass rendering techniques. The implementation of such techniques does heavily rely on the underlying 3D
rendering hardware and software, which make their development for a broad range of client platforms and hardware
a costly and time consuming task. In contrast, the dedicated rendering server in our approach provides a controlled
environment for the implementation of 3D rendering techniques. This leads to a consistent quality of the generated
views, regardless of a client’s hardware and software. Moreover, it leads to accelerated development and distribution
of 3D web mapping applications as well as an increased maintainability of such systems. Further, the server system
represents a single point of update, i.e., updated 3D content can be delivered to all clients, without altering client
implementations or redistributing geodata to client applications.

Stylization	of	3D	Contents	
Stylization of 3D maps is one of the main issues of the 3D map generation process. It supports the efficient
communication of geoinformation. In our 3D rendering service, we support flexible stylization of 3D map contents.
For this it provides a number of options to style the 3D maps. Specific textures can be applied to each model
element, e.g., a terrain model can be textured using different 2D maps. Further, different 3D rendering effects can be
applied per model element, e.g., a specialized rendering for planned constructions. Additionally, the 3D rendering
service offers so called image styles that affect the overall appearance of the 3D scene.

This stylization is implemented as an image-based post-processing executed after the 3D rendering of the scene
geometry and textures has been performed. Data from different image layers is used together with additional
configuration options to configure the image stylization effect, e.g. the id of a scene object to be highlighted by a
halo effect. Stylization effects are implemented efficiently using the graphics hardware. Unnecessary copy operations
of source image-layers are avoided by reusing them on the graphics card without prior download into the main
memory. This way, the graphics hardware of the rendering server is used in a very efficient way for image-based
computations, e.g., non-photorealistic rendering. Examples for image-based styling are depicted in Figure 4.

The image-based stylization has one major advantage compared to conventional techniques for 3D-stylization: The
computational complexity does not depend on the model size and complexity. The computational costs are mainly
dependent on the resolution of the source and target images and the complexity of the desired effect. Image-based
techniques can also be used to visualize thematic data, e.g. through projection of image data or applying color values
for certain objects encoding specific data values.

Figure 4: Examples for image-based stylization techniques available in the 3D rendering service. From left to right:
Different model elements are styled independently, a halo effect highlights selected features, to increase spatial perception

a global illumination effect is applied.

Client	Applications	
In this section we will provide an overview over of client implementations: (a) An iOS application providing a fully
interactive user experience and (b) a very lightweight, browser based client implemented in JavaScript, allowing a
stepwise camera interaction. These clients are designed as proof of concept to show, that 3D maps can be
provisioned interactively on devices either with limited or unknown hardware and network capabilities or in
restricted software environments, such as a web browser.

The interactive mobile client for iOS devices, namely iPad, iPhone, and iPod touch, uses color, depth, and object ID
information retrieved as image data from the 3D rendering service to reconstruct the server-side 3D model. The 3D
client basically displays the textured cube map geometry, with the initial camera view point in the cube center. It
demands only moderate 3D graphics capabilities from the client device: The six-sided cube requires 12 triangles and
corresponding six 2D textures (e.g., 512x512 texel, depending on display size of the target device). The user

navigation and interaction operates always on the most recent G-buffer cube map received. If the camera is moved or
zoomed, a request for a new cube map is filed, and the current cube map is marked as outdated and an updated one is
fetched from the server. Still, navigation and interaction can operate on the current cube map, independently of the
provision of the requested new cube map. The artifacts that tend to occur include insufficient image resolution (i.e.,
blurring effects) and incorrect 3D object visibility. The client-side 3D rendering process can be enhanced by various
image-based rendering techniques. Most importantly, a cube map’s depth layer can be alternatively encoded as a
depth mesh (Pajarola et al., 2004), which represents a triangulation of the depth image. This way, depth meshes are
”directly enabling fast intermediate view rendering” (Farin et al., 2007), using the depth mesh instead of the cube
map geometry; efficient algorithms for compression and meshing exist (Sarkis et al. 2010). The client switches to a
depth mesh scene representation as soon as the position of the virtual camera changes. However, if a depth mesh is
not displayed from the reference view, usually holes or rubber-sheets become visible, which can be avoided by
requesting and rendering additional depth meshes at the cost of performance and utilized network bandwidth. Also
the graphic requirements for this type of 3D scene reconstruction are very modest for mobile devices. To provide an
omni-directional scene reconstruction, currently a maximum of six meshes each containing maximum 65536 vertices
is rendered. The vertices are textured using the available textures from the six sides of cube map.

The browser-based JavaScript client is a very lightweight front-end for 3D maps. It provides a stepwise navigation
metaphor through overlaid UI elements for manipulating the camera positions. Further, additional UI-Elements exist
to customize the current style and 3D model selection. Each input action, e.g. a mouse click, updates the image in
this web-page. This leads to a less interactive user experience, but still allows navigating through the 3D map with a
minimum of hardware and software requirement. Since the client exclusively displays images and manipulates the
HTML-DOM, it is able to run and to deliver exactly the same visualization result on every browser that supports
Javascript.

Figure 5: iPad application running the virtual 3D city model of Berlin using a WVS for image generation (left) and
browser-based Javascript client supporting a stepwise interaction (right).

Case	Study	–	Berlin	3D	
To verify our system design we conducted a case study together with the Berlin Partner GmbH, working in the area
of city marketing for the city of Berlin and using a virtual 3D city model of Berlin to present and promote available
properties to potential investors. The virtual 3D city model of Berlin (more than 500,000 fully textured building
models, 350 of them in CityGML LOD 3 or 4) is one of the largest city models in the world.

The goal of this collaboration was to bring high quality visualization of the Berlin virtual 3D city model to mobile
devices. Our preprocessing service was used to organize and optimize the model. We integrated the preprocessed
data into a rendering service instance running on a remote server (2.7 GHz Intel Xeon, quad core, 16 GB RAM,
Geforce GTX 460 2 GB graphics memory). The 3D client application using the 3D rendering server was
implemented for Apple iOS device, such as iPad or iPhone. It provides a native, touch-based user interface to control
the virtual 3D camera and to select and style 3D contents. Intuitive touch gestures allow even inexperienced users to
efficiently explore the 3D scene (Kin et al., 2009). The touch interface for camera interaction supports camera
movement in three dimensions and also the change of camera orientation. The application assists users in controlling
the 3D camera by applying constraints for camera parameters in order to prevent users from using disorienting
camera configurations (Buchholz et al., 2005).

The service-oriented 3D rendering approach can reduce cost and time intensive efforts, resulting from, e.g.,
physically moving a 3D desktop system including its 3D hardware and the data storage to different locations. For
example, instead of using a single view on a large screen, participants can have their own views on their tablets.

Conclusions	and	Future	Work	
We presented two examples for client applications running in different, restricted environments. Both clients use the
available resources efficiently to provide access to 3D maps, based on massive amounts of complex 3D geodata,
which was hard to achieve in a good visual quality beforehand. By lowering the entry barriers in terms of hardware
and software prerequisites, but also concerning user interaction, 3D maps can become useable by a broader audience.
Our case study demonstrated that our approach and platform can be used for interactive 3D web mapping even of
large-scale 3D contents, such as a large virtual 3D city model. The system was well accepted by users. Especially,
they reported that the client’s touch-based interface offers easy to use means for the navigation of complex virtual
3D spaces. The service-based system for 3D web mapping presented in this paper, together with lightweight clients,
offer various opportunities for the integration of 3D visualization components into existing IT and geodata
infrastructures.

Acknowledgements	
We thank Berlin Partner GmbH as well as the 3D Content Logistics GmbH for the collaboration on this project.

References	

Altmaier, A. & Kolbe, T.H., 2003. Applications and Solutions for Interoperable 3D Geo-Visualization. In
Proceedings of the Photogrammetric Week 2003. Stuttgart: Wichmann, pp. 251–267.

Basanow, J. et al., 2008. Towards 3D Spatial Data Infrastructures (3D-SDI) based on open standards – experiences,
results and future issues. In Advances in 3D Geoinformation Systems. Springer, pp. 65–86.

Bishr, Y., 1998. Overcoming the semantic and other barriers to GIS interoperability. Int. Journal of Geographical
Information Science, 12(4), pp.299–314.

Boukerche, A. & Pazzi, R.W.N., 2006. Remote rendering and streaming of progressive panoramas for mobile
devices. In Proceedings of the 14th ann. ACM Int. Conf. on Multimedia - MULTIMEDIA ’06. New York, New
York, USA: ACM Press, p. 691.

Buchholz, H., Bohnet, J. & Dollner, J., 2005. Smart and Physically-Based Navigation in 3D Geovirtual
Environments. In Ninth International Conference on Information Visualization (IV’05). IEEE, pp. 629–635.

Farin, D., Peerlings, R. & de With, P.H.N., 2007. Depth-Image Representation Employing Meshes for Intermediate-
View Rendering and Coding. In 2007 3DTV Conference. Ieee, pp. 1–4.

Gröger, G., Kolbe, T. H., Nagel, C., Häfele, K., 2012. OpenGIS® City Geography Markup Language (CityGML)
Encoding Standard Version 2.0.0, Available at: http://www.opengeospatial.org/standards/citygml.

Haber, R.B. & McNapp, D.A., 1990. Visualization Idioms: A Conceptual Model for Scientific Visualization
Systems. In Visualization in Scientific Computing. IEEE, pp. 74–93.

Hagedorn, B., 2010. Web view service discussion paper, Version 0.6. 0. Open Geospatial Consortium Inc.

Hildebrandt, D., Hagedorn, B. & Döllner, J., 2011. Image-based strategies for interactive visualization of complex
3D geovirtual environments on lightweight devices. Journal of Location Based Services, 5(2), p.100-120.

Kin, K., Agrawala, M. & DeRose, T., 2009. Determining the benefits of direct-touch, bimanual, and multifinger
input on a multitouch workstation. In Proceedings of Graphics Interface 2009. Canadian Information
Processing Society, pp. 119–124.

Koller, D., Turitzin, M. & Levoy, M., 2004. Protected interactive 3D graphics via remote rendering. … on Graphics
(TOG). Available at: http://dl.acm.org/citation.cfm?id=1015782 [Accessed August 23, 2012].

Lamberti, F. & Sanna, A., 2007. A streaming-based solution for remote visualization of 3D graphics on mobile
devices. IEEE transactions on visualization and computer graphics, 13(2), pp.247–60.

Paja̧k, D., Herzog, R., Eisenmann, E., Myszkowski, K. and Seidel, H., 2011. Scalable Remote Rendering with Depth
and Motion-flow Augmented Streaming. Computer Graphics Forum, 30(2), pp.415–424.

Pajarola, R., Sainz, M. & Meng, Y., 2004. Dmesh: Fast depth-image meshing and warping. International Journal of
Image and Graphics, 4(4), pp.1–29. Available at: http://www.ifi.uzh.ch/vmml/publications/older-
puclications/DMesh.pdf [Accessed August 24, 2012].

Paravati, G., Sanna, A., Lamberti, F. and Ciminiera, L., 2011. An open and scalable architecture for delivering 3D
shared visualization services to heterogeneous devices. Concurrency Computat.: Pract. Exper. 2011; 23:1179–
1195

Portele, C., 2007. OpenGIS Geography Markup Language (GML) Encoding Standard, Version 3.2.1. Available at:
http://www.opengeospatial.org/standards/gml.

Sarkis, M., Zia, W. & Diepold, K., 2010. Fast depth map compression and meshing with compressed tritree. In
Computer Vision–ACCV 2009. pp. 44–55.

Schilling, A. & Kolbe, T.H., 2010. Draft for Candidate OpenGIS® Web 3D Service Interface Standard, Version
0.4.0.

Schut, P., 2007. OpenGIS® Web Processing Service, Version 1.0.0. Available at:
http://www.opengeospatial.org/standards/wps.

Vretanos, P.A., 2005. OpenGIS Web Feature Service (WFS) Implementation Specification. Available at:
http://www.opengeospatial.org/standards/wfs.

Wessels, A. Purvis, M., Jackson, J., Rahman, S., 2011. Remote Data Visualization through WebSockets. 2011 8th
Int. Conf. on Inf. Technology: New Generations, pp.1050–1051.

