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Figure 1: Signed Distance Function (SDF) reconstructed from ScanNet [Dai17] scan. Left image: Original SDF.
The ceiling is shaded very dark as the virtual light source is located inside the room. Right image: Cleaned SDF
using the implemented manipulation possibilities. The editing time amounted to 5 minutes.

ABSTRACT

Signed distance functions computed in discrete form from given RGB-D data as regular voxel grids can represent manifold
shapes as the zero crossing of a trivariate function; the corresponding meshes can be derived by the Marching Cubes algorithm.
However, 3D models automatically reconstructed in this way often contain irrelevant objects or artifacts, such as holes or noise,
due to erroneous scan data and error-prone reconstruction processes. This paper presents an approach for interactive editing
of signed distance functions, derived from RGB-D data in the form of regular voxel grids, that enables the manual refinement
and enhancement of reconstructed 3D geometry. To this end, we combine concepts known from constructive solid geometry,
where complex models are created from simple base shapes, with the voxel-based representation of geometry reconstructed
from real-world scans. Our approach can be implemented entirely on GPU to enable real-time interaction. Further, we present
how to implement high-level operators, such as copy, move, and unification.
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1 INTRODUCTION

Automated 3D reconstruction is a key functionality re-
quired in a growing number of application fields, such
as robotics, autonomous driving, manufacturing, and
spatial digital twins [Kha19]. Volumetric methods for
3D reconstruction are based on computing Signed Dis-
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tance Functions (SDFs) for regular voxel grids, which
encode manifold surfaces as zero-sets of a trivariate
implicit function, allowing the acquisition of a large
class of objects [Ber02]. Among the most popular raw
data formats for volumetric 3D reconstruction meth-
ods are colored point clouds or depth-sensitive image
data (RGB-D) [Keh14], generated by various scanning
and acquisition technologies such as Light Detection
and Ranging (LiDAR) sensors, which recently have
even become built-in features in mobile devices (e.g.,
iOS TrueDepth camera); an overview of general 3D re-
construction methods based on RGB-D data is given
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in [Zol18]. However, “completely digitizing an object
or even an entire scene at high-quality is a tedious and
time consuming process” [Zol18]. 3D reconstruction
results are almost always not perfect. For example, a
reconstructed 3D model can contain holes if parts of
the scene were occluded during scanning, it can show
artifacts that result from noise due to reflection in the
scan data, or it can contain objects that are irrelevant
for the concrete task.

In this paper, we investigate editing techniques that
enable the manual refinement of geometry recon-
structed based on RGB-D data from real-world indoor
and outdoor scenes. To this end, we first convert RGB-
D data into a regular voxel-based SDF representation.
By combining the voxel-based SDF and procedural
shapes into a hybrid scene representation, we enable
interactive editing of reconstructed 3D geometry, e.g.,
for refinement and correction purposes, as shown in
Figure 1.

1.1 Problem Statement
The use of SDFs for representing real-world scenes
as voxel grids is common since 3D reconstruction by
means of volumetric fusion of range data results in such
a voxel grid [Cur96]. Furthermore, the creation and ma-
nipulation of SDF scenes using Constructive Solid Ge-
ometry (CSG) to combine multiple simple shapes into
complex objects is also well known; tools such as Magi-
caCSG enable the creation of SDF scenes in exactly this
manner. However, approaches are missing that combine
the voxel-grid based SDF representation of real-world
scenes reconstructed from scan data with the editing ca-
pabilities of CSG, i.e., the combination of procedural
geometric shapes by means of set operations [Har95].
With respect to this, the following main challenges have
to be considered:

C1: Handling Hybrid Scenes for SDFs: Editing
techniques have to handle the hybrid character
of SDF scenes, which consist of both procedural
primitives (e.g., spheres, boxes) and voxel grids
storing the SDF values.

C2: Real-Time Rendering for SDFs: Real-time edit-
ing needs interactive frame rates. Rendering voxel-
based SDFs requires trilinear interpolation, result-
ing in many memory reads. If reasonably detailed
resolutions for scenes should be achieved and addi-
tional (procedural) objects are present in the scene,
a Graphics Processing Unit (GPU)-based implemen-
tation strategy has to be taken.

1.2 Approach & Contributions
We use a GPU-based approach for creating an SDF
from RGB-D scans of real-world objects and scenes. To
enable editing and refinement of such scenes at interac-
tive frame rates, we present a new approach that can be

implemented entirely on GPUs. It combines the repre-
sentation of an SDF using a voxel grid with procedural
shapes that can be integrated into the grid using set op-
erations. Further, it enables the duplication as well as
the translation of scene parts. Additionally, a unifica-
tion approach enables the merging of the voxel-based
and procedural-based SDF representation into a single
representation, to increase rendering performance after
editing. The presented manipulation techniques could
also be transferred to neural geometry representations.

To summarize, this paper presents

1. interaction and manipulation techniques for voxel-
based SDFs using procedural shapes,

2. an approach for unification of the scene with subse-
quent SDF recalculation for persisting changes after
editing and thus increasing rendering performance,
and

3. a GPU-based implementation of the presented tech-
niques.

The remainder of this work is structured as follows:
Section 2 reviews related work with respect to syn-
thesis, rendering, and manipulation of SDF-encoded
scenes. Section 3 presents a conceptual overview of
the proposed approach. Section 4 details implemen-
tation aspects of our Compute Unified Device Archi-
tecture (CUDA)-based system. Section 5 evaluates the
system’s performance and discusses results and limi-
tations. Finally, Section 6 concludes this work and
presents ideas for future research.

2 BACKGROUND & RELATED WORK
In the following, we review related work regarding SDF
representation, synthesis, rendering, and manipulation.

2.1 SDF Synthesis & Representation
SDFs can be represented by a combination of procedu-
rally defined shapes, in form of voxel volumes, or as
weights of a neural network. These representations dif-
fer with respect to use-cases and applications.

The procedural representation is mostly used in the
context of CSG to build complex objects from simple
base shapes. With respect to polygon-based geometry,
Willis et al. presented PSML (Procedural Shape Model-
ing Language), which combines shape grammars with
sequential statements and can be used to model com-
plex models from 19 simple, predefined base shapes in
a hierarchical manner [Wil21]. With respect to SDFs,
Reiner et al. presented a modeling system that also uses
a hierarchical scene graph structure and a CSG-based
approach [Rei11]. The advantages of procedural ap-
proaches are the low memory consumption and, if vi-
sual editing is provided, the user-friendly creation pro-
cess. The main disadvantage is the tedious nature of



the creation process for very complex objects or real-
world-based scenes.

The voxel-based representation is commonly used for
representing real-world scenes, reconstructed from scan
data. Curless and Levoy proposed volumetric fusion
for creating such voxel-based SDFs from range im-
ages [Cur96]. The range images are fused iteratively
into an SDF voxel volume, utilizing the camera extrin-
sics and intrinsics. Based on that, Izadi et al. proposed
KinectFusion [Iza11]; camera poses are estimated and
utilized for fusing depth images GPU-based in real-
time into a global implicit surface model. Such fu-
sion approaches result in Truncated Signed Distance
Field (TSDF) volumes that contain distance values only
in vicinity to the geometry’s surface.
Apart from automatic reconstruction from scan data,
voxel-based SDFs can also be created from polygo-
nal meshes or point clouds using distance transform
algorithms. An example is the Jump Flooding Algo-
rithm (JFA) [Ron06] that derives a Voronoi tessellation
of a voxel grid, with respect to starting seed points.
Based on this tessellation, the distance to the nearest
seed can be computed per voxel cell. Using the points
of a point cloud as starting seeds, the JFA can be used to
compute an SDF approximation of the input geometry.
Other algorithms utilize hierarchical data structures to
directly compute mesh-to-voxel distances, e.g., Mesh-
Sweeper [Gue01]. The automatic creation from RGB-D
data is one of the main advantages of voxel-based SDF
representations. However, the manipulation of such ge-
ometry can be challenging due to the fine-grained na-
ture of voxel-grids.

Recent neural approaches store the distance infor-
mation in the weights of a neural net, which leads
to a compact representation with respect to memory
consumption [Tak21; Wan21], but increases rendering
time, compared to classical representations. Addition-
ally, the editing of such neural representations is chal-
lenging and an area of active research.

Our approach combines the procedural and voxel-
based representation in order to be able to use automatic
reconstruction from RGB-D data together with the easy
manipulation known from CSG. The approach can be
also adapted to neural representations.

2.2 SDF Rendering
SDFs are typically rendered using ray-marching, where
for each pixel of the result image, a ray is emitted into
the scene. The ray is advanced, using a fixed step size,
until the distance to the surface at the ray’s endpoint
lies below a certain threshold. Subsequently, the final
position of the ray can be used for determining color
and normal information for shading.

Hart presented sphere tracing as a faster alternative to
the classical ray marching [Har95]. The distance to the
surface at a point in space corresponds to the radius of

a sphere, in which no geometry is present. Therefore,
in each iteration during ray-marching, a ray can be ad-
vanced by the distance retrieved from the SDF at the
ray’s current position, without intersecting geometry.
This leads to shorter rendering times compared to clas-
sical ray marching. Keinert et al. proposed several tech-
niques to enhance sphere tracing, for example an over-
relaxation approach for faster tracing [Kei14]. While
classical ray-marching can also be used for TSDFs,
sphere tracing requires a full SDF. For rendering our
scene representation, we rely on sphere tracing, as pro-
posed by Hart.

2.3 SDF Manipulation

In his work on sphere tracing, Hart proved that set op-
erations known from Boolean algebra can be imple-
mented for SDFs using the min/max operators [Har95].
CSG approaches for SDFs, such as the one presented
by Reiner [Rei10], utilize this insight for manipulation
of procedural-based SDF representations. Zhang pre-
sented a GPU-accelerated system for voxel-based SDF
modeling, also utilizing these set operations, as well as
skeleton-based animation approaches [Zha16]. The fo-
cus of his work was, however, on manipulating single
objects in rather small voxel grids that could be used,
for example, for 3D printing. Our work also utilizes set
operations for SDFs, but for real-world-based scenes
stored in voxel grids. Additionally, we propose high-
level manipulation techniques, such as copy and move
functionalities.

3 METHOD

In the following, we give an overview of our SDF cre-
ation and rendering process, present our hybrid scene
representation, and describe the user interaction con-
cept for SDF scene editing.

3.1 Process Overview

For SDF creation, we iteratively fuse captured RGB-D
data into a TSDF volume, as described in [Cur96]. To
enable shpere tracing of the reconstructed geometry,
we then convert the TSDF into a full SDF. For this
we use the JFA, as described in Section 2.1. First,
starting seed points are extracted from the TSDF vol-
ume by converting to a surface mesh, using Marching
Cubes [Lor87], and subsequently sampling the mesh
triangles uniformly. Then the JFA is used on these seed
points to compute the full SDF. A volume containing
color information can be created in the same way.

Rendering the SDF is achieved by means of sphere
tracing with additional soft shadow rendering. Subse-
quently, the SDF can be manipulated, utilizing our het-
erogeneous SDF representation (Section 1.1, C1).
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Figure 2: Overview of the processes and data in our approach: Green elements represent data and white arrows
represent processes that can be initiated by the user. The static scene consists of two voxel grids, storing distance
and color information, as well as a list of shapes that were added to the scene using set operations. The active
element can be moved and placed in the scene and is either the currently selected, procedural shape, or a copy of a
part of the static scene.

3.2 SDF Scene Representation
The hybrid SDF scene representation, we present, con-
sists of the following components:

Distance & Color Grid: These voxel grids are recon-
structed from RGB-D data, as described in Sec-
tion 3.1.

List of Shapes: A list of procedural shapes that were
added to the scene using set operations.

Active Element: The currently selected scene element
(shape or voxel grid copy).

(a) Original. (b) Union.

(c) Subtraction. (d) Intersection.

Figure 3: Set operations of an SDF voxel grid (a) with
a sphere shape in (b) and (c) and a box shape in (d).

The voxel grids and the list of shapes form the static
scene, while the active element represents the dynamic
part of the scene that is currently manipulated by the
user.

3.3 User Interaction Concept
Figure 2 shows an overview of our system for inter-
active editing of SDFs. An SDF can be manipulated
by creating new, procedural shapes ("Create Shape")
and integrating them into the static scene ("Integrate
Procedural Shape"). Additionally, parts of the static
scene can be copied ("Copy Grid Part") and integrated
into the scene at another position ("Integrate Grid
Copy"). This copy functionality depends on a unifi-
cation operation that can also be used for increasing
rendering performance. All of the mentioned interac-
tion techniques are described in the following.

Basic Operations. In our approach, geometry is manip-
ulated by geometric shapes (such as spheres or boxes),
introduced to a scene. Each shape possesses attributes,
such as the position, orientation, size, color, and the
scene integration type, all of which can be set by the
user, using a Graphical User Interface (GUI). A pointer
device (e.g., a mouse) is used to move and place the dif-
ferent shapes in the scene. A once added shape can be
selected again by the user to edit its attributes or remove
it from the scene.

With respect to the integration type of a shape, three
types are supported, corresponding to set operations
known from Boolean algebra (Figure 3). They can be
implemented for SDFs, using the minimum and maxi-
mum operators, as described by Hart [Har95]:

Given two SDFs a and b; an SDF c, resulting from
a set operation on the implicit surfaces defined by a



(a) Selecting part of the scene. (b) Placing the copy in the scene.

Figure 4: Example of a copy operation.

and b, can be computed as: c = min(a,b) (Union), or
max(−a,b) (Subtraction), or max(a,b) (Intersection).

High-Level Operations. High-level manipulation
features include copy and move functionalities, en-
abling the user to duplicate or move parts of the scene,
such as single pieces of furniture in a room. First,
the user selects the part of the scene to copy, using a
“rubber-band” selection box. The selected part of the
static scene is then copied and can be translated and
rotated within the scene. Subsequently, the copied part
is placed and integrated again into the scene. Figure 4
shows an example for a copy operation In the case of a
move operation, a box with the size and position of the
selection box is subtracted from the scene after copying.

Unification Operation. With an increasing number
of shapes in the scene, the performance of sphere trac-
ing decreases, due to more intricate distance queries.
Therefore, the implemented system provides a unifica-
tion functionality to convert a scene, consisting of a
voxel grid and a list of procedural shapes, into a uni-
fied voxel grid to improve rendering performance (Sec-
tion 1.1, C2). This functionality is also used when a
copied part of the scene should be integrated back into
the scene. After unification, the list of shapes is cleared
and the new, unified voxel grid replaces the old one.

4 IMPLEMENTATION ASPECTS
The SDF creation from RGB-D data (TSDF fusion and
JFA) was implemented using Python and C++ together
with CUDA kernels for hardware acceleration. The
SDF rendering and editing was implemented using C++
and CUDA version 11.3 and will be detailed in the fol-
lowing.

4.1 Scene Rendering
Listing 1 shows example code for the querySDF func-
tion that is invoked during sphere tracing to retrieve the
distance to the surface for any point in space. Instead of
only trilinearly interpolating in the voxel grid, the list of
added shapes, as well as the active element have to be
considered.

1 float querySDF(float3 p, float *voxelGrid, /*...*/) {
2 float result = FLT_MAX;
3 // Handling voxel grid SDF
4 if(bboxHit[0]) { result = queryVoxelGrid(p, voxelGrid); }
5 // Handling procedural shapes
6 for(int i = 0; i < numberOfShapes; i++) {
7 if(bool(bboxHit[i+1])){
8 float3 queryPoint = mul(sceneShapes[i].rotation,
9 p-sceneShapes[i].position);

10 auto combinationFunc = sdfCombinationFunc[sceneShapes[i].
integrationType];

11 auto shapeFunc = sdfShapeFunc[sceneShapes[i].type];
12 result = combinationFunc(result, shapeFunc(queryPoint, sceneShapes

[i].size));
13 }
14 }
15 // Handling active element
16 if(bool(bboxHit[numberOfShapes+1])) {
17 float3 queryPoint = mul(activeElement.rotation,
18 p-activeElement.position);
19 auto combinationFunc = sdfCombinationFunc[activeElement.

integrationType];
20 result = combinationFunc(result, activeElementSdf(queryPoint,

activeElement));
21 }
22 return result;
23 }

Listing 1: CUDA code for querying the distance in an
SDF scene.

Before sphere tracing, for each ray, the intersection
of the ray with the bounding box of each shape and the
voxel grid is tested. The results of these bounding box
tests are stored into an array (bboxHit). This array
can then be used to skip all shapes that the ray cannot
hit. Apart from that, the following variables and func-
tions are used in the code:

sceneShapes is the array of shapes that were al-
ready added to the scene.

activeElement is the currently selected shape or
grid copy.

sdfCombinationFunc is an array of functions,
implementing different set operations.

sdfShapeFunc is an array of signed distance func-
tions for different shapes. By indexing into this ar-
ray (and the sdfCombinationFunc array) with
the corresponding shape type, unnecessary branch-
ing is avoided.

queryVoxelGrid() performs trilinear interpola-
tion in a voxel grid.

mul() applies a transformation matrix to a point and
is used for realizing rotation of objects.

activeElementSdf() returns the signed distance
for the active element by either calling the corre-
sponding sdfShapeFunc in the case of a proce-
dural shape or queryVoxelGrid in the case of a
voxel grid copy.

After a ray has terminated, the ray’s endpoint is used
to retrieve the surface color from the color volume. Ad-
ditionally, synthetic soft shadows can be rendered by in-
cluding an additional tracing step from the surface point
to a light source to check for occluding geometry in be-
tween.



(a) (b) (c)

Figure 5: Copying parts of the input scene (a) can lead to shadowing artefacts (b). An SDF recalculation step
resolves the problem (c).

4.2 Scene Manipulation
As described in Section 3.3, procedural shapes can be
added to the scene using set operations implemented by
means of min/max operators. Whenever a user adds
a shape, it is set as the activeElement that can
be moved and rotated. On integration (e.g., triggered
by clicking the left mouse button), the currently active
shape gets appended to the sceneShapes array. Dur-
ing scene rendering, for each ray, the shape ID of the
shape with the minimal distance to the ray’s endpoint
is stored. This allows for shape selection by point-
and-click, as each pixel of the rendered frame can be
matched to the corresponding shape by means of the
stored shape ID. This ID is also used during shading to
retrieve the respective material.

For the copy functionality, the querySDF function
is used to fill a voxel grid of the size of the selection box
with signed distance values. Negative values at border
voxels are set to zero to avoid “leaking” at cut borders.
This grid copy is then set as the active element. How-
ever, for sphere tracing the SDF has to be defined at any
point in space, which is not the case for the grid copy,
which is only defined within its bounds. This leads
to incorrect rendering results. To mitigate this prob-
lem, the grid copy therefore returns the distance to its
bounding box for points outside this bounding box and
the real distances for points inside the bounding box (as
suggested by [Rei10]). However, to ensure that the rays
during sphere tracing do not stop at the bounding box,
the distance to a slightly shrinked bounding box is re-
turned. When the user places the grid copy within the
scene, a unification step is performed to integrate the
copied geometry.

4.3 Unification & Recalculation
The unification is implemented as a CUDA kernel that
executes the querySDF function (Listing 1) for each
voxel, storing the retrieved distances in a new voxel
grid. However, if integrating copied parts into the scene
in this manner, problems can arise during shadow com-

putation. As these copied parts return the distance to
their bounding box for query points located outside of
it, the otherwise invisible bounding boxes result in un-
wanted shadows and shadowing artefacts (Figure 5(b)).
Additionally, the rendering performance can decrease,
as a ray first has to approach the bounding box of a
copied part and only inside this bounding box can re-
trieve the actual distances, increasing the number of
sphere tracing steps. Further, the number of tracing
steps also increases after subtraction and intersection
operations, as the computation using minimum and
maximum operators only results in a lower bound to
the actual distance, as Hart notes in [Har95]. An SDF
recalculation step was implemented to mitigate the de-
scribed problems.

d C

P

n

S

Figure 6: Computation
of surface point P.

It first converts the SDF
into a voxel grid, contain-
ing seed points for a JFA
pass. For each voxel that
implicitly contains parts of
the geometry’s surface, a
surface point is required.
Since, SDFs store only
distances not the surface
points itself, we compute
the surface point as fol-
lows (Figure 6). The surface normal n⃗, which corre-
sponds to the gradient at this point, is computed using
central differences. Subsequently, the center point C
and the distance d to the surface S are used for comput-
ing surface point P =C− n⃗ ·d.

After the voxel grid has been filled with seed points,
the JFA is executed to obtain the exact distances to the
surface for every voxel (see Section 2.1). For the copied
parts, the bounding box is omitted before the JFA is ap-
plied. Figure 5(c) shows that the shadows are rendered
correctly after the recalculation step.

The JFA only results in an approximation of the sur-
face represented by the SDF. To reduce accumulation
of errors, when the recalculation is executed several



(a) Original SDF from IPad scan (b) SDF after moving objects

Figure 9: Manipulation of an SDF using the move operator. The SDF was reconstructed from an RGB-D scan
obtained by an IPad.

times, we use an additional pass at the start of the JFA
(the so called 1+JFA variant). Using this JFA variant
lead to no observable errors in the geometry, even after
repeated SDF recalculation.

5 RESULTS & DISCUSSION
The following section presents exemplary results, cre-
ated with the implemented manipulation techniques.
Subsequently, the run-time performance is evaluated
and current limitations are discussed.

5.1 Exemplary Results
Figure 1 (on the first page) shows, how the presented
manipulation techniques can be used to refine the 3D
geometry of a scene reconstructed from RGB-D data.

(a) Original (b) Edited

Figure 7: Low-quality SDF of a pot tree, reconstructed
from a real-world scan with an IPad. (a) shows the orig-
inal, noisy, and incomplete SDF. (b) shows the edited
SDF, where the tree stump was connected to the tree
crown by merging spheres in the scene’s color. The
editing time amounted to 1-2 minutes.

Holes are filled with shapes in the scene’s color, noise
in the scene is removed, and unwanted parts, such as the
ceiling are cut away. This takes only a few minutes and
improves the reconstructed geometry noticeably. Fig-
ure 7 shows a similar scenario, where the geometry of a
tree, reconstructed from a low-resolution scan, is com-
pleted, using the implemented set operations. The com-
mon problem of faulty reconstructions from real-world
data can therefore be countered, using the proposed ma-
nipulation techniques.

Apart from countering problems, such as holes and
noise in the scene, the proposed techniques can also be
used to add new objects to the scene or alter existing
ones, e.g., for artistic purposes. Figure 8 shows an
example of this. Additionally, the move functionality
can be used for arranging furniture in a reconstructed
room anew (Figure 9). This can be useful for interior
design and room planning. First, a furnished room

(a) Input SDF (b) Edited SDF

Figure 8: Example of structure and appearance editing.
The original 3D reconstruction (a) was edited by filling
holes in the scene, changing the color of the stool by
merging a red sphere into it’s upper part, and adding
ears and eyes to the teddy bear by merging spheres of
the scene’s color (b).



is scanned and reconstructed. Subsequently, new
furniture arrangements can be tested, without actually
having to move the furniture in the real world. All these
manipulation techniques are easy and fast to use, due
to the GPU-based implementation and the presented
user interaction concept.

5.2 Run-Time Performance Evaluation
In the following, we show an evaluation of the run-
time performance of the system. The performance
was measured on an AMD Ryzen 5 5600x (6 cores,
3.7 GHz) Central Processing Unit (CPU) with 32 GB
DDR4 RAM and an NVIDIA GeForce RTX 3090 GPU
with 24 GB VRAM. The application runs on a Win-
dows 10 operating system at a viewport resolution of
1200×960 pixels.

For the measurements, reconstructions from a
ScanNet scene with different voxel grid resolutions
were used, rendered from three different virtual camera
views (Figure 10). The rendering time per frame was
measured over 12 seconds and the results averaged.

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 10: The three different camera configurations
used for acquiring performance measurements. Inside
the room (a), above (b), and below (c).

Figure 11(a) shows the measurements for rendering
the test scene without soft shadows or any additional
objects. Even when the full scene is in view (which is
the case for camera 2 and 3), it can be rendered in real-
time. Figure 11(b) shows measurements for the same
set-up, but with soft shadows activated. An increase of
up to 2ms rendering time per frame can be observed, es-
pecially for the largest scene. Rendering is still possible
in real-time.

Figure 12(b) shows how the rendering timings
change if additional objects are present in a scene with
approx. 697 million voxels. A number of spheres
were placed randomly in the scene (Figure 12(a)). The
rendering time increases with an increasing amount of
objects. Up to 30 objects can be rendered together with
the voxel grid at a maximum frame time of around
16ms. For more than 30 objects, the higher frame times
result in less than 60 frames per second during render-
ing. After a unification step is applied, the rendering
time always decreases again to approximately the time
measured for zero objects in the scene.
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(b) With soft shadows

Figure 11: Performance results for rendering SDFs of
different sizes.

(a) Example scene for measuring the performance of
the SDF renderer when additional objects are present.
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(b) Performance for rendering SDF voxel grids with additional
objects added to the scene.

Figure 12: Rendering an SDF voxel grid (917×1044×
728) with additional objects.



Voxel Grid Resolution #Voxels Unification SDF Recalculation

119×134×95 ∼ 1.5 ·106 3 ms 24 ms
229×260×181 ∼ 10.8 ·106 17 ms 204 ms
457×520×362 ∼ 86 ·106 146 ms 1024 ms
917×1044×728 ∼ 697 ·106 903 ms 8362 ms

Table 1: Runtime for executing the unification and SDF recalculation steps for different voxel grid resolutions.

Table 1 shows the processing times for the unification
and SDF recalculation for voxel grids of different size.
These steps can be used for increasing rendering perfor-
mance, fixing shadow computations after manipulation,
and integrating copied or moved parts of the scene. For
large voxel grids, the SDF recomputation can require
several seconds.

5.3 Limitations
While the feasibility of real-time rendering and editing
of real-world scenes represented as SDFs was demon-
strated in this work, there are still some open questions
and constraints that need to be addressed. A major limi-
tation is currently the memory consumption as full SDF
voxel volumes are used. With several hundred million
voxels, we are able to represent single rooms with suf-
ficient detail, but larger scenes are still difficult to re-
construct and render. Further, while the unification step
increases rendering performance, it is irreversible and
makes the subsequent editing of already added shapes
impossible. A snapshot-based approach could be used
to implement an undo operation. Additionally, while
the unification can be executed in less than a second,
the SDF recalculation step requires more time. If soft
shadows should be rendered, the recalculation step is
necessary after every copy/move operation, which can
interrupt the work flow if the voxel grid is large, as the
execution time of the recalculation step then amounts
to several seconds. With regard to user interaction, it
is possible to select and edit shapes that were added to
the scene using a union operator. Shapes that were in-
tegrated into the scene using subtraction or intersection
can not be selected for further editing, as during sphere
tracing only the shape IDs of shapes where the ray ter-
minates are retrieved. Suitable selection mechanisms
have to be developed in the future.

6 CONCLUSIONS & FUTURE WORK
This paper presented an approach for interactive edit-
ing of voxel-based signed distance fields. It builds on
a hybrid representation consisting of a voxel grid and a
number of procedural shapes (Section 1.1, C1), which
enables easy manipulation for refining geometry (e.g.,
closing holes or removing artefacts). Thus, this work
is a further building block for creation of high-quality
3D models from real-world scenes, by enabling manual

refinement of 3D reconstruction results. High-level ma-
nipulation methods, such as copy and move functional-
ity, provide suitable techniques for altering real-world-
based geometry and therefore facilitate design and plan-
ning processes. The GPU-based implementation of ren-
dering and manipulation enables real-time interaction
(Section 1.1, C2).

By exchanging the voxel grid with a neural repre-
sentation for rendering, the proposed techniques could
also be used for altering neural geometry representa-
tions. Nevertheless, an additional training phase would
be required to transfer the changes back into the neural
representation.

The SDF manipulation still has some limitations and
extension possibilities. In the future, we will address
the problem of memory consumption, by evaluating
sparse data structures to reduce memory constraints and
allow for larger scenes. Additionally, appearance ma-
nipulation (e.g., altering the color volume through a
painting technique) would be a useful extension to the
already implemented manipulation methods.
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