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ABSTRACT

Image acquisition in low-light conditions suffers from poor quality and significant degradation in visual aesthetics.

This affects the visual perception of the acquired image and the performance of computer vision and image pro-

cessing algorithms applied after acquisition. Especially for videos, the additional temporal domain makes it more

challenging, wherein quality is required to be preserved in a temporally coherent manner. We present a simple yet

effective approach for low-light image and video enhancement. To this end, we introduce Adaptive Chromaticity,

which refers to an adaptive computation of image chromaticity. The above adaptivity avoids the costly step of

low-light image decomposition into illumination and reflectance, employed by many existing techniques. Subse-

quently, we achieve interactive performance, even for high resolution images. Moreover, all stages in our method

consists of only point-based operations and high-pass or low-pass filtering, thereby ensuring that the amount of

temporal incoherence is negligible when applied on a per-frame basis for videos. Our results on standard low-light

image datasets show the efficacy of our method and its qualitative and quantitative superiority over several state-

of-the-art approaches. We perform a user study to demonstrate the preference for our method in comparison to

state-of-the-art approaches for videos captured in the wild.
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1 INTRODUCTION

Due to unavoidable technical or environmental con-

straints, images and videos captured in poor lighting

conditions suffer from severe degradation of visual

quality. On most occasions, it is challenging for such

visual media to be consumed for high-level tasks such

as object detection or tracking due to deterioration or

lack of information. Moreover, poor visual quality

negatively impacts the overall aesthetics, and thus, the

experience of end-users.
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the full citation on the first page. To copy otherwise, or re-
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(a) Input image (b) LIME [17] (c) MBLLEN [34]

(d) Zero-DCE [16] (e) LLVE [57] (f) Ours

Figure 1: Comparison of LLIE results for three image-based

(b to d) and one video-based (e) method. Our method (f) can

brighten image while preserving details and avoiding artifacts

in terms of over-exposedness, noise, and desaturation.

Numerous algorithms have been proposed for Low-

light Image Enhancement (LLIE) (Fig. 1) and a few for

video enhancement as well. A class of methods is based



Table 1: Comparing existing low-light image enhancement techniques in the context of interactivity. Here, the color green

denotes the aspect which is favourable to interactive enhancement while the color red denotes otherwise.

LIME [17] SRIE [31] MBLLEN [34] RetinexNet [49] Zero-DCE [16] LLVE [57] Ours

Provides enhancement editing at inference time? Yes Yes No No No No Yes

Is the performance interactive? No No Yes Yes Yes Yes Yes

on Retinex theory [25] that assumes the image to be a

product of illumination and reflectance. Such Retinex-

based approaches decompose the image into illumina-

tion and/or reflectance components, based on specific

priors. However, finding effective priors is challeng-

ing and inaccuracies can result in artifacts and color

deviations in the enhanced output. Further, the run-

time for such a decomposition, employing a complex

optimization process, is relatively long [32]. In com-

parison, deep-learning-based approaches are faster than

conventional methods and learn the underlying prior

using the given data distribution. However, they tend

to suffer from limited generalization capability. The

above could be due to limited/synthetic training data,

ineffective network structures, or unrealistic assump-

tions [28]. Further, learning based approaches do not

allow interactive editing of enhancement settings dur-

ing test time and requires a complete re-training for this

purpose. Therefore, we aim to develop a practical solu-

tion for LLIE, which adapts to different low-light con-

ditions and also has low computational complexity for

enabling interactive enhancement editing on commod-

ity hardware (Tab. 1).

To achieve the above objective, we develop a method

based on Retinex theory, the basis for various conven-

tional and learning-based techniques. We avoid the

compute-intensive decomposition step and propose an

adaptive way to transition into baseline-reflectance (i.e.,

chromaticity) [4] via parameter tuning. We refer to it as

Adaptive Chromaticity (AC), which forms the basis for

our approach. The adaptive transition into chromaticity

can efficiently increase the output brightness while be-

ing robust against dark (or low-intensity) pixels. More-

over, it prevents amplification of sensor noises, which

are common in low-light images. To further prevent

noise amplification during enhancement, we decom-

pose the input image into coarse and fine attributes,

generally referred to as base and detail components re-

spectively [2]. We generate multiple ACs for the base

layer with varying levels of brightness followed by a

multi-scale fusion step. Different levels of brightness

prevents over/under-exposedness, while multi-scale fu-

sion maintains spatial consistency. The detail layer is

finally added to the result, thus preserving fine image

details.

Unlike images, low-light video enhancement has re-

ceived less attention. Application of image-based meth-

ods to videos on a per-frame basis is usually temporally

incoherent and leads to flickering artifacts. Dark pixels,

significantly contributing to noise amplification, is of-

ten the major source of temporal incoherence. Due to

the ability of our method to robustly handle such pixels,

the degree of incoherence is reduced significantly. Even

the per-frame application of our image-based approach

is superior to an existing video-specific approach. Our

contributions are summarized as follows, we propose:

1. Adaptive Chromaticity (AC) to efficiently increase

image brightness while preventing noise amplifica-

tion.

2. An approach for interactive low-light image en-

hancement based on exposure fusion of multiple

ACs.

3. A per-frame application of our image-based ap-

proach for videos that performs out-of-the-box with-

out introducing significant temporal incoherence.

2 RELATED WORK

Low-Light Enhancement of Images:

One of the earliest algorithms for low-light image en-

hancement is based on Retinex theory. Jobson et al. [23,

22] propose center/surround Retinex at single-scale

and multi-scale to achieve plausible results for dy-

namic range compression and color restoration. Various

follow-up methods employ Retinex theory as their ba-

sis and propose complex optimization strategies to esti-

mate reflectance and/or illumination for the purpose of

low-light image enhancement [48, 14, 15, 17, 5, 31, 60,

13, 59, 41, 18]. Fu et al. [15] propose a weighted varia-

tional model for simultaneous reflectance and illumina-

tion estimation. Guo et al. [17] (LIME) perform refine-

ment of an initial illumination map via a structure prior

to obtain a well constructed illumination map thereby

enabling enhancement. Li et al. [31] (SRIE) employ

a fidelity term for gradients of the reflectance to reveal

the structure details and also estimate a noise map out

of their Retinex model. Ren et al. [41] propose a robust

model to estimate reflectance and illumination maps si-

multaneously, with provision to suppress noise in the

reflectance map. Most of the above techniques have

long run-time involving CPU-based complex optimiza-

tion solving for image decomposition. We also use the

Retinex image-formation model as our premise. How-

ever, unlike existing techniques we do not perform the

decomposition of image into reflectance and/or illumi-

nation layers, thus, achieving interactive performance

on commodity hardware.

Another class of methods for low-light image enhance-

ment is based on Histogram Equalization (HE), wherein



the histogram of the input image is stretched thereby

improving its contrast [38]. Similar to Retinex-based

approaches, various extension to the basic principle

have been proposed [10, 1, 7, 26]. Celik and Tjah-

jadi [7] employ a variational approach for contrast en-

hancement using inter-pixel contextual information.

Lee et al. [26] use a layered difference of 2D his-

tograms and thus achieve better results than previous

HE-based approaches. However, the primary focus of

HE-based methods is contrast enhancement instead of

physically-based illumination editing, thus having the

potential risk of over- and/or under- exposed pixels.

Recently, deep learning has also been used substan-

tially to address the problem of low-light image en-

hancement. Methods based on various learning strate-

gies, such as supervised [33, 34, 49, 6, 40, 61, 51, 63],

semi-supervised [54], unsupervised [16, 21, 27], and

reinforcement learning [56] have been proposed. Lore

et al. [33] present the first deep learning-based method

in this context (LLNet) that employs stacked-sparse de-

noising autoencoder to lighten and denoise low-light

images simultaneously. Lv et al. [34] (MBLLEN) pro-

pose an end-to-end multibranch network for simulta-

neous enhancement and denoising. Wei et al. [49]

(RetinexNet) use Decom-Net for image decomposition

followed by an Enhance-Net for illumination adjust-

ment. The training is unsupervised for both the net-

works while the Enhance-Net also includes a joint de-

noising operation. Ren et al. [40] design an encoder-

decoder network for global image enhancement and a

separate recurrent neural network for further edge en-

hancement. Similar to Ren et al. [40], Zhu et al. [63]

propose a method called EEMEFN, which consists of

two stages: multi-exposure fusion and edge enhance-

ment. Wang et al. [47] propose a network called Deep-

UPE to model image-to-image illumination and col-

lect an expert-retouched dataset. Zhang et al. [61]

propose a network called KinD based on Retinex the-

ory and design a restoration module to counterbalance

noise. Guo et al. [16] (Zero-DCE) estimates a set

of best-fitting light-enhancement curves that iteratively

enhances a given input image. The training is unsuper-

vised and the method is efficient involving simple non-

linear curve mapping. Chen et al. [8] collect a dataset

named SID and train a U-Net [42] to estimate enhanced

sRGB images from raw low-light images. Although

learning-based methods can produce visually plausible

results, they have limited generalization capability in

comparison to conventional methods [28]. Moreover,

unlike ours, most of the learning-based methods do not

allow interactive editing of enhancement at inference

time. For a new enhancement setting one has to re-

train the network. Two methods which are closely re-

lated to our approach are that of Ying et al. [55] and

Zheng et al. [62], both generate multiple images with

different exposures followed by exposure fusion. Ying

et al. employ a complex strategy with multiple steps to

generate the exposure sequence followed by a computa-

tionally expensive optimization solving for fusion. The

exposure sequence generation for Zheng et al. is rela-

tively simpler than above, however, they make use of

deep-learning to further enhance the sequence as an in-

termediate step. In comparison, our exposure sequence

generation is straightforward and does not require any

learning-based post-processing.

Apart from the above, existing techniques when applied

on a per-frame basis, e.g., for videos, usually suffer

from temporal incoherence. We prevent such inconsis-

tency to a large degree by resorting to only point-based

operations and high- or low- pass filtering.

Low-Light Enhancement of Videos:

In comparison to images, low-light video enhancement

has received significantly less attention. One straight-

forward way to do so would be to stabilize a per-

frame based application of low-light image enhance-

ment technique using blind video consistent filtering

approaches [3, 24, 43]. These techniques inherently

make use of vision-based attributes such as optical

flow [3, 24] or saliency masks [43] for temporal stabi-

lization. However, computation of above vision-based

attributes itself can be inaccurate/challenging for low

light videos. Lv et al. [34] propose an extension for

their learning based approach for images by replacing

their 2D convolution layers with 3D ones and train it

on synthetic video data. In order to collect real-world

training data, Chen et al. [9] capture videos for static

scenes with the corresponding long-exposure ground

truths and ensure generalization for dynamic scenes by

using a Siamese network. Jian and Zheng [20] develop

a setup to capture bright and dark dynamic video pairs

and subsequently train it using a modified 3D U-Net.

However, with their sophisticated setup – consisting of

two cameras, a relay lens and a beam splitter – the au-

thors do not capture diverse scenes and objects as part

of training data. Triantafyllidou et al. [45] propose a

low-light video synthesis pipeline (SIDGAN) that maps

“in the wild” videos into a corresponding low-light do-

main. The above approach employs a semi-supervised

dual CycleGAN to produce dynamic video data (RAW-

to-RGB) with intermediate domain mapping. In a re-

cent work, Zhang et al. [57] (LLVE) enforce tempo-

ral stability for low-light video enhancement by pre-

dicting optical flow for a single image and synthesiz-

ing short range video sequences. However, their quality

of enhancement is low in comparison to existing tech-

niques (Sec. 4.4). We do not perform any temporal pro-

cessing specific for videos, however our low-light im-

age enhancement algorithm introduces only negligible

temporal incoherence.



(a) Input image (b) Chromaticity

(c) Intensity Difference y (d) Adaptive Chromaticity

Figure 2: Given an input image (a), the noise in the chromatic-

ity (b) is higher for low-intensity pixels with a larger intensity

difference (c), which is significantly reduced for (d) adaptive

chromaticity (with α = 0.3 and γ = 0.8).

3 METHOD

According to the Retinex model, an image I can be ex-

pressed as the product of a reflectance layer R ∈R3 and

an illumination layer L ∈ R [25]: I(x) = R(x)× L(x),
where the operator × denotes pixel-wise (x) multipli-

cation. For the above equation to hold we assume only

diffuse-reflection in the scene with monochromatic illu-

mination. As a baseline, image “intensity” and “chro-

maticity” can be considered as the illumination and re-

flectance layer, respectively [4]. To compute image in-

tensity one can employ different approaches, such as:

norm or the maximum of the individual color chan-

nels. However, both does not yield desirable results for

our purpose of perceptually plausible editing. To this

end, we consider the luma (Y-channel in YCbCr color

space) as our intensity operator In(·), since this satis-

fies the above objective. Chromaticity is correspond-

ingly obtained by dividing the image with its inten-

sity (Eqn. (1)). The above division operation is able to

significantly reduce shading and shadows in the scene,

which only affects the intensity, thus making the chro-

maticity relatively brighter than the input image. More-

over, it also acts as a normalizing factor for pixel color

and saturates it, further making it appear perceptually

bright. For an input image I with color channels r, g,

and b in sRGB color space using 8-bit per channel (i.e.,

24-bit color depth), we define intensity (following ITU-

R BT.601) by the operator In(·) and chromaticity C as

follows:

In(I) = 0.299r+0.587g+0.144b and C =
I

In(I)
. (1)

The brightening aspect of chromaticity is a preferable

characteristic for low-light image enhancement. How-

ever, chromaticity suffers from undesirable artifacts

in terms of noise and color-shifts, especially for low-

intensity pixels (Fig. 2b).

(a) Input (b) y2 (c) exp(y) (d) tan(y · π

2
)

Figure 3: Our Single-Exposure (SE) output for α = 0.05,

and γ = 0.7 employing different adaptive functions f (y)[=
y2, exp(y), tan(y · π

2 )].

3.1 Adaptive Chromaticity

In order to preserve the brightening effect of chro-

maticity while avoiding artifacts, we introduce Adap-

tive Chromaticity (AC). For identifying a low-intensity

pixel, we compute the difference between pixel inten-

sity, In(·), and the maximum intensity value MaxIn.

For low-intensity pixels, this difference defined as y =
MaxIn− In(·) would be comparatively larger. For ex-

ample, for an intensity image encoded in the range of

0 to 1, MaxIn = 1 and for a low-intensity pixel p with

In(·) = 0.05 the difference y(p) = 0.95 is large. Sim-

ilarly, for a high-intensity pixel q with In(·) = 0.8 the

difference y(q) = 0.2 is small (Fig. 2c). The above

forms the basis for defining adaptive chromaticity (Ac),

wherein we add an adaptive term, as a function of

y, in the denominator while computing chromaticity

(Eqn. (1)). To further increase the brightness and pre-

vent color-shifts, we perform a non-linear scaling using

gamma correction

Ac(I,α,γ) =

(
I

In(I)+α f (y)

)γ

. (2)

Here, f (y) is a function in terms of y, α is a control

parameter, and γ is a parameter for gamma correction.

The adaptive function f (y) should be chosen such that

its value is close to zero when y is small and is sub-

stantially high for large values of y. Thus, by tuning

the control parameter α , we can smoothly transition be-

tween the bright chromaticity (when α→ 0) and a com-

plete dark image (when α → ∞). The intuition behind

the adaptive denominator in Eqn. (2) is that we divide

by a larger value for low-intensity pixels as compared

to high-intensity pixels, thereby, reducing undesirable

artifacts. For adaptivity, a function f should be chosen

that satisfies the above property and is efficient to com-

pute. Among possible variants, y2 and exp(y) produces

desirable results. However, f (y) = tan(y · π

2
) works sig-

nificantly better in terms of noise reduction and also

gives plausible results, see Fig. 3. The AC brightens an

image while significantly reducing chromaticity-related

artifacts (Fig. 2d) and forms the basis for our low-light

image and video enhancement methodology.
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(a) Impact of varying α on the resultant AC.
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(b) Impact of varying γ on the resultant AC.

Figure 4: Changes in the characteristics of resultant Adaptive Chromaticity in terms of intensity, colorfulness and noise while

varying α (Fig. 4a) and γ (Fig. 4b). Intensity is computed using Eqn. (1). Colorfulness represents the perceptual amount of

saturation following [19]. Image noise is calculated using skimage estimate_sigma [11] based on a wavelet-based estimator

[12] of the gaussian noise standard deviation σ . Metrics are computed and averaged over the LIME dataset [17].

Virtual Exposure Sequence (VES)

generated by multiple Adaptive-Chromaticities

Blending Weights

ý�(þ, �ÿ , �ÿ) ý�(þ, �Ā , �Ā) ý�(þ, �ā , �ā)

Exposure Fusion of VES using the method of Mertens et al. [2009]

+

Input ( � )
Detail ( ÿ )

Base ( þ )
Output ( � )Enh. Base ( þĀ )

þ = þ����. ā���. (�)ÿ = � − þ

Figure 5: Flowchart of our low-light image enhancement algorithm. To prevent noise amplification we decompose the input

image into Base and Detail layers. Subsequently, multiple Adaptive Chromaticities (ACs) are generated (Sec. 3.1) for the Base

layer to create a Virtual Exposure Sequence (VES) (Sec. 3.2). Following to that, these images are blended guided by quality

measures of contrast, saturation, and well-exposedness (Sec. 3.2). The above is performed in a multi-resolution fashion, as

proposed by Mertens et al. [35]. Finally, the Detail layer is added to the enhanced Base layer to obtain the final output.

Parameter Analysis:

We analyse the changes in the characteristics of resul-

tant AC in terms of image intensity, colorfulness and

noise while varying the parameters α and γ in Fig. 4.

Decreasing α leads to a quadratic increase in all three

metrics (Fig. 4a). Moreover, note the significant de-

cline in noise for higher values of alpha (> 0.8). On the

other hand, decreasing γ linearly increases noise and

intensity, while at the same time desaturates the image

(Fig. 4b). The desaturating nature of γ plays a counter-

balancing role to the effect of α in terms of colorful-

ness thereby preventing color-shifts. It is thus evident,

that both α and γ needs to be adjusted to brighten the

image while retaining the original saturation level, and

also highlights that denoising is an essential require-

ment during low-light enhancement.

3.2 Our Approach for LLIE

To further reduce noise amplification during enhance-

ment, we decompose the input image into Base (B) and

Detail (D) components [2], and only enhance Base, as

depicted in our full LLIE-algorithm flowchart in Fig. 5.

We assume that most of the noise due to low-light con-

ditions is captured in the high-frequency Detail layer.

Thus, enhancing only Base layer will lead to negligible

noise amplification. For base-detail decomposition we

make use of Bilateral Filter [44], however, in principle,

one can use any edge-preserving filter for this purpose.

We use

B = BilatFilt(I, σs, σt) D = I−B (3)

where σs = 1.0 (spatial width) and σt = 0.5 (tonal

range) works fine with most images (or video-frames).

Following the above decomposition, the Base layer

is enhanced via AC using a single-exposure (SE) or

multiple-exposure (ME) setting. In either case, subse-

quently the Detail layer is added to the enhanced Base

to obtain the final result (Fig. 6). For single-exposure, a

single AC of base layer is assigned as its enhanced ver-

sion (Fig. 6e). Multi-exposure enhancement involves

computing multiple ACs of the base layer and is pro-

posed as a two-step process consisting of Virtual Expo-

sure Sequence (VES) generation and fusion.

VES Generation:

The overall exposedness of an image is increased by

lowering α and/or γ values in Eqn. (2). However, the

brightening effect of either of these parameters α or γ

is slightly different. For lower values of α , increase

in brightness comes at the cost of color-shifts (Fig. 7a,

Fig. 7d). On the other hand, for lower γ values, an



(a) Input image (b) Chromaticity (c) Base (d) Detail (e) Single Exp. (SE) (f) Multi Exp. (ME)

Figure 6: For a low-light image (a) the corresponding chromaticity (b) has artifacts in terms of color-shifts and noise. To

overcome noise amplification, we decompose the image into Base (c) and Detail (d) layers using a bilateral filter (σs = 1.0,σt =
0.5). Further, chromaticity-based artifacts are reduced by employing Adaptive Chromaticity (AC) and for the single-exposure

approach, an enhanced image is obtained as the sum of AC (α = 0.1,γ = 0.8) of Base layer and Detail layer (e). To further

preserve details during enhancement, we use a multi-exposure fusion technique (3 exposure levels – α1 = 0.03,α2 = 0.1,α3 =
2.0 and γ1 = 0.7,γ2 = 0.8,γ3 = 0.5 – and 4 pyramid levels) to obtain a high-quality output (f).

increase in brightness is accompanied with desatura-

tion (Figs. 7d to 7f). For both α and γ , lower values

leads to increase in noise (Fig. 7d) (see Sec. 3.1). In-

creasing the exposedness by tuning either α or γ is a

point-based operation and does not respect the relative

contrast within the image. The above leads to the prob-

lem, wherein already visible regions in the low-light

image are over-exposed while increasing the bright-

ness. It is similar to challenges in High Dynamic Range

(HDR) photography, which aims to preserve all the de-

tails within an HDR scene.

We do not assume an HDR version of the image at

our disposal, however we can generate different lev-

els of brightness by varying the values of α and γ re-

spectively. Thus, we generate a virtual exposure se-

quence for the given base layer by computing multi-

ple ACs. For the base layer B, an exposure sequence

{Ek| k = 1 . . .N} is obtained based on the parameter se-

ries {(αk,γk) |k = 1 . . .N}, with

Ek = Ac(B,αk,γk). (4)

Subsequently, an HDR image can be generated using

the above sequence of images and further tone-mapping

can preserve details in both bright and dark regions

while enhancing it [39].

VES Fusion:

For efficiency, we avoid the step of computing an HDR

image, and directly fuse the multiple exposures into

a high-quality, low dynamic range image using the

exposure-fusion technique of Mertens et al. [35]. The

well-exposedness of an image in the exposure sequence

is determined based on quality measures of contrast

(ck), saturation (sk), and well-exposedness (ek) on a per-

pixel basis.The three quality measures are combined

into a joint weighting function

wk = ck
υc · sk

υs · ek
υe , (5)

where the above product can be seen as logical con-

junction and the parameters υc, υs, and υe control the

(a) γ = 1.0,α = 0.1 (b) γ = 1.0,α = 0.5 (c) γ = 1.0,α = 0.9

(d) γ = 0.5,α = 0.1 (e) γ = 0.5,α = 0.5 (f) γ = 0.5,α = 0.9

Figure 7: Virtual Exposure Sequence (VES) for the input im-

age in Fig. 2: as a sequence of ACs generated by varying

values of α and γ .

influence of individual quality measures. Finally, the

obtained sequence of weight maps are normalized such

that they sum up to one at each pixel location, thereby

ensuring consistent results, as follows:

ŵk =
wk

∑
N
k=1 wk

. (6)

Once the weight maps are computed, a Laplacian pyra-

mid L(Ek) of each image and a Gaussian pyramid of

each normalized weight map G(ŵk) are generated. At

each pyramid level l, the images are fused on per-pixel

and per-color channel basis as

L(BE)l =
N

∑
k=1

G(ŵk)lL(Ek)l . (7)

The enhanced base layer, BE , is obtained by collapsing

the computed Laplacian pyramid L(BE). Following the

above, we sum the detail layer (D) and the enhanced

base layer (BE ) to obtain the final output O where,

O = BE +ηD, (8)

and η > 1 is used to amplify the details in the final

output [37]. However, large values of η (> 4.0) leads

to halo-artifacts and unnatural looks. For most images



η = 2.0 gives visually plausible results. Note that the

operations defined in Eqn. (1) till Eqn. (8) are all point-

based where we have omitted the pixel-location x for

the sake of clarity. All the steps in our method are effi-

ciently summarized in Algo. 1.

4 RESULTS

4.1 Parameter Settings

The enhancement of the base layer for our Multi-

Exposure (ME) version consists of two steps, for which

the parameter settings are discussed as follows.

VES Generation:

Ideally, to capture fine details at different exposure lev-

els, multiple images are required for the exposure se-

quence. However, the processing time will increase ac-

cording to the number of images. Empirically, we de-

termine three exposure levels (N = 3) as sufficient to

preserve details at different levels of brightness. Fur-

ther, we empirically determine γ ∈ [0.6,1.0] and α ∈
[0.01,3.0] to result in well-exposed and less-noisy out-

puts. For most of the images, γ1 = 0.7,α1 = 0.03

(high-exposure level), γ2 = 0.8,α2 = 0.1 (mid-exposure

level), and γ3 = 0.5,α3 = 2.0 (low-exposure level) yield

desirable results. For all the results in the paper, unless

stated otherwise, we use the above parameter settings.

VES Fusion:

For exposure fusion, we set the weighting exponents for

the quality measures to υc = υs = υe = 1, as suggested

by Mertens et al. [35]. During fusion, higher number of

pyramid-levels facilitate the preservation of fine details.

However, processing time increases with the number of

levels, which is more pronounced for high-resolution

images. Empirically, we determine four pyramid levels

(M = 4) as a good trade-off between performance and

quality.

4.2 Qualitative and Quantitative Results

We compare our results with state-of-the-art image-

based methods: two conventional methods (SRIE [31]

and LIME [17]), two supervised-learning based

methods (MBBLEN [34] and RetinexNet [49]), a

unsupervised-learning based method (Zero-DCE [16]),

and a video-based method (LLVE [57]). The results are

produced from publicly available source codes with re-

spective parameter settings.

Images:

We test the above methods on images taken from the

following datasets: LIME [17] (10 images), DICM [26]

(44 images), NPE [48] (72 images), and VV [46] (24

images). For quantitative evaluation, we employ the

Natural Image Quality Evaluator (NIQE) [36] metric to

compare the performance of different methods on the

above datasets. We choose this metric, as it is pro-

vides a completely blind quality measure for images

and is based on only deviations from statistical reg-

ularities in natural images. Tab. 2 shows that over-

all we perform better than compared approaches ex-

cept for Zero-DCE. We present qualitative compari-

son for enhanced image outputs in Fig. 8. The re-

sults of LIME(Fig. 8(b)) tends to be over-exposed,

MBLLEN provides satisfactory brightening (Fig. 8(d))

however tends to over-smooth image details, the out-

put of RetinexNet (Fig. 8(e)) seems to look unnatu-

ral, and for LLVE the results (Fig. 8(g)) appear to be

hazy and desaturated. Our results are visually com-

parable to Zero-DCE and SRIE. However, in contrast

to Zero-DCE, which requires a re-training of the com-

plete network for a different degree of enhancement,

our approach allows for interactive enhancement ma-

nipulation. Further, the slow optimization solving in

SRIE makes it orders of magnitude slower than our ap-

proach Tab. 3. Moreover, the outcome of our user study,

which includes a broad range of images (Fig. 9), indi-

cates that overall our method is preferred over them.

For subjective evaluation of our method in the context

of images, we perform a user study similar to Zhang

et al. [57] comparing different techniques. We em-

ploy 9 different images (2 from LIME [17], 2 from

DICM [26], 2 from NPE [48], and 3 from VV [46]

datasets respectively) and compare 6 other techniques

(5 image-based and 1 video-based) against our method.

Thereby constituting 54 blind A/B tests which are pre-

sented in a random fashion to each participant. In total,

13 persons (7 female and 6 male) within the ages of 22

to 38 years participated in the study. We asked the par-

ticipants to focus on the following aspects during com-

parison:

Exposure: As compared to the input, the enhanced im-

age should be well-exposed, neither under- nor over-

exposed.

Noise (and flickering): The enhanced image should

have less noise (and flickering – in case of videos).

However, the denoising should not be excessive as

to remove details.

Color: The colors in the enhanced image should ap-

pear natural and it should not look over- or under-

saturated.

For every low-light image, the participant is shown two

enhanced versions of the image simultaneously (one of

them is ours) and is asked to pick the version of their

choice based on the above criteria. For the majority of



(a) Input (b) LIME [17] (c) SRIE [31] (d) MBLLEN [34] (e) RetinexNet [49] (f) Zero-DCE [16] (g) LLVE [57] (h) Ours

Figure 8: Low-light image enhancement results. Input images are taken from LIME [17], DICM [26], and VV [46] datasets.

Table 2: NIQE [36] (↓) values for images in LIME [17],

DICM [26], NPE [48], and VV datasets. The best value is

shown in red and the next best in blue.

Method DICM LIME NPE VV Avg.

LIME 2.99 3.67 3.02 2.99 3.05

SRIE 3.27 4.29 3.45 3.25 3.42

MBLLEN 3.16 3.69 3.15 3.31 3.21

RetinexNet 3.59 3.63 3.62 2.62 3.45

LLVE 3.10 3.65 2.98 2.86 3.04

Zero-DCE 2.48 3.10 2.92 2.87 2.79

Ours 2.84 3.22 3.00 2.66 2.92

cases participants prefer our method against the existing

approaches, see Fig. 9.

Videos:

To evaluate video-enhancement results, we perform a

subjective user study similar to that of images explained

in the previous paragraph. As test data, we make use of

the challenging low-light videos provided by Li et al. in

their survey LLIV [28]. In total, 13 persons (3 female,

and 10 male) within the ages of 19 to 42 years partic-

ipated in the study. Note that the above group of par-

ticipants did not participate in the images-based user

study to avoid any inherent bias between both the stud-

ies. The experiment consisted of 7 different low-light

videos enhanced by ours and 6 other (5 image-based

and 1 video-based) approaches. Two enhanced videos

are shown to a participant simultaneously (one of them

is ours), thereby constituting 42 blind A/B tests which

are shown in a randomized order to each participant.

Fig. 10 shows that our method surpasses all other meth-

ods including LLVE by a large margin.
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Figure 9: Statistics of user study results on low-light image

enhancement. For 13 participants and 9 different images, we

compare each existing method against ours through a total of

117 randomized A/B tests.

4.3 Face Detection in the Dark

We investigate the performance of low-light enhance-

ment methods for increasing the face-detection accu-

racy on low-light images. Specifically, following the

settings presented in Li et al. [28], we use 500 randomly

sampled images from the DARK FACE dataset [53]

to measure performance of the state-of-the-art Dual

Shot Face Detector (DSFD) [30] trained on the WIDER

FACE dataset [52]. We use the author’s DSFD im-

plementation [29] with a non-maximum suppression

threshold of 0.3 and evaluate using the dark face UG2

challenge evaluation tool [50]. Fig. 11 depicts the

precision-recall curves as well as average precision

(AP) under a 0.5 IoU threshold. The results show that

all low-light enhancement methods achieve a substan-

tial improvement in precision and recall over the un-

processed images (baseline result). For our method,

the ME setting does not increase detection rates sig-

nificantly. Moreover, we observe that shifting faces

into a brightness and contrast range that the classifier



71

76

55

85

87

91

14

11

28

1

1

0

6

4

8

5

3

0

0 10 20 30 40 50 60 70 80 90

SRIE

LIME

MBLLEN

RetinexNet

Zero-DCE

LLVE

Ours Others Can't decide

Figure 10: Statistics of the user study results on low-light

video enhancement. For 13 participants and 7 different videos

from LLIV [28] dataset, we compare each existing method

against ours through a total of 91 randomized A/B tests.
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Figure 11: Precision-recall curves for face detection using

DSFD [30] on dark-face images [53] enhanced using differ-

ent LLIE methods. Average precision (AP) of each method

is indicated in the legend, where "unprocessed" denotes the

baseline AP on images in [53]. Our method uses adaptive

chromaticity (AC) without exposure fusion, we compare two

variants for f (y), namely f (y) = y2 with α = 0.25,γ = 0.6
and f (y) = tan(y π

2 ) with α = 0.25,γ = 0.3.

has been trained on is crucial for accuracy improve-

ment irrespective of overall image aesthetics. Thus we

employ only Adaptive Chromaticity (AC) for this pur-

pose. We investigate the performance of Ac (Eqn. (2))

for two different versions of f (y), and find that while

f (y) = tan(y π

2
) achieves visually more pleasing results,

f (y) = y2 outperforms all other LLIE methods on face

detection. Overall our results show that AC adjust-

ment is a simple and efficient pre-processing method for

boosting detection accuracy on low-light images which

outperforms more sophisticated techniques.

4.4 Run-time Performance Evaluation

All our experiments were performed on an consumer

PC using Microsoft Windows 10 as operating system,

with a 2.2 GHz (Intel i7) CPU, 16 GB of RAM, and a

Nvidia GTX 1050 Ti graphics card with 4 GB VRAM.

Our full algorithm, implemented with C++ and CUDA

(v10.0), runs at real-time for VGA resolution images

(Tab. 3) and at interactive frame rates on HD and FHD

resolution images. Unlike ours, most of the existing

Table 3: Run-time performance of various methods in mil-

liseconds. The top three run-time performance values for each

resolution are shown in red, blue, and brown colors respec-

tively. Note, that all learning-based methods except LIME

and SRIE make use of the GPU. We were not able to run

certain methods at higher resolutions due to Out-of-Memory

(OOM) exceptions.

Method
VGA

640×480

HD

1280×720

FHD

1920×1080

QHD

2560×1440

LIME 580 1940 6450 10180

SRIE 11820 49830 OOM OOM

MBLLEN 430 1300 3010 OOM

RetinexNet 1030 3710 7590 17540

LLVE 110 310 700 OOM

Zero-DCE 4.69 11.77 25.75 OOM

Ours SE 4.87 12.91 28.59 49.49

Ours ME 59.58 180 410 740

techniques are either not able to handle QHD resolu-

tion or are significantly slower for the given hardware

configuration. Excluding the SE setting, our ME ver-

sion performs better than all the other methods except

Zero-DCE [16]. While AC forms the basis of our ap-

proach, more than 90% of the processing time is spent

on multi-pyramid based exposure fusion. For the SE

setting, the result obtained has artifacts in the form of

over-exposedness and color-shifts, however, provides

a reasonable approximation for the enhanced image.

Thus, the SE version, our fast variant, can potentially

serve as a preview of the enhanced output and allow for

further interactive parameter editing.

5 DISCUSSION

Most of the existing methods, including ours, face three

major challenges for LLIE. First is the trade-off be-

tween under- and over-exposedness. In order to expose

the low-lit regions within an image, one might over-

expose existing well-exposed parts. We approached

the above to a large extent via adaptive computation

of chromaticity and further by making use of an expo-

sure sequence and multi-pyramid based blending. As a

generic approach, one can compute the degree of expo-

sure for different image regions, as an exposure mask,

in a pre-processing step and use it for further process-

ing. Second is the introduction and amplification of

noise while enhancing images. To prevent the above,

we first decompose the image into base and detail lay-

ers. However, a more sophisticated denoising scheme

specifically tailored for low-light noise might perform

better for this purpose. Thirdly, the enhancement pro-

cess can result in changes in perceived color. In our

approach, such changes are limited due to the counter-

balancing effect of α and γ on the perceived colorful-

ness.



(a) Input (b) Ours (c) Ours + Denoising (d) MBLLEN (e) SRIE

Figure 12: Our result can further be improved by a post-processing denoising operation. Here, we compare our denoised-output

(denoising done using FFDNET [58]) with that of MBLLEN [34] and SRIE [31].

Limitations: In order to tackle the issue of noise most

of the existing techniques either employ denoising pri-

ors in their objective formulation [31], perform denois-

ing as a post-processing operation [17], or introduce

synthetic noise during training [34, 57]. We do not in-

clude any explicit denoising step in our methodology

and still perform better both qualitatively and quantita-

tively. However, among the possible challenges in low-

light image enhancement we are less effective in terms

of noise-removal. The above is reflected to a certain

degree during the user study where we observed that

on certain occasions participants preferred the method

of Lv et al. [34] and Li et al. [31] due to their less-

noisy results. We conjecture that this preference can

be shifted in our favor by performing a post-processing

denoising operation. Note, that our denoised output in

Fig. 12c has better quality and does not suffer from ar-

tifacts such as over-exposure (as in Fig. 12d) or color-

shifts (as in Fig. 12e).

6 CONCLUSIONS & FUTURE WORK

This paper presents a simple yet effective technique to

enhance low-light images and videos. The key to our

approach is Adaptive Chromaticity that allows to ef-

ficiently increase the image brightness. Our SE ver-

sion runs at real-time frame rates and can be used for

a fast enhancement preview. To further improve results,

we generate a virtual exposure sequence by computing

multiple adaptive chromaticities for the base layer fol-

lowed by a multi-pyramid based fusion. Our ME ver-

sion runs at interactive frame rates, even for high res-

olution images. Experimental results validate the ad-

vancement of our approach in comparison to various

state-of-the-art alternatives. For the above, we perform

both quantitative and qualitative evaluation including

subjective user studies. As part of future work we plan

to include a denoising step in our algorithm and poten-

tially use the multi-scale nature of exposure-fusion for

this purpose. For videos, we plan to use the neighbor-

ing frames to improve the denoising as well as enhance-

ment quality.
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Algorithm 1: Our Low-light Image Enhancement

Algorithm

Input: Input image I, Bilateral Filter parametrs

σs, σt , Adaptivity parameters α1, . . . ,αN ,

Gamma correction parameters γ1, . . . ,γN ,

Exposure fusion parameters σ ,υc,υs,υe,

Exposure levels – N, Pyramid levels – M,

Additive parameter η

Output: Enhanced output image O

1 B← BilateralFilter(I,σs,σt) // Base

Layer

2 D← I−B // Detail Layer

3 wtSum← 0

4 for k ≤ 1 to N do

5 Ek← Ac(B,αk,γk) // Generate exposure

series

6 wk← ComputeWeights(Ek,σ ,υc,υs,υe)

// Eq. 5

7 wtSum← wtSum+wk

8 outerSum← 0

9 for k ≤ 1 to N do

10 innerSum← 0

11 ŵk← wk/wtSum

12 tmp1← Ek

13 G(ŵk)l ← ŵk

14 for l ≤ 1 to M do

15 tmp2←
GaussianFilter(tmp1, σ = l)

// "l" is the Gaussian Filter

kernel width

16 L(Ek)l ← tmp1− tmp2 // Laplacian

pyramid of Base exposure levels

17 G(ŵk)l ←
GaussianFilter(G(ŵk)l , σ = l)

18 innerSum← innerSum+G(ŵk)l ·L(Ek)l

19 tmp1← tmp2

20 innerSum← innerSum+G(ŵk)l · tmp2

21 outerSum← outerSum+ innerSum

22 BE ← outerSum // Enhanced Base Layer

23 O← BE +ηD // Enhanced Output Image



(BMBF) through grants 01IS18092 (“mdViPro”) and

01IS19006 (“KI-LAB-ITSE”) and the Research School

on “Service-Oriented Systems Engineering” of the

Hasso Plattner Institute.

REFERENCES

[1] M. Abdullah-Al-Wadud et al. “A Dynamic His-

togram Equalization for Image Contrast En-

hancement”. In: IEEE Transactions on Con-

sumer Electronics 53.2 (2007), pp. 593–600.

DOI: 10.1109/TCE.2007.381734.

[2] Soonmin Bae, Sylvain Paris, and Frédo Durand.

“Two-Scale Tone Management for Photographic

Look”. In: ACM SIGGRAPH 2006 Papers. SIG-

GRAPH ’06. 2006, pp. 637–645. DOI: 10 .

1145/1179352.1141935.

[3] Nicolas Bonneel et al. “Blind Video Tempo-

ral Consistency”. In: ACM Trans. Graph. 34.6

(2015). ISSN: 0730-0301. DOI: 10 . 1145 /

2816795.2818107.

[4] Nicolas Bonneel et al. “Intrinsic Decompositions

for Image Editing”. In: Computer Graphics Fo-

rum 36.2 (May 2017), pp. 593–609. ISSN: 0167-

7055. DOI: 10.1111/cgf.13149.

[5] Bolun Cai et al. “A Joint Intrinsic-Extrinsic Prior

Model for Retinex”. In: 2017 IEEE International

Conference on Computer Vision (ICCV). 2017,

pp. 4020–4029. DOI: 10.1109/ICCV.2017.

431.

[6] Jianrui Cai, Shuhang Gu, and Lei Zhang. “Learn-

ing a Deep Single Image Contrast Enhancer from

Multi-Exposure Images”. In: IEEE Transactions

on Image Processing 27.4 (2018), pp. 2049–

2062. DOI: 10.1109/TIP.2018.2794218.

[7] Turgay Celik and Tardi Tjahjadi. “Contex-

tual and Variational Contrast Enhancement”. In:

IEEE Transactions on Image Processing 20.12

(2011), pp. 3431–3441. DOI: 10.1109/TIP.

2011.2157513.

[8] Chen Chen et al. “Learning to See in the Dark”.

In: 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition. 2018, pp. 3291–

3300. DOI: 10.1109/CVPR.2018.00347.

[9] Chen Chen et al. “Seeing Motion in the Dark”.

In: 2019 IEEE/CVF International Conference on

Computer Vision (ICCV). 2019, pp. 3184–3193.

DOI: 10.1109/ICCV.2019.00328.

[10] H.D. Cheng and X.J. Shi. “A simple and ef-

fective histogram equalization approach to im-

age enhancement”. In: Digital Signal Process-

ing 14.2 (2004), pp. 158–170. ISSN: 1051-2004.

DOI: https://doi.org/10.1016/j.

dsp.2003.07.002.

[11] skimage v0.19.0 docs. estimate_sigma. 2022.

URL: https : / / scikit - image .

org / docs / stable / api / skimage .

restoration . html # skimage .

restoration.estimate_sigma (visited

on 01/27/2022).

[12] David L Donoho and Iain M Johnstone. “Ideal

spatial adaptation by wavelet shrinkage”. In:

Biometrika 81.3 (1994), pp. 425–455. ISSN:

0006-3444. DOI: 10.1093/biomet/81.3.

425.

[13] Gang Fu, Lian Duan, and Chunxia Xiao. “A Hy-

brid L2 -Lp Variational Model For Single Low-

Light Image Enhancement With Bright Channel

Prior”. In: 2019 IEEE International Conference

on Image Processing (ICIP). 2019, pp. 1925–

1929. DOI: 10 . 1109 / ICIP . 2019 .

8803197.

[14] Xueyang Fu et al. “A Probabilistic Method for

Image Enhancement With Simultaneous Illumi-

nation and Reflectance Estimation”. In: IEEE

Transactions on Image Processing 24.12 (2015),

pp. 4965–4977. DOI: 10.1109/TIP.2015.

2474701.

[15] Xueyang Fu et al. “A Weighted Variational

Model for Simultaneous Reflectance and Illu-

mination Estimation”. In: 2016 IEEE Confer-

ence on Computer Vision and Pattern Recogni-

tion (CVPR). 2016, pp. 2782–2790. DOI: 10.

1109/CVPR.2016.304.

[16] Chunle Guo et al. “Zero-DCE: Zero-Reference

Deep Curve Estimation for Low-Light Image

Enhancement”. In: 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition

(CVPR). 2020, pp. 1777–1786. DOI: 10.1109/

CVPR42600.2020.00185.

[17] Xiaojie Guo, Yu Li, and Haibin Ling. “LIME:

Low-Light Image Enhancement via Illumination

Map Estimation”. In: IEEE Transactions on Im-

age Processing 26.2 (2017), pp. 982–993. DOI:

10.1109/TIP.2016.2639450.

[18] Shijie Hao et al. “Low-Light Image Enhance-

ment With Semi-Decoupled Decomposition”. In:

IEEE Transactions on Multimedia 22.12 (2020),

pp. 3025–3038. DOI: 10.1109/TMM.2020.

2969790.

[19] David Hasler and Sabine E. Suesstrunk. “Mea-

suring colorfulness in natural images”. In:

Human Vision and Electronic Imaging VIII.

Vol. 5007. International Society for Optics and

Photonics. 2003, pp. 87 –95. DOI: 10.1117/

12.477378.

https://doi.org/10.1109/TCE.2007.381734
https://doi.org/10.1145/1179352.1141935
https://doi.org/10.1145/1179352.1141935
https://doi.org/10.1145/2816795.2818107
https://doi.org/10.1145/2816795.2818107
https://doi.org/10.1111/cgf.13149
https://doi.org/10.1109/ICCV.2017.431
https://doi.org/10.1109/ICCV.2017.431
https://doi.org/10.1109/TIP.2018.2794218
https://doi.org/10.1109/TIP.2011.2157513
https://doi.org/10.1109/TIP.2011.2157513
https://doi.org/10.1109/CVPR.2018.00347
https://doi.org/10.1109/ICCV.2019.00328
https://doi.org/https://doi.org/10.1016/j.dsp.2003.07.002
https://doi.org/https://doi.org/10.1016/j.dsp.2003.07.002
https://scikit-image.org/docs/stable/api/skimage.restoration.html#skimage.restoration.estimate_sigma
https://scikit-image.org/docs/stable/api/skimage.restoration.html#skimage.restoration.estimate_sigma
https://scikit-image.org/docs/stable/api/skimage.restoration.html#skimage.restoration.estimate_sigma
https://scikit-image.org/docs/stable/api/skimage.restoration.html#skimage.restoration.estimate_sigma
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1109/ICIP.2019.8803197
https://doi.org/10.1109/ICIP.2019.8803197
https://doi.org/10.1109/TIP.2015.2474701
https://doi.org/10.1109/TIP.2015.2474701
https://doi.org/10.1109/CVPR.2016.304
https://doi.org/10.1109/CVPR.2016.304
https://doi.org/10.1109/CVPR42600.2020.00185
https://doi.org/10.1109/CVPR42600.2020.00185
https://doi.org/10.1109/TIP.2016.2639450
https://doi.org/10.1109/TMM.2020.2969790
https://doi.org/10.1109/TMM.2020.2969790
https://doi.org/10.1117/12.477378
https://doi.org/10.1117/12.477378


[20] Haiyang Jiang and Yinqiang Zheng. “Learning

to See Moving Objects in the Dark”. In: 2019

IEEE/CVF International Conference on Com-

puter Vision (ICCV). 2019, pp. 7323–7332. DOI:

10.1109/ICCV.2019.00742.

[21] Yifan Jiang et al. “EnlightenGAN: Deep

Light Enhancement Without Paired Supervi-

sion”. In: IEEE Trans. Image Process. 30 (2021),

pp. 2340–2349. DOI: 10.1109/TIP.2021.

3051462.

[22] D.J. Jobson, Z. Rahman, and G.A. Woodell.

“A multiscale retinex for bridging the gap be-

tween color images and the human observation

of scenes”. In: IEEE Transactions on Image Pro-

cessing 6.7 (1997), pp. 965–976. DOI: 10 .

1109/83.597272.

[23] D.J. Jobson, Z. Rahman, and G.A. Wood-

ell. “Properties and performance of a cen-

ter/surround retinex”. In: IEEE Transactions on

Image Processing 6.3 (1997), pp. 451–462. DOI:

10.1109/83.557356.

[24] Wei-Sheng Lai et al. “Learning Blind Video

Temporal Consistency”. In: Computer Vision –

ECCV 2018. Ed. by Vittorio Ferrari et al. 2018,

pp. 179–195. DOI: 10.1007/978-3-030-

01267-0_11.

[25] Edwin H Land and John J McCann. “Lightness

and retinex theory”. In: Journal of the Optical

Society of America 61.1 (1971), pp. 1–11. DOI:

10.1364/JOSA.61.000001.

[26] Chulwoo Lee, Chul Lee, and Chang-Su Kim.

“Contrast Enhancement Based on Layered Dif-

ference Representation of 2D Histograms”. In:

IEEE Transactions on Image Processing 22.12

(2013), pp. 5372–5384. DOI: 10.1109/TIP.

2013.2284059.

[27] Hunsang Lee, Kwanghoon Sohn, and Dongbo

Min. “Unsupervised Low-Light Image Enhance-

ment Using Bright Channel Prior”. In: IEEE Sig-

nal Processing Letters 27 (2020), pp. 251–255.

DOI: 10.1109/LSP.2020.2965824.

[28] Chongyi Li et al. “Low-Light Image and Video

Enhancement Using Deep Learning: A Survey”.

In: IEEE Transactions on Pattern Analysis and

Machine Intelligence (2021), pp. 1–1. DOI: 10.

1109/TPAMI.2021.3126387.

[29] Jian Li and Yabiao Wang.

Tencent/FaceDetection-DSFD. 2019. URL:

https : / / github . com / Tencent /

FaceDetection-DSFD.

[30] Jian Li et al. “DSFD: dual shot face detector”.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2019,

pp. 5060–5069. DOI: 10.1109/CVPR.2019.

00520.

[31] Mading Li et al. “SRIE: Structure-Revealing

Low-Light Image Enhancement Via Robust

Retinex Model”. In: IEEE Transactions on Im-

age Processing 27.6 (2018), pp. 2828–2841.

DOI: 10.1109/TIP.2018.2810539.

[32] Jiaying Liu et al. “Benchmarking Low-Light

Image Enhancement and Beyond”. In: Interna-

tional Journal of Computer Vision 129.4 (2021),

pp. 1153–1184. ISSN: 1573-1405. DOI: 10 .

1007/s11263-020-01418-8.

[33] Kin Gwn Lore, Adedotun Akintayo, and Soumik

Sarkar. “LLNet: A deep autoencoder approach to

natural low-light image enhancement”. In: Pat-

tern Recognition 61 (2017), pp. 650–662. ISSN:

0031-3203. DOI: https://doi.org/10.

1016/j.patcog.2016.06.008.

[34] Feifan Lv et al. “MBLLEN: Low-Light Im-

age/Video Enhancement Using CNNs”. In:

British Machine Vision Conference 2018, BMVC

2018, Newcastle, UK, September 3-6, 2018.

BMVA Press, 2018, p. 220. URL: http ://

bmvc2018 . org / contents / papers /

0700.pdf.

[35] T. Mertens, J. Kautz, and F. Van Reeth. “Expo-

sure Fusion: A Simple and Practical Alternative

to High Dynamic Range Photography”. In: Com-

puter Graphics Forum 28.1 (2009), pp. 161–171.

DOI: https://doi.org/10.1111/j.

1467-8659.2008.01171.x.

[36] Anish Mittal, Rajiv Soundararajan, and Alan

C. Bovik. “Making a Completely Blind Image

Quality Analyzer”. In: IEEE Signal Processing

Letters 20.3 (2013), pp. 209–212. DOI: 10 .

1109/LSP.2012.2227726.

[37] Franck Neycenssac. “Contrast Enhancement Us-

ing the Laplacian-of-a-Gaussian Filter”. In:

CVGIP: Graph. Models Image Process. 55.6

(1993), pp. 447–463. DOI: 10.1006/cgip.

1993.1034.

[38] Stephen M. Pizer et al. “Adaptive histogram

equalization and its variations”. In: Computer

Vision, Graphics, and Image Processing 39.3

(1987), pp. 355–368. ISSN: 0734-189X. DOI:

https://doi.org/10.1016/S0734-

189X(87)80186-X.

[39] Erik Reinhard et al. High dynamic range imag-

ing: acquisition, display, and image-based light-

ing. Morgan Kaufmann, 2010.

https://doi.org/10.1109/ICCV.2019.00742
https://doi.org/10.1109/TIP.2021.3051462
https://doi.org/10.1109/TIP.2021.3051462
https://doi.org/10.1109/83.597272
https://doi.org/10.1109/83.597272
https://doi.org/10.1109/83.557356
https://doi.org/10.1007/978-3-030-01267-0_11
https://doi.org/10.1007/978-3-030-01267-0_11
https://doi.org/10.1364/JOSA.61.000001
https://doi.org/10.1109/TIP.2013.2284059
https://doi.org/10.1109/TIP.2013.2284059
https://doi.org/10.1109/LSP.2020.2965824
https://doi.org/10.1109/TPAMI.2021.3126387
https://doi.org/10.1109/TPAMI.2021.3126387
https://github.com/Tencent/FaceDetection-DSFD
https://github.com/Tencent/FaceDetection-DSFD
https://doi.org/10.1109/CVPR.2019.00520
https://doi.org/10.1109/CVPR.2019.00520
https://doi.org/10.1109/TIP.2018.2810539
https://doi.org/10.1007/s11263-020-01418-8
https://doi.org/10.1007/s11263-020-01418-8
https://doi.org/https://doi.org/10.1016/j.patcog.2016.06.008
https://doi.org/https://doi.org/10.1016/j.patcog.2016.06.008
http://bmvc2018.org/contents/papers/0700.pdf
http://bmvc2018.org/contents/papers/0700.pdf
http://bmvc2018.org/contents/papers/0700.pdf
https://doi.org/https://doi.org/10.1111/j.1467-8659.2008.01171.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2008.01171.x
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1109/LSP.2012.2227726
https://doi.org/10.1006/cgip.1993.1034
https://doi.org/10.1006/cgip.1993.1034
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/https://doi.org/10.1016/S0734-189X(87)80186-X


[40] Wenqi Ren et al. “Low-Light Image Enhance-

ment via a Deep Hybrid Network”. In: IEEE

Transactions on Image Processing 28.9 (2019),

pp. 4364–4375. DOI: 10.1109/TIP.2019.

2910412.

[41] Xutong Ren et al. “LR3M: Robust Low-

Light Enhancement via Low-Rank Regularized

Retinex Model”. In: IEEE Transactions on Im-

age Processing 29 (2020), pp. 5862–5876. DOI:

10.1109/TIP.2020.2984098.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas

Brox. “U-Net: Convolutional Networks for

Biomedical Image Segmentation”. In: Medical

Image Computing and Computer-Assisted Inter-

vention – MICCAI 2015. Ed. by Nassir Navab et

al. 2015, pp. 234–241. ISBN: 978-3-319-24574-

4. DOI: 10.1007/978- 3- 319- 24574-

4_28.

[43] Sumit Shekhar et al. “Consistent Filtering of

Videos and Dense Light-Fields Without Optic-

Flow”. In: Vision, Modeling and Visualization.

2019. DOI: 10.2312/vmv.20191326.

[44] C. Tomasi and R. Manduchi. “Bilateral filter-

ing for gray and color images”. In: Sixth Inter-

national Conference on Computer Vision (IEEE

Cat. No.98CH36271). 1998, pp. 839–846. DOI:

10.1109/ICCV.1998.710815.

[45] Danai Triantafyllidou et al. “Low Light Video

Enhancement Using Synthetic Data Produced

with an Intermediate Domain Mapping”. In:

Computer Vision – ECCV 2020. Ed. by Andrea

Vedaldi et al. 2020, pp. 103–119. ISBN: 978-3-

030-58601-0. DOI: 10.1007/978-3-030-

58601-0_7.

[46] Vasileios Vonikakis. Busting image enhance-

ment and tone-mapping algorithms: A collec-

tion of the most challenging cases. 2022. URL:

https : / / sites . google . com /

site / vonikakis / datasets (visited on

01/27/2022).

[47] Ruixing Wang et al. “Underexposed Photo En-

hancement Using Deep Illumination Estima-

tion”. In: 2019 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR).

2019, pp. 6842–6850. DOI: 10.1109/CVPR.

2019.00701.

[48] Shuhang Wang et al. “Naturalness Preserved En-

hancement Algorithm for Non-Uniform Illumi-

nation Images”. In: IEEE Transactions on Image

Processing 22.9 (2013), pp. 3538–3548. DOI:

10.1109/TIP.2013.2261309.

[49] Chen Wei et al. “RetinexNet: Deep Retinex De-

composition for Low-Light Enhancement”. In:

British Machine Vision Conference 2018, BMVC

2018, Newcastle, UK, September 3-6, 2018.

BMVA Press, 2018, p. 155. URL: http ://

bmvc2018 . org / contents / papers /

0451.pdf.

[50] Dejia Xu. Dark Face Eval Tool. 2019. URL:

https : / / github . com / Ir1d /

DARKFACE_eval_tools.

[51] Ke Xu et al. “Learning to Restore Low-Light

Images via Decomposition-and-Enhancement”.

In: 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2020,

pp. 2278–2287. DOI: 10.1109/CVPR42600.

2020.00235.

[52] Shuo Yang et al. “WIDER FACE: A Face De-

tection Benchmark”. In: 2016 IEEE Conference

on Computer Vision and Pattern Recognition

(CVPR). 2016, pp. 5525–5533. DOI: 10.1109/

CVPR.2016.596.

[53] Wenhan Yang et al. “Advancing Image Under-

standing in Poor Visibility Environments: A Col-

lective Benchmark Study”. In: IEEE Transac-

tions on Image Processing 29 (2020), pp. 5737–

5752. DOI: 10.1109/TIP.2020.2981922.

[54] Wenhan Yang et al. “From Fidelity to Perceptual

Quality: A Semi-Supervised Approach for Low-

Light Image Enhancement”. In: 2020 IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR). 2020, pp. 3060–3069. DOI:

10.1109/CVPR42600.2020.00313.

[55] Zhenqiang Ying, Ge Li, and Wen Gao. “A

bio-inspired multi-exposure fusion frame-

work for low-light image enhancement”. In:

arXiv preprint arXiv:1711.00591 (2017). URL:

https : // arxiv . org / pdf / 1711 .

00591.pdf.

[56] Runsheng Yu et al. “DeepExposure: Learning

to Expose Photos with Asynchronously Rein-

forced Adversarial Learning”. In: Advances in

Neural Information Processing Systems. Ed. by

S. Bengio et al. Vol. 31. Curran Associates,

Inc., 2018. URL: https://proceedings.

neurips . cc / paper / 2018 / file /

a5e0ff62be0b08456fc7f1e88812af3d-

Paper.pdf.

[57] Fan Zhang et al. “LLVE: Learning Tempo-

ral Consistency for Low Light Video Enhance-

ment From Single Images”. In: IEEE Conference

on Computer Vision and Pattern Recognition,

CVPR 2021, virtual, June 19-25, 2021. Com-

puter Vision Foundation / IEEE, 2021, pp. 4967–

https://doi.org/10.1109/TIP.2019.2910412
https://doi.org/10.1109/TIP.2019.2910412
https://doi.org/10.1109/TIP.2020.2984098
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.2312/vmv.20191326
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1007/978-3-030-58601-0_7
https://doi.org/10.1007/978-3-030-58601-0_7
https://sites.google.com/site/vonikakis/datasets
https://sites.google.com/site/vonikakis/datasets
https://doi.org/10.1109/CVPR.2019.00701
https://doi.org/10.1109/CVPR.2019.00701
https://doi.org/10.1109/TIP.2013.2261309
http://bmvc2018.org/contents/papers/0451.pdf
http://bmvc2018.org/contents/papers/0451.pdf
http://bmvc2018.org/contents/papers/0451.pdf
https://github.com/Ir1d/DARKFACE_eval_tools
https://github.com/Ir1d/DARKFACE_eval_tools
https://doi.org/10.1109/CVPR42600.2020.00235
https://doi.org/10.1109/CVPR42600.2020.00235
https://doi.org/10.1109/CVPR.2016.596
https://doi.org/10.1109/CVPR.2016.596
https://doi.org/10.1109/TIP.2020.2981922
https://doi.org/10.1109/CVPR42600.2020.00313
https://arxiv.org/pdf/1711.00591.pdf
https://arxiv.org/pdf/1711.00591.pdf
https://proceedings.neurips.cc/paper/2018/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf


4976. DOI: 10.1109/CVPR46437.2021.

00493.

[58] Kai Zhang, Wangmeng Zuo, and Lei Zhang.

“FFDNet: Toward a Fast and Flexible Solution

for CNN-Based Image Denoising”. In: IEEE

Transactions on Image Processing 27.9 (2018),

pp. 4608–4622. DOI: 10.1109/TIP.2018.

2839891.

[59] Qing Zhang, Yongwei Nie, and Wei-Shi Zheng.

“Dual Illumination Estimation for Robust Ex-

posure Correction”. In: Computer Graphics Fo-

rum 38.7 (2019), pp. 243–252. DOI: 10.1111/

cgf.13833.

[60] Qing Zhang et al. “High-Quality Exposure Cor-

rection of Underexposed Photos”. In: Proceed-

ings of the 26th ACM International Confer-

ence on Multimedia. MM ’18. 2018, pp. 582–

590. ISBN: 9781450356657. DOI: 10.1145/

3240508.3240595.

[61] Yonghua Zhang, Jiawan Zhang, and Xiaojie

Guo. “Kindling the Darkness: A Practical Low-

Light Image Enhancer”. In: Proceedings of the

27th ACM International Conference on Multi-

media. MM ’19. Nice, France, 2019, pp. 1632–

1640. DOI: 10.1145/3343031.3350926.

[62] Chaobing Zheng et al. “Single image bright-

ening via multi-scale exposure fusion with hy-

brid learning”. In: IEEE Transactions on Circuits

and Systems for Video Technology 31.4 (2020),

pp. 1425–1435. URL: https://arxiv.org/

pdf/2007.02042.pdf.

[63] Minfeng Zhu et al. “EEMEFN: Low-Light Im-

age Enhancement via Edge-Enhanced Multi-

Exposure Fusion Network”. In: Proceedings of

the AAAI Conference on Artificial Intelligence

34.07 (2020), pp. 13106–13113. DOI: 10 .

1609/aaai.v34i07.7013.

View publication stats

https://doi.org/10.1109/CVPR46437.2021.00493
https://doi.org/10.1109/CVPR46437.2021.00493
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1111/cgf.13833
https://doi.org/10.1111/cgf.13833
https://doi.org/10.1145/3240508.3240595
https://doi.org/10.1145/3240508.3240595
https://doi.org/10.1145/3343031.3350926
https://arxiv.org/pdf/2007.02042.pdf
https://arxiv.org/pdf/2007.02042.pdf
https://doi.org/10.1609/aaai.v34i07.7013
https://doi.org/10.1609/aaai.v34i07.7013
https://www.researchgate.net/publication/371500379

	Introduction
	Related Work
	Method
	Adaptive Chromaticity
	Our Approach for LLIE

	Results
	Parameter Settings
	Qualitative and Quantitative Results
	Face Detection in the Dark
	Run-time Performance Evaluation

	Discussion
	Conclusions & Future Work
	Acknowledgments

