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Abstract: 3D geovirtual environments, such as virtual 3D city and landscape models, can be used as scenery for visualiz-
ing thematic data. which can be communicated using suitable color mappings or hatch patterns. For rendering
purposes, these hatches patterns can be represented as image-based or procedural textures. The resulting qual-
ity of image-based textures, and thus the effective communication of the respective thematic data, is subject
to resolution and filtering artifacts. In contrast to thereto, procedural textures are not limited with respect to
resolution and can be filtered adaptively to achieve high visual quality. However, challenges in parametriza-
tion and design often hinders their application. To counterbalance these drawbacks, this paper presents an
interactive rendering technique that facilitates the application and design of procedural hatch patterns for the
mapping of thematic data to 3D geovirtual environments.

1 INTRODUCTION

In 1983, Bertin described the idea of disassembling
visual information into seven basic components he
denoted as visual variables, such as position, size,
and color (Bertin, 1983). These visual variables can
be combined to form specific patterns. A pattern can
be defined as a repetitive surface appearance that is
characterized by one or more visual variables.

A hatch pattern is a special kind of pattern that is
composed of regular strokes. The significant distin-
guishing features of hatch patterns are size, orienta-
tion, and texture. Most of these hatch pattern (also
known as hatches or hachures) have evolved histori-
cally due to restrictions of the paper medium. Nev-
ertheless, they can provide a sufficient distinction of
nominal data and enable a non-ambiguous mapping.
For example, thematic maps make use of hatch pat-
terns that represent certain feature types. In specific
application domains, these pattern are often standard-
ized (e.g., DIN ISO 128-50).

Despite its application in 2D cartography, hatch-
ing is sparsely used in 3D geovirtual environments
(3D GeoVEs), which can serve as scenery for com-
munication and visualization of geo-referenced data,
because of distortion effects caused by perspective
projections. Since the application of perspective pro-
jections implicitly define other visual variables (e.g.,
size and order), hatch patterns can be considered chal-

Figure 1: Examples for procedural hatch patterns applied
the a virtual 3D landscape model of the Grand Canyon (A).
Different colored hatch patterns are synthesized for differ-
ent parts of the model (C) and blended with an aerial image
of the regions (B).

lenging in 3D GeoVE specifically. Further, they are
useful in cases where, for example, color-only map-
pings are not sufficient enough or not possible (e.g.,
monochromatic displays). Many 3D GeoVEs, such
as landscapes and their generalized variants (Glan-
der and Döllner, 2007) feature a number of planar
surfaces that are suitable to display hatch patterns.
Therefore, they are potentially suited for using hatch
textures for data visualizing data as shown in Figure 1.
It displays a virtual 3D model of the Grand Canyon
with hatch textures that provide information about the
land usage.



There are basically two approaches to represent
hatches for rendering in 3D GeoVE: image-based tex-
tures or procedural-based textures. While image-
based or textures are easy to create, manipulate, and
render, they also exhibit the major disadvantage of
having fixed spatial resolution, which can yield sam-
pling artifacts. To counterbalance this, three ap-
proaches can be applied: first, one can use image-
based distance maps (Green, 2007) to improve sam-
pling. This approach requires a single texture per
hatch and impacts memory consumptions for a high
number of different patterns. Second, one can con-
vert an image-based hatch texture to a vector texture
representation encoded in raster-buffers. However, its
preprocessing and implementation is complex. Third,
procedural textures can be applied. In contrast to
image-based textures, procedural-based textures are
computed at runtime and not restricted in terms of
resolution and sampling. These properties qualifies
them for implementing hatch patterns in interactive
3D visualizations. Nevertheless, procedural texturing
suffers from a trade-off between its visual complexity
and complexity required for its description, i.e. the
more complex a procedural should appear the longer
is its code to describe. In terms of performance, this
results in higher runtime-complexity, thus slower ren-
dering. However, complex hatch patterns are hard to
describe procedurally.

This paper describes a method for composing and
rendering of hatch patterns in 3D GeoVE using pro-
cedural texturing. It introduces a layering concept for
creating complex hatch patterns by combining layers
of simpler ones. This also reduces code complexity
and facilitates reuse. However, using hatch patterns in
3D GeoVE become a challenging task because mod-
ification of position and viewing angle of the virtual
camera affect the on-screen appearance of patterns.
This may result in distracting, unpleasant effects, e.g.,
Moiré Patterns (Amidror, 2009). With respect to this,
the paper describes different techniques for counter-
balancing such effects.

2 RELATED WORK

This section focus on recent research on and appli-
cation of procedural textures in 3D GeoVE. Rost de-
fines procedural texturing as ”the process of comput-
ing a texture primarily by synthesizing rather than by
relying heavily on precomputed values” (Rost, 2006).
In contrast to image textures, procedural textures are
computed at runtime using vertex and/or fragment co-
ordinates.

Hatch pattern are of manifold applications in the do-
main of geovisualization and information visualiza-
tion in general. In cartography for example, hatches
are used for representing 3D topography on a 2D
map by displaying quantitative measures of the to-
pography’s slope and aspect (Kennelly and Kimer-
ling, 2000). Here, lines are drawn in the direction of
the steepest topographic gradient. This creates tonal
variations throughout the map, which are a form of
analytical hill-shading, creating a 3D impression of
the topography. Also geological illustrations in text
books make use of hatches to illustrate seismic data.
In (Patel et al., 2007; Patel et al., 2008) an approach
is presented for rendering such illustrations. There
are various techniques that can be used and combined
to generate procedural textures. This paper’s concept
is based on propagating a 2D pattern to a 3D space,
and thus generates a so called solid texture (Peachey,
1985). Prominent representatives of solid textures are
wood, granite, or marble textures, that often use noise
to create a natural look (Perlin, 1985; Lewis, 1989).
For mapping a texture to a 3D object, the surface of
that object must be parameterized with 2D texture co-
ordinates. During the mapping process the color of a
fragment is determined by mapping the fragment to a
texel in the image texture using these coordinates. In
contrast, solid textures use 3D (world) coordinates of
a fragment as input for their color computation.

3 PROCEDURAL PATTERNS

Based on preliminaries and requirements, this section
introduces a basic concept for hatching 3D objects in
3D GeoVEs.

3.1 Preliminaries

Assumptions & Requirements. To apply hatch
patterns to features of a 3D GeoVE, it is necessary
to enrich its geometry with additional per-vertex at-
tributes. In a preprocessing step, an unique object
identifier ID is computed, which enables the identi-
fication of a polygon in the programmable rendering
pipeline during runtime. For mappings independent
of geometric representation of features, e.g., per-pixel
mapping of a virtual 3D landscape model, an image-
based id-texture is used (Fig. 1.B). In addition, an
axis-aligned bounding box (AABB) for each feature
geometry is computed and stored as a per-vertex at-
tribute. The AABB enables the computation of tex-
ture coordinates during rendering (Sec. 3.3).



Standard texture mapping (Akenine-Möller et al.,
2008) that relies on per-vertex texture coordinates
is not always suited for creating consistent hatch
patterns. The results depend on a consistent tex-
ture parametrization of the object’s surfaces. Such
parametrization must be provided in advance and can
be hard to compute. Texture coordinates that are not
evenly spaced or discontinuous on object edges yield
inconsistencies in the rendered pattern. Further, a
hatch pattern should appear identically on each ob-
ject it is applied to preserve a distinctive mapping be-
tween pattern and data, i.e., the pattern is not allowed
to vary in scale or orientation between different ob-
jects. The presented approach uses a variant of pro-
jective texturing to address these two requirements.
Furthermore, the patterns should be applicable on ob-
jects in interactive applications dynamically. Hence,
the implementation must support real-time rendering
as well as a flexible mapping between feature iden-
tifiers and hatch patterns. To achieve the latter, the
approach enables the binding of a hatch pattern P to
a number of specific identifiers (ID). This mapping
is resolved during texturing using the programmable
graphics pipeline (Segal et al., 2010).

Terminology. A procedural texture or hatch pattern
P ∈ P of a feature or object instance with the unique
identifier id is defined as a polymorphic list of pattern
layer instances Ltype

i :

PID = Ltype
0 , . . . ,Ltype

n Ltype
i ∈ L Ltype

i = {ptype}
The definition of layer instances can be shared be-
tween different hatch pattern. The set of all hatch
definitions is denoted as P and the set of all layer in-
stances as L . The respective layer type can be one of
the following: type ∈ {hatch,glyph,noise}. A proce-
dural texture layer is defined using a set of type spe-
cific parameters ptype, which are discussed in the next
section. To synthesize complex patterns, different in-
stances of layer types can be combined to a single
pattern. Therefore each layer is attributed by a spe-
cific Boolean combination functions (e.g., OR, AND,
XOR), which enable arbitrary layer combinations.

3.2 Components of Procedural Patterns

We identified three main components, denoted as
layer types, as the major building blocks of complex
hatch patterns: linear hatch layer, glyph layer, and
noise layer. Their respective parametrization are pre-
sented in the remainder of this section. Each layer
type shares a common parameter set that comprises
(1) two orthogonal vectors~u,~v ∈R3 which define ori-
entation of a reference plane for the 2D hatch pattern,

(2) a combination operator (logical OR, XOR, AND),
and (3) a color.

Linear Hatch Layer. A linear hatch layer denotes
variants of linear hatch features such as solid or stip-
pled lines. It is one of the most used primitive for
representing hatches. Its parametrization comprises
the following aspects Lhatch = (s,w, p, t): a hatch scale
factor s defines how many lines should occur within
an interval, the hatch width w defines the line width in
relation to the space between, a stipple pattern p rep-
resents a bit mask describing the pattern of the stip-
ples, and a stipple scale factor t defines how often the
stipple pattern should occur.

Figure 2: Examples of
different glyphs layers
applied to feature types.

Glyph Layer. A glyph
layer Lglyph supports
the creation of complex
patterns that can be
hardly represented by
linear hatch layers, e.g.,
rounded shapes or sym-
bols. Glyph layers can be
represented directly using
image-based textures or
by distance-fields (Green,
2007) organized by texture atlases (Wloka, 2003).
In contrast to image-based textures, distance fields
provide significant visual improvements due to
the lack of aliasing artifacts during up-sampling
and reduces texture memory consumption. Glyph
layers organized in textures atlases can be efficiently
rendered using texture bombing or glyph bombing
rendering techniques (Glanville, 2004).

Noise Layer. To add irregularity to a hatch pattern,
a noise layer Lnoise can be applied. Conceptually sim-
ilar to a distance map, its represents gray-scale val-
ues g ∈ [0,1] that can be thresholded using a param-
eter ε ∈ [0,1] to convert it into a binary representa-
tion. Noise layer can be represented using (hardware-
accelerated) noise functions (Lagae et al., 2010) or
tileable noise textures (Perlin, 2002; Lewis, 1989).
The design space comprises varying noise frequen-
cies, a threshold, and a scale factor s for the generated
texture coordinates. For in 3D virtual environments,
anisotropic noise (Goldberg et al., 2008) can be used
to minimize perspective artefacts (Sec. 3.4).

3.3 Texture-Coordinate Generation

To support changes in the mapping of object geom-
etry to hatch patterns, the coordinates for texturing
and evaluation are computed procedurally based on



the AABB of each object. Here, a respective vertex
position Vi is first normalized according to its axis-
aligned bounding box AABBid = (LRF,URB), which
is defined using the coordinates of its lower left front
(LLF) and upper right back (URB) vectors:

Vi =
Vi−LLF

2 ·LLF+URB
The resulting normalized coordinates are interpolated
during rasterization and yield a texture coordinate for
each fragment, which is then used to compute the in-
dividual hatches and their combination.

3.4 Counterbalance 3D Projections

A major issue of applying hatching to interactive
3D GeoVE is to ensure the perception of patterns
– regardless of a 3D perspective projection transfor-
mation. For example, by zooming in and out, the
line width and in-between line distances vary with
an increasing distance to the virtual camera. This
is due to the single continuous scale encountered in
3D GeoVE, instead of discrete scales in 2D visual-
izations (Jobst and Döllner, 2008). Further, by ro-
tating the virtual camera, the hatch orientation can
change. When tilting the virtual camera, the pattern
will be distorted due to perspective compression. An
improper aspect ratio can also distort the slope of a
line so that the strokes look curved instead of straight.

All of the above may lead to ambiguity and an
inaccurate mapping of patterns to data. On the one
hand, it is naturally caused by perspective compres-
sion, on the other hand it hinders the correct and non-
ambiguous communication of the information en-
coded in the patterns, i.e., distinguishing and compar-
ing patterns at different scene depth becomes hard, es-
pecially for almost similar patterns. Further, if the in-

Figure 3: Decreasing distances between between linear
hatches can result in Moiré patterns.

between line distances of a hatch pattern becomes too
small, it interferes with the screen raster. That causes
a vibrant effect known as Moiré Pattern (Amidror,
2009) as shown in Figure 3. This effect is unpleas-
ant, yields temporal incoherency, and makes it hard
to identify the original pattern. The remainder of the
section describes approaches for minimizing, coun-
terbalancing, or avoiding these effects.

Fading Distant Hatch-Patterns. One approach for
counterbalancing Moiré effects is to omit the ren-
dering of hatch patterns in distant regions (Fig. 4(a).
Here, the distance to the virtual camera can be thresh-
olded (fading distance), and hatch patterns are faded
by smoothing the hatch density. This approach is sim-
ilar to the rendering of fog (Akenine-Möller et al.,
2008). However, this approach has a number of lim-
itations which prevents its application. Since the
Moiré effect appears stronger for patterns with higher
hatch frequency and larger hatch width, the effective
fading distance depends on the respective hatch con-
figuration used. This causes patterns of different fre-
quency to have different fading distances, which cre-
ate an inconsistent look-and-feel in the final visualiza-
tion. Using a suitable threshold, this approach avoids
the Moiré effect, but it will also provide more ambi-
tiousness to the hatch mapping. Further, it is chal-
lenging to find an adequate threshold that avoids the
creation of an Moiré effects but does not fade the pat-
tern too early.

Depth-dependent Hatching. Another approach
against the Moiré Effect is to avoid thick lines by
scaling the hatch distance depending on the particular
depth of the fragment. This can be achieved by com-
puting the normalized depth value of the fragment
and scale the pattern respectively. A result of that
method is depicted in Figure 4(b). The pattern in the
foreground remains the same as in Figure 4(a), but
in the background the distance between the hatches
is increased. By this means, the Moiré effect only
occurs for low viewing angles. Another advantage
of this technique is shown in Figure 5. While zoom-
ing, the distance between the lines in screen space
remains the same, i.e, independent of the zoom level.
It facilitates pattern recognition on every zoom level,
which is otherwise not possible because the hatches
become too small to be recognizable on a high zoom
level. However, this method also has a disadvantage:
The pattern is moving with the virtual camera, i.e.,
when the camera moves toward a fragment, the
relative depth value of that fragment changes. Hence
that fragment is either hatched or not, depending on
the camera position.



(a) Distance-based fading. (b) Depth-dependent hatching. (c) Screen-space hatches.
Figure 4: Three different approaches for compensating perspective distortion: distance-based fading (a), depth-dependent
hatching (b) and based on screen-space coordinates (c).

Screen as Frame-of-Reference. An other approach
represents the utilization of alternative texture coor-
dinates: instead of generating 3D textures coordi-
nates of the world space prior to geometry rasteri-
zation, the actual screen-space fragment coordinates
can be used to generate the hatch pattern. A visual-
ization using this approach is shown in Figure 4(c).
The patterns on the surfaces always look identical–
independent of zoom level, view angle or distance of
the fragment. This technique provides sufficient per-
ception and comparability of patterns and enables an
unambiguous mapping of patterns to data. However,
it also introduces the following texturing artifact: the
hatches do not move consistently with the objects they
are applied on during camera position changes. This
causes the same effect as using the depth-dependent
hatching. Further, a lack of perspective compression
makes it hard to create an impression of depth in the
scene. Furthermore, an additional shading model is
required to visualize the edges and surface charac-
teristics of 3D objects, because the pattern does not
adapt to the objects’ surfaces.

Figure 5: By scaling the hatch distance depending on the
depth the pattern stays almost consistent during zooming.

4 RESULTS & DISCUSSION

This section presents application examples and evalu-
ates their rendering performance.

Application Examples. The presented concept and
rendering technique can be used in various appli-
cations Despite texturing of virtual 3D landscapes
(Fig. 1), it is suitable for cell-based generalization
variants of virtual 3D city models (Glander and Döll-
ner, 2007). The abstraction of complex city geome-
try by creating generalized shapes yield a number of
flat surfaces that are qualified for applying hatches to
visualize data (Fig. 6). Another application of pro-
cedural hatches are 3D architectural models. Here,
hatch pattern can be used to display building mate-
rial according to a specific standard to match 2D con-
struction plans. Figure 7(a) shows an explosion view
of virtual 3D model of a reservoir dam with differ-
ent linear hatch pattern to visualize different materi-
als. It demonstrate the ability of the presented render-
ing technique to synthesis of solid textures (Peachey,
1985), i.e., hatch pattern that spread out consistently
over a 3D object’s surface. Figure 7(a) shows a ge-
ological profile with colored linear hatch pattern for
the visualization of soil types.

Performance Evaluation. We evaluated a pro-
totypical implementation based on OpenGL and
the OpenGL Shading Language (GLSL) (Kessenich
et al., 2010) using test data sets of different geomet-
ric complexity (Table 1), i.e., a varying number of
scene objects and different numbers of hatch layers.
The rendering and compositing of hatch layers is per-
formed using a single fragment shader program.

The performance tests are conducted using an In-
tel Core i7 620M processor with 2,66 GHz clock rate
and 8 GB of DDR3-1066 RAM using a NVIDIA GT
330M graphics card with 512 MB of video memory.
The test application runs in windowed mode at two



Figure 6: Applications of linear hatch patterns to a general-
ized virtual 3D city model.

different screen resolutions. The complete scene is
visible in the view frustum, and back-face culling is
activated. For each test, a total of 100 consecutive
frames are rendered and the average rendering per-
formance in frames-per-seconds is tracked. Table 2
shows the results of the performance evaluation.

The performance of the rendering technique de-
pends on the number of hatch layers defined per ob-
ject. With up to 10 layers for each object, the re-
sponse time remains within the bounds of real-time
interaction. With more layers defined, the response
time highly depends on the number of fragments that
are processed by the shader.

(a) Three different styles (left to right) for an exploded-view
visualization of a virtual 3D dam model that uses grey-scale,
linear hatch patterns.

(b) A geologival profile with colored linear hatches visual-
izing different layers of soil.

Figure 7: Applications of complex linear hatch patterns to
virtual 3D architectural and geological models.

Table 1: Geometric complexity of examplary 3D models.

Model #Obj #Vertices #Primitives

City Model 191 14,500 21,366
Dam 10 441 828
Grand Canyon 9 265,726 524,288
Profile 8 3,114 6,194

Table 2: Performance measurements in frames-per-second.

800×600 1280×960

City Model

5 layers 52.10 21.85
10 layers 41.69 17.66
40 layers 20.03 9.07

Geological Profile
5 layers 61.44 31.68

10 layers 60.59 24.64
40 layers 25.59 14.89

Dam
5 layers 61.06 24.84

10 layers 51.76 19.75
40 layers 22.42 9.11

Grand Canyon

5 layers 40.22 19.75
10 layers 27.96 12.66
40 layers 8.67 4.12

5 CONCLUSIONS

This paper presents a concept and interactive render-
ing technique for creating procedural texture pattern
for the visualization of 2D and 3D geovirtual envi-
ronments. It is based on a extensible layer concept
that can be easily edited and rendered using con-
sumer graphics hardware. We further analyzed short-
comings and visual artifacts of hatches applied in 3D
geovirtual environments and presented three differ-
ent approaches for counterbalancing these effects. Fi-
nally, a variety of application examples are presented,
followed by a discussion on performance and limita-
tions of the rendering technique.
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