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Abstract: A treemap is a visualization that has been specifically designed to facilitate the exploration of tree-structured
data and, more general, hierarchically structured data. The family of visualization techniques that use a
visual metaphor for parent-child relationships based “on the property of containment” (Johnson, 1993) is
commonly referred to as treemaps. However, as the number of variations of treemaps grows, it becomes
increasingly important to distinguish clearly between techniques and their specific characteristics. This paper
proposes to discern between Space-filling Treemap TS, Containment Treemap TC, Implicit Edge Representation
Tree TIE, and Mapped Tree TMT for classification of hierarchy visualization techniques and highlights their
respective properties. This taxonomy is created as a hyponymy, i.e., its classes have an is-a relationship to one
another: TS⊂ TC⊂ TIE⊂ TMT. With this proposal, we intend to stimulate a discussion on a more unambiguous
classification of treemaps and, furthermore, broaden what is understood by the concept of treemap itself.

1 INTRODUCTION

Treemaps are well established visualization techniques
for tree-structured data and hierarchically structured
data (McNabb and Laramee, 2017). Such data is
prevalent in almost all application domains, includ-
ing demographics (Jern et al., 2009), business intel-
ligence (Roberts and Laramee, 2018), health (Chaz-
ard et al., 2006), and software development (Merino
et al., 2018). Since a large part of today’s data
sets is tree structured—either inherently or otherwise
supplemented—the treemap is a versatile tool for in-
formation visualization. Within the past three decades,
over 300 hierarchy visualization techniques (including
traditional treemaps) and variations have been pro-
posed (Schulz, 2011). The main task of a treemap
is to map the structure of a data set and at the same
time to enable additional visual variables per data el-
ement (Carpendale, 2003) (see Figure 1). Thereby,
a treemap can be varied and adjusted using different
layout algorithms (Vernier et al., 2018) and additional
visual variables, visual metaphors, and interaction tech-
niques (Limberger et al., 2019).

Although there seems to be some consensus on
whether a visualization technique is called a treemap or
not (“property of containment”, Johnson 1993), there
are different views on how strictly to adhere to the con-
tainment metaphor. Bubble Treemaps (Görtler et al.,
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2017) and BeamTrees (van Ham and van Wijk, 2003)
are two examples. This vague use of the term treemap
and the lack of consolidation of the different concepts
makes it difficult to deal with individual cases, com-
plicates summary statements, and might constrain a
deeper understanding.

We propose a taxonomy of four classes of visual-
ization techniques resulting mainly from the encoding
and representation of parent-child relationships. The
taxonomy considers typical properties of layout and
geometry representations and is itself a hyponymy.
Each class contains common hierarchy visualization
techniques that could be called treemaps. In a brief
discussion, we emphasize the applicability of and ex-
tension points to this taxonomy. Our goal is a more
unambiguous classification of treemaps and a strength-
ened concept of treemap categories. Together, these
could form a basis for discussions of limitations, guide-
lines, and generalizations of techniques and, further-
more, facilitate the identification and differentiation of
such techniques for domain-specific applications.

2 FOUNDATION OF TREEMAPS

For the last 30 years, the treemap visualization tech-
nique was extended, refined, and used in different
contexts. This adaptation process extended the scope
of and expectations from treemaps for visualization
designers and users. Here, we want to recapitulate
the original forces and predecessors leading to the



Figure 1: An example of a 2D treemap depicting software
system data using area and color mapping as well as nesting.

first treemap visualization technique and introduce a
conceptual visualization pipeline that seems common
to all hierarchy visualization techniques. Further, we
review other generalization approaches for treemaps.

Predecessors of Treemaps. Upon looking back
from the first mentioning of a treemap, the preced-
ing ingredients for this visualization technique can be
found in statistical cartograms, mosaic displays, and
nested depiction for hierarchical components. The
early treemaps are a skilled combination of those tech-
niques. One original building block is the statistical
cartogram (Raisz, 1934). These manually designed
cartograms depicted geographic and demographic data
by derivation of rectangular diagrams. Thereby, ad-
jacency of geographic locations were maintained and
the rectangle for a location could be varied in size de-
pending on the demographic data. These properties
are now backed by algorithms and attainable by IT
systems as well (van Kreveld and Speckmann, 2007).
A second building block, the mosaic display (Friendly,
2002), uses an algorithmic approach to dissect the
surface for depiction. The mosaic display appeared
around 1877 and gained scientific attention in 1981.
The technique uses a two-dimensional subdivision of
a rectangle based on categorical distribution for data
points in two attributes—or more using scatter-plot
techniques. The main insights from those diagrams
are the distribution of data items among different cate-
gories. That is, treemaps were anecdotally referred to
as “large weighted Venn diagrams” (Johnson, 1993).
A third building block is the depiction of hierarchi-
cal relations using nesting. For example, they can
be found with contour models (Johnston, 1969) and
Nassi-Shneiderman-Diagrams (Nassi and Shneider-
man, 1973), used for depiction of hierarchical com-
ponents of algorithms. A combination of these ap-
proaches resulted in the first treemap visualization
technique (Johnson and Shneiderman, 1991).

Treemap Visualization Pipeline. We assume that
the creation of visual representations from data, e.g.,
the transformation of tree-structured data into images
from tree maps, can be understood as a visualization
pipeline. This pipeline can be a part of an interactive
feedback loop of creating images from data, perceiving
these images, and gaining insights—the visualization
process (Figure 3). Within this process, the visualiza-
tion pipeline is represented using three phases, namely
Preprocessing, Mapping, and Image Synthesis. The
required algorithms to create a treemap visualization
from raw data are associated to one, or sometimes
multiple, phases of this pipeline. Thereby, some algo-
rithms are specific to treemap visualization and others
are more generally applicable in the fields of data pro-
cessing and information visualization. The specifics
for treemap visualization techniques are prominent
in the mapping phase and the geometry phase, i.e.,
these phases highly contribute to the appearance of a
treemap visualization (Figure 2).

Generalization on Treemaps. The similarities of
treemap visualizations, as proposed by Shneiderman
and Johnson, to other hierarchy visualization tech-
niques were used before to provide means of general-
ization of hierarchy visualization techniques. As such,
Schulz et al. coined the term implicit hierarchy visual-
izations (Schulz et al., 2011a) as a category of visual-
ization techniques that uses implicit, i.e., non-drawn,
metaphors to represent the parent-child relationships.
Later, Schulz et al. presented a generative layout ap-
proach for rooted tree drawings that could be used to
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Figure 2: Concept of a hierarchy visualization pipeline in-
cluding the tree structure (topology), per-node attributes, and
the spatialization process of this abstract data.
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Figure 3: Illustration of the visualization process and the included visualization pipeline. Adapted from van Wijk (2005).

create a wide range (and mixed use) of visualization
techniques with implicit and explicit edge represen-
tations (Schulz et al., 2013). Likewise, Baudel and
Broeksema discussed a design space for rectangular,
sequential, and space-filling treemap layouts (Baudel
and Broeksema, 2012), creating an own set of treemap
visualization techniques.

3 CATEGORIES

Throughout the community of information visualiza-
tion, there seems to be some consensus on the visual-
ization techniques that may be called a treemap. Disre-
garding their differences, the emerged set of common
characteristics is as follows:

• First, a treemap is a visualization technique suit-
able to depict tree-structured data.

• There is a representation of the parent-child rela-
tionships without use of explicit edge links, i.e.,
the containment metaphor (Schulz et al., 2011a).

• The depiction of leaf nodes implies an area or
volume in the geometry space (Park et al., 2018).

• The representation of sibling nodes should be guar-
anteed to be non-overlapping (Johnson and Shnei-
derman, 1991).

In other words, the prominent property for treemaps is
the visual containment in the depiction, which implies
a containment within the layout as well. Empirically,
the technique in question allows for at least one of
either area, volume, or color for attribute mapping
of leaf nodes. More effective treemap visualization
techniques allow for at least two visual variables for
attribute mapping of leaf nodes.

Based upon this, we believe the term treemap is
not only suitable for the first treemap introduced by
Shneiderman and Johnson but for a broader range of
hierarchy visualization techniques. To contribute to
the discussion, we propose four different sets of char-
acteristics that could be used to distinguish between
treemaps, tree visualization techniques, and general
hierarchy visualization techniques (H ):

• the Space-filling Treemap TS,
• the Containment Treemap TC,
• the Implicit Edge Representation Tree TIE,
• and the Mapped Tree TMT.

These categories focus on the characteristics of the
spatialization process (resulting in the layout) and the
visual representation in geometry space. Thereby, each
category is a superset of the previous one, forming a
hierarchy of tree visualization techniques. This prop-
erty allows to categorize the taxonomy itself as a hy-
ponymy. The four categories are motivated and defined
as follows.

TSSpace-filling Treemap. A space-
filling treemap results from a recur-
sive subdivision of a surface (John-
son and Shneiderman, 1991) or an
n-dimensional cube (Johnson, 1993).
The main characteristic is the full sub-
division and distribution of a parents’
surface or volume for its children, resulting in space-
filling depictions of the leaf nodes. This category of
treemaps includes not only subdivisions of rectangles
but others as general rectangular (Wattenberg, 2005),
convex polygonal (Balzer and Deussen, 2005; Wang
et al., 2019), and non-convex polygonal (Auber et al.,
2013) partitions as well (Figure 5).

TCContainment Treemap. The cate-
gory of Containment Treemaps ex-
tends Space-filling Treemaps by loos-
ening the space-filling property. This
still requires that child nodes are lo-
cated within their parent surfaces but
they must not utilize all the space of
the parent. Mainly, hierarchy visualization techniques
from this category are currently considered treemap
visualization techniques. Typically, the correspond-
ing layouts are created using packing algorithms (Ya-
maguchi and Itoh, 2003; Wettel and Lanza, 2008;
Scheibel et al., 2018) (Figure 6). Another approach is
the transformation of the treemap layout, e.g. for Gen-
eralized Treemaps (Vliegen et al., 2006). Similarly to
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Figure 4: The four proposed treemap categories, namely Space-filling Treemap, Containment Treemap, Implicit Edge Represen-
tation Tree, and Mapped Tree. Each category includes their predecessors, building a more general category. The dotted line
highlights the observed current border, whether a visualization technique is called a treemap.

space-filling treemaps, containment treemaps allow for
different geometrical shapes as well, e.g., circles (Wet-
zel, 2003; Görtler et al., 2017) and ellipses (Collin
et al., 2007).

TIEImplicit Edge Representation
Tree. When loosening the con-
tainment property and allowing all
types of implicit edge representa-
tions (Schulz et al., 2011a), i.e.,
containment, adjacency, and overlap,
an even broader set of visualization
techniques can be labeled as treemaps. With this set
of characteristics, visualization techniques that were
created using transformations on treemap layouts,
e.g., Cascaded Treemaps (Lü and Fogarty, 2008) and
the BeamTree (van Ham and van Wijk, 2003), can
be considered treemaps as well. In fact, their goal is
to “convey the same containment relationship” (Lü
and Fogarty, 2008) and effectively do so. Applying
the idea of layout postprocessings to one-dimensional
treemap layouts, the results are icicle plots (Kruskal
and Landwehr, 1983), and with additional projection
they can result in sunburst views (Stasko et al., 2000),
and other derived techniques (Webber et al., 2006;
Holten, 2006) (Figure 7). This is valid as implicit edge
representations fulfill the containment property during
layouting as well but the depiction in geometry space
may drop the visual cues for containment (Johnson,
1993).

TMTMapped Tree. While all previ-
ously proposed categories use an
implicit edge representation, there
are tree visualization techniques that
use other relation encoding tech-
niques such as vicinity or explicit
links (Schulz et al., 2013). Most of
them share the invariant of overlap-free spatialization

across node siblings, resulting in an unambiguous bidi-
rectional mapping of the tree-structure to the depiction.
Such a depiction is provided if the underlying tree lay-
out is based on the property of containment, even if
the resulting visualization does not encode the parent-
child relationship using an implicit edge representation.
Exemplary visualization techniques for the Mapped
Tree category include space-optimized trees (Nguyen
and Huang, 2002), contour maps (Kubota et al., 2006),
and point-based tree depictions (Schulz et al., 2011b)
(Figure 8). Assuming a bidirectional mapping of lay-
out algorithms, “[c]ontainment based treemap algo-
rithms [. . . ] form the core of a powerful and extensible
grand unified theory of hierarchical visualization—the
treemap” (Johnson, 1993).

4 DISCUSSION

When we categorize techniques of hierarchy visual-
ization we aim at the most specific category. As an
example, the appropriate category of a CodeCity visu-
alization is a containment treemap TC. Through the
taxonomy’s hyponymous nature, the more general cat-
egories TIE and TMT are valid as well, and so is the
category of general hierarchy visualization techniques
H (Figure 9). However, we want to argue for a more
specific use of terms (Table 1).

The proposed taxonomy is derived from visual fea-
tures of the visualization techniques. Common to all
categories is the property of containment from their
underlying layouts. As alternatives to the focus on vi-
sual features, the categorization could be based on the
initial use of a containment-based layout. This would
render all techniques that are classified as mapped trees
TMT as treemap.

The actual boundary between mapped trees TMT
and general hierarchy visualization techniques H re-
mains to be determined. We argue that only with a
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Figure 5: Examples of treemaps from the category Space-Filling Treemap. Image courtesy from left to right: (Hahn and
Döllner, 2017), (de Berg et al., 2011), (Balzer et al., 2005), (Auber et al., 2013), and (Wattenberg, 2005).
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Figure 6: Examples of treemaps from the category Containment Treemap. Image courtesy from left to right: (Itoh et al., 2004),
(Scheibel et al., 2018), (Wettel and Lanza, 2007), (Wetzel, 2003), and (Slingsby et al., 2010).
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Figure 7: Examples of treemaps from the category Implicit Edge-Representation Treemap. Image courtesy from left to right:
(Stasko et al., 2000), (van Ham and van Wijk, 2003), (Holten, 2006), (Gregg, 2016), and (Steinbrückner and Lewerentz, 2013).
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Figure 8: Examples of treemaps from the category Mapped Tree. Image courtesy from left to right: (Nguyen and Huang, 2002),
(Tee Teoh and Kwan-Liu, 2002), (Andrews and Heidegger, 1998), (Toosi and Nikolov, 2014), and (Nguyen and Huang, 2005).
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Figure 9: Examples of visualization techniques that does not relate to any proposed class and are therefore associated with H .
Image courtesy from left to right: (Kuhn et al., 2010), (Hlawatsch et al., 2014), (Andrews and Heidegger, 1998), (van den
Elzen and van Wijk, 2011), and (Kleiner and Hartigan, 1981), and (Beck et al., 2014).

systematic top-down or bottom-up approach that ad-
heres to the containment metaphor during layouting,
the resulting visualization technique can result in a
treemap. That is, hierarchy visualization techniques
using other approaches may not ensure overlap-free
sibling nodes for the underlying layouts, e.g., Pythago-
ras Trees (Beck et al., 2014). For those techniques,
we observe their categorization as mapped tree TMT as

Table 1: An association of different hierarchy visualization
techniques to the proposed taxonomy. For direct comparison,
this table includes hierarchy visualization techniques H that
are not covered by this taxonomy as well. The • and ◦ dots
denote the most specific category and associated hyperonyms
(more general categories), respectively.

Visualization Technique TS TC TIE TMT H

BeamTree (van Ham and van Wijk, 2003) • ◦ ◦
Bundle View (Holten, 2006) • ◦ ◦
Cactus Tree (Dang and Forbes, 2017) •
CodeCity (Wettel and Lanza, 2008) • ◦ ◦ ◦
Contrast Treemaps (Tu and Shen, 2007) • ◦ ◦ ◦ ◦
Data Jewelry Box (Itoh et al., 2004) • ◦ ◦ ◦
Ellimaps (Collin et al., 2007) • ◦ ◦ ◦ ◦
EvoCells (Scheibel et al., 2018) • ◦ ◦ ◦
Flame Graph (Gregg, 2016) • ◦ ◦
Gosper Map (Auber et al., 2013) • ◦ ◦ ◦ ◦
Icicle Plot (Kruskal and Landwehr, 1983) • ◦ ◦
Information Slices (Andrews and Heidegger, 1998) • ◦
Overlap-free Pythagoras Tree (Munz et al., 2019) • ◦
Pebbles Treemap (Wetzel, 2003) • ◦ ◦ ◦
Pythagoras Tree (Beck et al., 2014) •
Quantum Treemaps (Bederson et al., 2002) • ◦ ◦ ◦
Slice’n’Dice Treemap (Johnson and Shneiderman, 1991) • ◦ ◦ ◦ ◦
Software Cities (Steinbrückner and Lewerentz, 2013) • ◦
Space-Optimized Tree (Nguyen and Huang, 2002) • ◦
Stable Voronoi Treemap (Hahn et al., 2014) • ◦ ◦ ◦ ◦
Sunburst View (Stasko et al., 2000) • ◦ ◦
Tree Drawings (Toosi and Nikolov, 2014) • ◦
Treemaps with Bound Aspect Ratio (de Berg et al., 2011) • ◦ ◦ ◦ ◦
Voronoi Treemap (Balzer et al., 2005) • ◦ ◦ ◦ ◦

soon as they achieve overlap-free sibling nodes (Munz
et al., 2019).

Regarding the mixed use of treemap visualization
with other approaches, this taxonomy is explicitly de-
signed ignorant. As a debatable example, the mixed-
projection treemap could be categorized as either TS or
TIE (Limberger et al., 2017). Another example is the
adjacent usage of treemaps by means of small multi-
ples. It may not inherently render the whole visualiza-
tion a treemap, although the composition could be la-
beled a space-filling treemap TS (Scheibel et al., 2016).
A constrasting example thereto is the CodeSurveyor
visualization that uses an overlap-free distribution of
the uppermost level and, in fact, should be labeled a
containment treemap TC (Hawes et al., 2015).

5 CONCLUSIONS

This paper proposes a taxonomy for treemap visual-
ization techniques, namely Space-filling Treemap TS,
Containment Treemap TC, Implicit Edge Representa-
tion Tree TIE, and Mapped Tree TMT. This is feasible
because all associated techniques adhere to the prop-
erty of containment, either in their visual representa-
tion or in their underlying layout. Furthermore, the
taxonomy should clarify the labeling of visualization
techniques as treemaps and improve communication
on their characteristics, visual metaphors, internally
used algorithms, and interaction techniques.

As future work, the classification of existing hier-
archy visualization techniques by means of the pro-
posed taxonomy should be continued. We suggest
to integrate the conceptual model of these different
classes into hierarchy visualization systems and their
APIs (Scheibel et al., 2019). Right now, we stimu-
late this discussion on a classification of treemaps and,
probably, a broadening of the concept of treemaps and
their role within the field of hierarchy visualization.
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