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Figure 1: Single frames from a octree-based point cloud morphing animation created using the FERMIUM framework.

Abstract
This paper presents a framework for generating real-time procedural animations and morphing of 3D point clouds. Point clouds
or point-based geometry of varying density can easily be acquired using LiDAR cameras or modern smartphones with LiDAR
sensors. This raises the question how this raw data can directly be used in the creative industry to create novel digital content
using animations. For this purpose, we describe a framework that enables the implementation and combination of animation
effects for point clouds. It takes advantage of graphics hardware capabilities and enables the processing of complex datasets
comprising up to millions of points. In addition, we compare and evaluate implementation variants for the subsequent morphing
of multiple 3D point clouds.

CCS Concepts
• Computing methodologies , . . . , Procedural animation; Point-based models; Graphics processors;

1. Introduction

Point-based geometry represented as 3D Point Clouds (PCs) are
sets comprising a large number of attributed 3D points. Similar to
3D polygonal meshes, their attributes can comprise color, surface
normals, reflectiveness coefficients, segment identifiers, as well as
time. PCs are a simple, compact, and flexible geometric representa-
tion that can easily be acquired for real-world scenes using off-the-
shelf photogrammetric techniques. In addition, high-end consumer
smartphones with Light Detection And Ranging (LiDAR) sensors
(e.g., iPad Pro or iPhone 12) enable a straightforward acquisition.
Further, PCs can be obtained by sampling 3D polygonal geometry.

Surprisingly, and despite its potential applicability in various do-
mains, their usage as a basic geometric representation in computer
animation and respective animation systems or frameworks are
sparsely studied. Such systems can be applied in previsualization
(previz) or Digital Content Creation (DCC) to evaluate ideas and

concepts early before performing possibly costly data enhancement
or transformation (e.g., synthesizing textured 3D meshes). In com-
puter games, for example, 3D PCs enable effects and animations,
such as particle systems or morphing, to scanned assets [SPB∗19].
With respect to this, we present implementation approaches for pro-
cedural animations [Ebe14] of PCs.

Challenges for Rendering 3D Point Cloud Animations. Regard-
ing animation, especially morphing (Fig. 1), PCs have an advantage
over 3D polygonal models: they do not comprise inherent connec-
tivity information that needs to be respected or maintained, thus
in turn facilitate their representation, transformation, and render-
ing. Given a sufficient point density, PCs can also yield high qual-
ity renderings [SW15]. In contrast thereto, however, PCs are often
characterized by their complexity, i.e., the number of points and
the number of per-point attributes. While the rendering of static 3D
PCs can be implemented straight-forward using Graphics Process-
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ing Unit (GPU)-aligned rendering pipelines, the implementation of
interactive animation techniques are challenging with respect to:

Efficient Data Handling (C1): An efficient representation of
complex PCs and respective animation data allows for indepen-
dent animation of their attributes. This also concerns the reduc-
tion of data transfer and update latencies to support real-time
rendering for interactive control.

Interfacing Animation and Rendering (C2): Decoupling of
processing operations that are required for animation and
rendering (e.g., point-splat functions [ARLP18]) facilitates the
interchange of respective techniques and increases ease-of-use.

Combination of Animation Techniques (C3): A potential com-
bination and interchange of techniques within a common frame-
work facilitates prototyping and development of new techniques
and can reduce time to market.

Existing approaches to implement animation techniques for PCs
are (1) customized integrations into existing game engines (to yield
real-time rendering) or (2) specific tooling or scripts to extend ex-
isting software (e.g., Blender). These, however, require either aux-
iliary constructs for data representation (e.g., PCs represented as
textures), lack real-time rendering capabilities, or can hardly han-
dle PCs with millions of points.

Approach & Contributions. With respect to the challenges
above, we present a unified GPU-aligned framework that enables
real-time animation and morphing of complex PCs. The frame-
work encapsulates data buffers and operating stages for both, an-
imation and rendering of PCs that potentially comprise millions of
points. By implementing animation and rendering techniques using
Compute Shader (CS) programs operating on (atomically) writable
and readable data buffers (Shader Storage Buffer Object (SSBO)),
we achieve decoupling between multiple, simultaneously active an-
imation techniques (C3) and rendering or stylization techniques
(C2). Using individual data streams for PC attributes achieves a
compact representation in Video RAM (VRAM) and allows for
fine-granular data updates (C1). The framework components enable
forward and deferred rendering techniques to be combined with
point-attribute animations and the morphing of PCs with different
sizes. To summarize, this paper makes the following contributions
to the reader: (1) it presents a unified GPU-aligned framework that
enables the implementation of various PC animation techniques in
real-time and (2) it demonstrates its capabilities using different ap-
plications, such as per-point attribute animations and PC morphing.

2. Related Work

Animation Techniques for Point Clouds. Most previous work
for real-time PC animation is concerned with physics-based sim-
ulation rather than the utilization of PCs for animation purposes.
In the domain of physics-based simulation, point-based represen-
tations are already used for many years, for example in Harlow’s
work on fluid dynamics in 1962 [Har62]. On one hand, particle
systems are used for simulating and depicting of natural phenom-
ena such as fire, smoke, or fluids, as highlighted by the survey of
Xi et al. [XLF∗19] on the advances regarding smooth particle hy-
drodynamics and particle systems. On the other hand, apart from

particle systems, PCs are also used to represent deformable ge-
ometry in physic-based simulations. These meshfree or meshless
approaches often use sparse PCs for representing the volume of
an object. These volume points (also denoted as phyxels or parti-
cles) are used as simulation nodes. To convey the impression of sur-
face smoothness, a dense PC consisting of surfels [PZvBG00], can
be used for representing an object’s surface. Bart Adams [Ada06]
presents an overview of possible point-based rendering and ani-
mation approaches and demonstrates physics-based simulation of
elastic or fracturing objects and fluids. Müller et al. also apply
physically-based deformations to such point-based objects. Their
system is capable of animating elastic, plastic, solidifying and melt-
ing objects based on the simulation of continuum mechanics. For
real-time interaction, low-resolution models are used, while higher
resolutions are possible for offline rendering [MKN∗04]. Dharma
et al. implement a fluid simulation through particle animation based
on compute shaders [DJKM17]. They are able to animate 1 million
particles at 50 Frames-per-Second (FPS) on a NVIDIA GTX Ti-
tan X GPU. In this work, we also rely on compute shaders for ani-
mating PCs. As we are concerned with PC animation for aesthetic
purposes, which is not as complex as for example fluid simulation,
we are able to render even larger PCs.

Morphing Techniques for Point Clouds. The goal of PC morph-
ing is to transform the points of one PC over time in such a way
that they form another, predefined PC. An important aspect of PC
morphing is to find an appropriate mapping from a source PC to
a destination PC. As one of the earliest publications on this topic,
Čmolìk and Uller analyzed and compared different clustering meth-
ods based on Binary Space Partition (BSP) trees [CU03]. While this
is a straight-forward approach, it does not allow feature-preserving
morphing. Tian et al. compute a point mapping by forming a super
PC by aligning the source and destination PCs in space. Subse-
quent clustering and local mapping then yields the final mapping
result [THCF06]. Other publications approach the problem of find-
ing a feature-preserving point mapping supported by user interac-
tion by (1) letting a user define a mapping between selected fea-
tures and (2) computing the mapping between single points. Xiao
et al. compute the point mapping by projecting the PCs onto unit
disks and aligning these according to corresponding features se-
lected by the user [XZPF04]. A Level-of-Detail (LOD) technique
is used to accelerate the parametrization, i.e., complex geometry
is decomposed into several patches, that are treated independently.
Aiming to achieve visually smooth morphing sequences, a simi-
lar approach is used by Wang et al. who use a unit sphere for
parametrization instead of a unit disk. For the actual interpolation
of the shapes, Laplacian coordinates are used [WZH12].

While most of the research focus on finding a meaningful map-
ping between the points, others focus on computing physically
meaningful transition paths between the points. Bao et al. han-
dle this problem as a physics-based energy optimization, using
surface deformation analysis on a subset of the points [BGQ05].
Tan et al. approach the problem of finding a convincing morph-
ing path by means of interpolation of vertex deformation gradi-
ents [TZZ09]. Chen et al. [CHG∗20] presented an application ex-
ample for PC morphing, by utilizing it for training data augmenta-
tion in the area of machine learning. A shortest-path computation
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Figure 2: Schematic overview of the compute components with control flow (orange) and data with data flow (blue) of our GPU-aligned
framework for point cloud animation.

is used to preserve the shapes of source and target PC as close as
possible. The results are a number of static, intermediate PCs that
can be used for training deep neural networks. Another application
in the domain of virtual surgery simulation is presented by Cheng
et al. [CSY∗20]. They use a morphing approach to simulate de-
formation of soft tissue, such as organs. Their work therefore is
more related to physics-based simulation, as morphing takes place
between two configurations of the same PC.

3. Point Cloud Animation Framework

3D Point Cloud Structure & Data Acquisition. Throughout this
paper, we make the following assumptions with respect to the
representation, structure, and storage of a PC. We consider a PC
S = {p0, . . . , pN} as discrete subset of the space Rd0 × . . .×Rdn

with the number of elements |S|= N. Each point p∈ S is given as a
n-tuple of attributes p = (a0, . . . ,an), whose components are in the
respective space:

pi =
(

a(0)i , . . . ,a(n)i

)
∈ Rd0 × . . .×Rdn for0≤ i≤ N (1)

a( j)
i =

(
a( j,0)

i , . . . ,a( j,d j)
i

)
∈ Rd j for0≤ j ≤ n (2)

The attribute a0 = (x,y,z) ∈ R3 defines the point position in a
global 3D coordinate reference system. In combination with ad-
ditional attributes, such as colors or normal vectors, these attributes
constitute a PC configuration C. For applications involving multi-
ple PCs (e.g., PC morphing), we assume that these have the same
configuration. With respect to memory layout, both for Central
Processing Unit (CPU) and GPU, we choose Structure-of-Arrays
(SoA) over Array-of-Structures (AoS) for attribute encoding. This
facilitates the manipulation and exchange of individual attribute
streams a(i)0 , . . . ,a(i)N in a configuration while preserving the states
of others and allows for memory management on a per-attribute
stream level.

The PC data used in this paper is acquired using two methods:
(1) using the built-in LiDAR scanner of modern iOS devices and (2)
by sampling 3D meshes. For sampling 3D meshes, our framework
supports the following approaches and its combinations:

Vertex-based Sampling (VBS): The resulting PC is constructed

by interpreting each vertex of the input mesh as a single point.
The density of the PC depends on the number and distribution of
input vertices.

Primitive-based Sampling (PBS): For each primitive, one point
is added to the PC (e.g., the centroid of the triangle). The density
of the PC then depends on the number and size of the triangles.

Density-based Sampling (DBS): Each triangle is sampled uni-
formly [OFCD02], according to a defined density value d (cor-
responding to the points per unit area), i.e., that larger triangles
result in more points, than smaller triangles.

While VBS and PBS result in a fixed number of points for a spe-
cific mesh, DBS can be used to obtain PCs of different sizes. To
achieve a smooth surface appearance, we use DBS with d between
200 and 300 for most of the examples in this paper (with the excep-
tion of Fig. 3(c), which uses d = 100000).

Overview of Framework Components. Fig. 2 shows the concep-
tual unified and GPU-aligned rendering pipeline that enables the
combination of attribute animations (Sec. 4) and morphing (Sec. 5).
We implemented the framework using C++ and OpenGL. It com-
prises the following main processing stages:

Pre-Processing: After loading a PC, this stage computes required
scene statistics (e.g., bounding volumes) for camera and object
animations as well as spatial data structures for point mapping
when using a morphing animation. Simultaneously, the attribute
point buffers are transferred to VRAM.

Camera & Object Transform Animation: This stage controls
the animations of the virtual camera and the respective transfor-
mations of the PCs (e.g., translation, rotation, or scaling) using
key frames. The animation data is encoded using uniform buffers
and can be accessed in the subsequent point animation and ge-
ometry processing stage.

Point Animation: Passes in this stage implement attribute anima-
tions (Sec. 4) and morphing (Sec. 5) using possibly multiple
compute shader invocations to modify the point buffers. This
way, both types of animation techniques can be combined (C3).

Geometry Processing: Prior to rasterization, this stage imple-
ments primitive conversions (e.g., point to splats), geometry
transformation and projection, as well as attribute mappings for
texturing and shading (C2).

c© 2021 The Author(s)
Eurographics Proceedings c© 2021 The Eurographics Association.



O. Wegen, F. Böttger, J. Döllner & M. Trapp / FERMIUM: A Framework for Real-time Procedural Point Cloud Animation and Morphing

(a) Displacement (b) Particles (c) Explosion view

Figure 3: Single frames from exemplary attribute animations im-
plemented using our framework. The stateless (a) and stateful (b)
attribute animation use a point cloud comprising 673411 points
while the explosion view animates 1577299 points.

Rasterization: The rasterization stage performs an offscreen-
rendering pass to create the raster buffers. It can be implemented
as render-to-texture pass using fixed-function rasterization for
rendering into G-Buffers or using compute shaders in combina-
tion with SSBOs [SKW21] (C2).

Post-Processing: This optional stage allows the integration of
raster-based procedural animation effects that can be imple-
mented by potentially using multiple passes.

Most animation parameters and data that are required by the indi-
vidual stages are represented using suitable GPU-based data struc-
tures residing in VRAM. This comprises precomputed volumetric
noise textures, raster-based representation of easing functions, or
material captures for shading and texturing.

4. Attribute Animations

Attribute animations concerns the procedural modification of PC
attributes such as position or color. Depending on the type of at-
tribute animation, our framework implements these based on a
combination of point buffers and compute shader functionality. Our
framework supports the following attribute-animation types:

Stateless Attribute-Animation: The visual results of this type are
solely determined by the input time and do not change point at-
tributes persistently (Fig. 3(a)). It can be implemented by means
of time-controlled shader programs and is suitable for simple an-
imations that do not rely on prior animation results or simulation
computations.

Stateful Attribute-Animation: This type relies on the time and
prior animation steps. During animation, the attribute values are
changed persistently (Fig. 3(b)). Stateful animations are espe-
cially useful for simulation of physics-based phenomena that are
computed iteratively.

By invoking successive computer shader implementations in the
point animation stage, instances of both animation types can be
easily combined (C3, please refer to accompanying video).

Our framework supports the application of different easing func-
tions per attribute class. This enables fine control over the anima-
tion behavior and allows decoupling time control between attribute
classes. Each attribute class ai can be interpolated using individual
mapping functions. For any 1 ≤ j ≤ n, we have a family of maps
parametrized by time t ∈ R with 0 ≤ t ≤ 1: f j

t : Rd j → Rd j . A

GPU-aligned animation framework can require the application of
easing functions on client-side (CPU) and on server-side (GPU).
The framework supports the definition of easing functions repre-
sented as Bézier curves [IKS20]. To enable efficient usage in the
programmable shader stages, we encode these functions using a
texture atlas that can be sampled and filtered (C1).

Further, our framework enables the combination of stateless
attribute-animations with additional data on a per-vertex or per-
group level. Assuming a segmented PC, these segment points
can be animated in such a way that the segments move away
from the center of the PC, potentially depicting it’s internal struc-
ture (Fig. 3(c)). Such explosion views can be easily implemented
using our framework by performing a compute shader pass for
stateless attribute-animation. For example, the center of each seg-
ment and the center of the complete PC is computed. Subsequently,
the translation vector for each segment can be computed and used
for animation (please refer to accompanying video). This technique
can be applied to implement animated transitions for PC visualiza-
tion techniques in geo- or scientific visualization.

5. Morphing Animations

Morphing as an animation that changes (or morphs) one shape into
another via a seamless transition, requires the processing of multi-
ple PCs. In general, the morphing between two PCs is the anima-
tion during which the point attributes of the source S are interpo-
lated to the points of a destination D. The morphing methods should
consider the attributes configuration of the PCs and should be able
to perform morphing between two different-sized PCs. The funda-
mental principle underlying all introduced methods is the finding
of a mapping [CU03]. A PC morphing is defined component-wise
by the mapping Ft : S→ D with t ∈ R, 0≤ t ≤ 1:

Ft(pi) = qi = Ft

(
a(1)i , . . . ,a(n)i

)
=

(
f 1
t

(
a(1)i

)
, . . . , f n

t

(
a(n)i

))
A morphing sequence M is the successive morphing of a PC se-
quence L = S0, . . . ,Sk denoted by:

M = F(0)
t , . . . ,F(k−1)

t with F(i)
t : Si→ Si+1

For testing and demonstration purposes, we implemented different
approaches for computing a mapping Ft :

Random Mapping: The points of the source and destination PCs
are shuffled and mapped to each other according to this order.

Axis-based Mapping: The points of both input PCs are sorted
with respect to a reference axis. Subsequently, the points are
mapped to each other using this new order.

Octree-based Mapping: For each of the PCs, an octree is con-
structed. Subsequently, the points are mapped according to a
depth-first traversal of the leaf nodes of the octrees.

Distance-based Mapping: For each point of the source PC, the
nearest-neighbor point of the destination PC is assigned. For
nearest-neighbor search, a k-d tree can be used.

For these mappings, we have to consider the common case of
different-sized PCs. For the first three approaches an assignment
rate: r = min

(
|S|,|D|

)
/max

(
|S|,|D|

)
is computed first. We then assign

each point of the larger PC at index i the point of the smaller PC
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at index bi · rc. For the distance-based mapping, we first assign the
points of the smaller PC to spatially close points of the larger PC.
The not yet assigned points of the larger PC are then assigned to
close points of the smaller PC. This way it is guaranteed that each
point of the smaller PC is mapped to at least one point in the larger
PC. After a mapping has been computed, the morphing can be per-
formed. During morphing, the points of the larger PC are rendered
and interpolated using an arbitrary easing function. The interpola-
tion direction depends on the order of the PCs.

6. Variants for GPU-based Morphing Implementation

We implemented three different approaches to perform the mor-
phing. Algo. 1 shows their common structure. The function calls
shown in blue mark hook-methods that differ in their concrete im-
plementation across the three approaches. The following functions
are used in the code and not further defined here with respect
to concrete implementation: ELAPSEDTIME returns the elapsed
time since the last call; SHOULDSTARTMORPHING returns true if
the morphing sequence should be started. SHOULDCHANGEMAP-
PING returns true if the mapping should be re-computed, which
is the case if the mapping type is changed. The algorithm frame-

Algorithm 1 Common structure for morphing implementations.
1: procedure MORPHSTEP(S,D, i)
2: INITMORPHSTEP(S,D)
3: BINDBUFFERS(i)
4: t← 0
5: while t <= 1.0 do . we assume duration of 1
6: PERFORMMORPHING(t)
7: t← t + ELAPSEDTIME()
8: end while
9: end procedure

10: procedure MORPH(L)
11: INITPCS(L)
12: COMPUTEMAPPING(L)
13: while True do
14: if SHOULDSTARTMORPHING() then
15: for i ∈ [0, |L|−2] do
16: MORPHSTEP(L[i],L[i+1], i)
17: end for
18: end if
19: if SHOULDCHANGEMAPPING() then
20: COMPUTEMAPPING(L)
21: end if
22: end while
23: end procedure

work uses the following functions for buffer management. TRANS-
FERTOGPU transfers data of one or more buffers from Random-
Access Memory (RAM) to VRAM. The CONSTRUCTBUFFER

function creates a client-side buffer for a PC. The CONSTRUCT-
SORTEDBUFFER does the same but sorts the points according to
the current morphing mapping type beforehand (this depends on
the largest PC and is only used for the Vertex Buffer Object (VBO)-
based implementation. The function INITBUFFEROFSIZE(x) ini-
tializes an empty client-side buffer of size x. Further, BIND-
BUFFERS(I) binds the GPU-side attribute buffers for the current

morphing step and PADBUFFER(B) adds the necessary padding to
a buffer B that is to be used as a SSBO. The MAPPCS function
returns a list of destination point indices to which the points of
a source PC map (=̂ Ft ), depending on the mapping type. Finally,
RENDERPASS issues a GPU-based rendering pass that uses the ras-
terization pipeline and the COMPUTEPASS function issues a com-
pute shader pass without rasterizing any primitives.

VBO-based Implementation. For this approach, the source and
destination point positions are written into buffers (according to the
computed mapping), transferred to VRAM, and bound as VBOs.
A vertex shader performs the interpolation between source and
destination according to the current interpolation progress t. This
approach is straightforward, but a re-transfer of the source and
destination buffers are required, each time the morphing mapping
changes. Algo. 2 shows the pseudocode implementation for the cor-
responding hook methods.

Algorithm 2 VBO-based morphing implementation.
1: procedure COMPUTEMAPPING(L)
2: BufferS← CONSTRUCTBUFFER(L[0])
3: TRANSFERTOGPU(BufferS)
4: for all S ∈ L\L[0] do
5: BufferS← CONSTRUCTSORTEDBUFFER(L[0],S)
6: TRANSFERTOGPU(BufferS)
7: end for
8: end procedure
9: procedure PERFORMMORPHING(t)

10: RENDERPASS(t)
11: end procedure

SSBO-based Implementation. For the second approach, the
points of the source and destination PCs are transferred only once
to VRAM. Each time the mapping is computed, only this data is
transferred to VRAM as a vector of buffer indices (C1). During ren-
dering in the geometry processing stage, the vertex shader then has
two additional inputs: (1) a SSBO containing the destination points
and (2) the index into this buffer for fetching the current vertex.
This trades the storage of additional data and higher initialization
costs, for reduced update latency. Algo. 3 shows the pseudocode
implementation for the corresponding hook methods.

CS-based Implementation. For the third approach, the interpola-
tion between source and destination points is implemented using
a separate compute shader pass. Similar to the SSBO-based ap-
proach, the PCs are transferred to the VRAM only once during
preprocessing. Similarly, only the respective mapping data has to
transmitted. The compute shader is invoked once for each vertex
and stores the interpolated position in a result buffer that is used as
a VBO by a subsequent vertex shader of the geometry processing
stage. This approach increases integration flexibility by decoupling
the morphing computation from the actual rendering. However, do-
ing so requires additional data storage (due to padding and the ad-
ditional result buffers) and introduces further state changes due to
the compute pass. Algo. 4 shows the pseudocode implementation
for the corresponding hook methods.
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Algorithm 3 SSBO-based morphing implementation.
1: procedure COMPUTEMAPPING(L)
2: for all i ∈ [0, |L|−2] do
3: BufferMi ←MAPPCS(L[i],L[i+1])
4: TRANSFERTOGPU(BufferMi)
5: end for
6: end procedure
7: procedure PERFORMMORPHING(t)
8: RENDERPASS(t)
9: end procedure

10: procedure INITPCS(L)
11: for all S ∈ L do
12: BufferS← CONSTRUCTBUFFER(S)
13: PADBUFFER(BufferS)
14: TRANSFERTOGPU(BufferS)
15: end for
16: end procedure

Algorithm 4 CS-based morphing implementation.
1: procedure COMPUTEMAPPING(L)
2: for all i ∈ [0, |L|−2] do
3: BufferMi ← MAPPCS(L[i],L[i+1])
4: TRANSFERTOGPU(BufferMi)
5: end for
6: end procedure
7: procedure INITMORPHSTEP(S,D)
8: BufferR←INITBUFFEROFSIZE(max(|S|, |D|))
9: TRANSFERTOGPU(BufferR)

10: end procedure
11: procedure PERFORMMORPHING(t)
12: COMPUTEPASS(t)
13: RENDERPASS()
14: end procedure
15: procedure INITPCS(L)
16: for all S ∈ L do
17: BufferS← CONSTRUCTBUFFER(S)
18: PADBUFFER(BufferS)
19: TRANSFERTOGPU(BufferS)
20: end for
21: end procedure

7. Evaluation and Discussion

7.1. Performance Evaluation

Fig. 4 shows a base-line measurement of the average frametime
when rendering a single PC without animation. The measured PCs
resembles a sphere. Two different resolutions, one in windowed
mode, one in full-screen mode, were tested. The measurements
show that our system is able to render PCs with millions of points.
Even for 100 million points, the frametime is with 50 ms per-
frame in full-screen mode sufficient for interaction (with approx.
20 FPS). Schütz et al. showed that the performance of rendering a
PC can be increased significantly when using a compute-based ren-
dering approach instead of the standard rasterization pipeline with
GL_POINT primitives [SKW21].
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Figure 4: Base-line measurements: average frametime (millisec-
onds) for rendering PCs of different sizes without animation.

In our work, we nevertheless relied on the standard rasterization
pipeline, as it allows for controlling the point size easily. Especially
for the standard rasterization pipeline, Schütz et al. further propose
to sort the points using shuffled Morton order to increase perfor-
mance. However, this approach relies on spatial locality of points,
which would be invalidated during animation and is therefore not
applicable to our use-case. Note that the focus of Schütz et al. is
on fast rendering of huge PCs, while we focus on animation. Our
work is therefore complementary to theirs. Their compute-based
rendering approach could be probably adapted and included into
our framework for even faster rendering. We evaluate the perfor-
mance of the different implementation approaches for PC morph-
ing, described in Sec. 6.

Test Data & Test Setup. For testing purposes, we generate two
PCs, resembling a unit cube and a unit sphere. For each of the
PCs, three variants are generated with |A| = 106, |B| = 107, and
|C| = 2 · 107 points. Further, we use a common per-vertex config-
uration comprising position, color, and normal vector. The perfor-
mance is measured for the following morphing animations: A

µ−→A
(T.1), B

µ−→ A (T.2), B
µ−→ B (T.3), C

µ−→ A (T.4), C
µ−→ B (T.5),

C
µ−→C (T.6). We only measure the performance of morphing the

larger PC to the smaller PC. The morphing direction has no im-
pact on the performance, as internally always the larger PC is used
for rendering and the mapping computation is independent of the
morphing direction. For the measurements, the camera is fixed in
a way that the PCs are screen-filling and the viewing direction is
not changed, as this can influence the performance (as observed
by Schütz et al. [SKW21]). The output window had a resolution
of 1280× 800 pixels and rendering was performed without multi-
sampling enabled.

The following timings were obtained: (1) initialization time de-
notes the time required to prepare all necessary buffers after a new
PC has been loaded; (2) mapping computation time denotes the
time to compute the point mapping for the different mapping ap-
proaches; (3) average frametime denotes the time to render frames
during the morphing process. Each measurement was performed
three times for each morphing sequence and the results were aver-
aged (3 s window). The measurements were performed on an In-
tel Core i5-4460 processor (4 cores, 3.2 GHz), 16 GB RAM and a
NVIDIA GeForce RTX 2080 Ti GPU (16 GB VRAM).
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Table 1: Comparison between the different implementation ap-
proaches for morphing animations.

Implementation Aspect VBO SSBO CS
Initialization time low medium medium
Mapping computation time high medium medium
Average frametime stable stable unstable
Memory update/transfer high low low
VRAM consumption low medium high
Modularity low low high

Test Results. Fig. 5(a) shows the initialization time for the differ-
ent PC sizes and implementation approaches. Fig. 5(b) shows the
mapping computation time, which includes the client-side com-
putation of the mapping and the transfer of the result buffers to
VRAM. The distance-based mapping approach was not included in
the measurements as it is very compute intensive and not suitable to
render morphing sequences in real-time. Fig. 5(c) shows the aver-
age frametime for the different mapping types and implementation
approaches. Due to system characteristics, the minimum frametime
is 15 ms. In addition to the performance measurements, Fig. 5(d)
shows the required amount of memory that is transferred to the
GPU on initialization of the PCs, on mapping computation, and the
overall VRAM memory consumption. Using the VBO-based ap-
proach, each point requires 36 B for representation in VRAM. All
points have to be transferred after mapping computation. Addition-
ally, the size of the buffer for each PC is determined by the size
of the larger PC, as the VBOs are required to have the same size.
Using one of the other two approaches, each point requires 48 B as
additional padding is required for correct buffer alignment, but the
points have to be transferred to VRAM only once. During mapping
computation, only the mapping data is transferred. For the compute
shader approach, an additional result buffer is required, therefore
the overall memory consumption is higher than the SSBO-based
approach.

7.2. Discussion and Comparison of Approaches

Tab. 1 gives an overview of the three implementation approaches
and their characteristics. For the VBO-based approach, no data
is transferred to VRAM initially (Fig. 5(d)) and therefore no ini-
tialization time is measured (Fig. 5(a)). On mapping computa-
tion though, all points have to be transferred to VRAM, result-
ing in the higher processing time, compared to the other two ap-
proaches (Fig. 5(b)). The average frametime is stable, only for
PCs with 20 million points, a small increase could be observed.
Thus overall, the VBO-based approach is capable of providing
interactive frame rates during the morphing itself, but has high
mapping computation costs and memory transfer rates before the
morphing can be performed. The SSBO-based approach improves
on this and is able to reduce the mapping computation costs sig-
nificantly while maintaining interactive frame rates. The initial-
ization time (Fig. 5(a)) increases with the PC size, as all points
are transferred to VRAM once during preprocessing. On mapping
recomputation, only a small buffer containing the mapping data
has to be transferred (Fig. 5(d)), which results in faster mapping-
computation times (Fig. 5(b)). The overall memory consumption
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Figure 5: Measurement results for the different morphing ap-
proaches and morphing animations are shown (a)-(c), while (d)
compares data transfer and VRAM consumption of the different
morphing implementations and test animations.

may be slightly higher compared to the VBO-based approach, due
to padding. The implementation using compute shaders is simi-
lar to the SSBO-based approach, with respect to initialization and
mapping recomputation costs. The overall memory consumption is
higher (Fig. 5(d)), as an additional result buffer has to be stored.
Using compute shaders, the frametime increases for larger PCs.
There are probably two reasons for this: (1) the compute pass in-
duces additional state changes. (2) the compute shader uses mul-
tiple SSBOs, which do not provide access as fast as a VBO. Nev-
ertheless, this approach has the advantage of high modularity, due
to the decoupling of morphing and rendering. This results in better
reusability and maintainability.

To summarize, the SSBO-based implementation is well suited
for rendering at interactive frame rates even when rendering large
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PCs. Increased modularity can be achieved by means of CS, but
interactive frame rates can only be provided for PCs smaller than
10 million points.

8. Conclusions & Future Work

This paper presents a GPU-aligned framework for rendering proce-
dural animations of PCs. The decoupling of animation and render-
ing techniques enables simultaneous combinations of different ani-
mations with real-time rendering techniques for PCs. We present
different application examples, such as attribute animations, ex-
plosion views, and PC morphing. The latter is explored in-depth,
and possible implementation approaches are described and evalu-
ated with respect to performance, memory usage, and modularity.
The results show that an implementation based on compute shader
provides high modularity, but is only feasible for smaller PCs. For
larger PCs, using a vertex shader in combination with a SSBO is
recommended.

This work can serve as a basis for advancements in several di-
rections, e.g., to develop and prototype new animation techniques
as well as for conducting further experiments and performance op-
timizations. Regarding this, the modularity offered by the compute
shader approach is also desirable for huge PCs. However, for huge
PCs the required frametime has to be reduced, to provide interactive
framerates. Here, different configurations (e.g., of global and local
workgroup sizes) could be evaluated. Additionally, compute-based
rendering, as proposed by Schütz et al. could be adapted and eval-
uated for feasibility. Further, additional user interaction techniques
could be explored in greater depth. Lastly and most important, the
constraints of our system should be investigated further. In litera-
ture, cluster-based approaches are often used for computing point-
to-point mappings. In the future, the system could be extended to
enable cluster-based mapping approaches as well. Also, the max-
imum PC size that can be loaded and used within the system is
currently limited by main memory.
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