
Visualization of Knowledge Distribution across Development Teams using
2.5D Semantic Software Maps

Daniel Atzberger, Tim Cech, Adrian Jobst,
Willy Scheibel a, Daniel Limberger b, Matthias Trapp c, and Jürgen Döllner

Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany
{daniel.atzberger, tim.cech, willy.scheibel, daniel.limberger, juergen.doellner}@hpi.uni-potsdam.de

{adrian.jobst}@student.hpi.uni-potsdam.de

Keywords: Topic Modeling, Software Visualization, Source Code Mining

Abstract: In order to detect software risks at an early stage, various software visualization techniques have been developed
for monitoring the structure, behaviour, or the underlying development process of software. One of greatest
risks for any IT organization consists in an inappropriate distribution of knowledge among its developers, as a
projects’ success mainly depends on assigning tasks to developers with the required skills and expertise. In this
work, we address this problem by proposing a novel Visual Analytics framework for mining and visualizing
the expertise of developers based on their source code activities. Under the assumption that a developer’s
knowledge about code is represented directly through comments and the choice of identifier names, we generate
a 2D layout using Latent Dirichlet Allocation together with Multidimensional Scaling on the commit history,
thus displaying the semantic relatedness between developers. In order to capture a developer’s expertise in a
concept, we utilize Labeled LDA trained on a corpus of Open Source projects. By mapping aspects related to
skills onto the visual variables of 3D glyphs, we generate a 2.5D Visualization, we call KnowhowMap. We
exemplify this approach with an interactive prototype that enables users to analyze the distribution of skills and
expertise in an explorative way.

1 INTRODUCTION

Visual Analytics for Software Data The complex-
ity of modern software development projects requires
careful coordination of all development activities,
which are usually managed using various interactive
tools with visualization capabilities. Therefore during
the entire development process, data from heteroge-
neous categories is generated and stored in respective
software repositories. For example, changes in the
source code made by the developers are represented
in a Version Control System (VCS), the progress of
development tasks is tracked within an issue tracking
system, defects are reported, assigned and managed
in a bug tracking system, and discussions on selected
topics are conducted in chat forums by the develop-
ers. These rich sources of data motivate the use of
machine learning techniques when mining software
repositories (Bird et al., 2015).

a https://orcid.org/0000-0002-7885-9857
b https://orcid.org/0000-0002-9111-4809
c https://orcid.org/0000-0003-3861-5759

Complementary to the analysis of software data
using machine learning techniques, Software Visu-
alization techniques can be applied to communicate
various aspects of the structure or behaviour of a soft-
ware system using graphical representations. Often,
the analysis and visualization go hand in hand, there-
fore being an example for the broader field of Visual
Analytics (Keim et al., 2008).

Examples for Software Visualizations supporting
program comprehension tasks or risk monitoring in-
clude treemaps based on the folder structure of source
code projects, where additional quantitative data about
a software’s quality or complexity is mapped to visual
variables (Bohnet and Döllner, 2011; Limberger et al.,
2019; Scheibel et al., 2020), circular bundle views
for displaying dependencies between source code
files (Trümper et al., 2012), trace visualization tech-
niques (Trümper et al., 2010) or software landscapes
displaying the semantic structure that is captured from
investigating the use of natural language in comments
and identifier names using topic models (Kuhn et al.,
2008; Atzberger et al., 2021a; Atzberger et al., 2021b).



Figure 1: KnowhowMap for the Bitcoin Core project(github.com/bitcoin/bitcoin) based on 2000 commits. Each developer is
displayed as a pawn figure, whose height displays its expertise level in the concept Cryptocurrency. The pointers display latent
source code topics.

Problem Statement According to Som-
merville (Sommerville, 2016) “The people working
in a software organization are its greatest assets”,
therefore it is of fundamental importance for any
IT organization to keep track of the distribution of
knowledge across its developer staff. The existing
approaches of analyzing knowledge of developers all
focus on specific aspects and do thus not allow a user,
e.g., a project manager, to investigate the distribution
of knowledge in an explorative way. An interactive
visualization technique should address the following
aspects:

1. Similarity between developers, given as a numer-
ical value between 0 and 1, which is the basis for
all questions on the distribution of skills.

2. Visualization of categorical attributes, as proper-
ties, such as the location or the team membership
are of discrete nature.

3. Visualization of numerical attributes, as the
level of skills in a concept or technology can be
measured on a numerical scale.

Approach and Contributions In this work, we pro-
pose a concept for mining and visualizing the distribu-
tion of knowledge across software organizations on the
basis of their activities stored in the VCS. By apply-
ing Latent Dirichlet Allocation (LDA), a probabilistic
topic model, on the commit histories of developers,
we can compare developers on a semantic level. A

subsequent application of dimension reduction tech-
niques generates a 2D layout for presenting the “simi-
larity” between the developers. Using a novel concept-
location approach based on Labeled LDA (LLDA),
we assign an expert level to each developer with re-
spect to general concepts, e.g., Machine Learning or
Blockchain. The so-generated data is then mapped
onto the visual variables of 3D glyphs, that leads a
visualization, we call KnowhowMap. An example for
a KnowhowMap for the Bitcoin project is shown in
Fig. 1. To summarize, we make the following contri-
butions

1. We present an approach for mining the expertise
of developers in general concepts using LLDA.

2. We present a 2.5D visualization technique, whose
layout reflects the semantic relatedness between
developers and whose glyphs can be used to dis-
play various data related to developer data.

The remainder of this work is structured as follows:
Sec. 2 describes preliminaries on data sets and concept.
Sec. 3 reviews related work with respect to mining
developer expertise and visualizing the semantic struc-
ture of source code. Our approach for applying LDA
and its variant LLDA for mining expertise is described
in Sec. 4. Sec. 5 presents our visualization approach.
Sec. 6 concludes this paper and outlines directions for
future work.

https://github.com/bitcoin/bitcoin


2 BACKGROUND

Application Context During the entire software de-
velopment process, a project managers task is to locate
expertise in the set of all developers involved in a
project in order to assign tasks to the person with the
respective skills. Furthermore, it is of major interest
for any IT organization to monitor the distribution of
its staff as a whole, as an imbalanced concentration
of knowledge can lead to significant risks (Cosentino
et al., 2015). In large, often globally distributed, teams
it is practically impossible to manually keep track of
every developers’ skill set. But even in small devel-
opment teams, which are often characterized by an
agile and thus dynamic team composition, this is a
non-trivial endeavor.

Data Set & Data Acquisition We focus our anal-
ysis on the source code activities of developers, as a
large part of a developer’s knowledge about code is
encoded in it in the form of comments or the choice
of identifier names. Thus, mining the commit history
of a developer, stored in the VCS, should enable us to
draw conclusions about his field of expertise.

Fig. 2 shows the size of the vocabulary for a set
of projects from GitHub that are associated with the
same general concept. The graphs show that only a
few representative projects are required until the size
of vocabulary stagnates. This shows that projects, with
the same underlying concept, share a relatively small
vocabulary. Therefore, the similarity between two
developers that are active in the same field, is probably
captured in their vocabularies.

Figure 2: Size of the vocabulary for number of GitHub
projects that are tagged with the same concept. Each curve
flattens after a few projects are added to the set of projects,
e.g., for the concept “machine learning” 16 projects are
required, and for the concept “database” only 2 projects are
required.

Use Cases & Requirements Our interactive visual-
ization technique addresses two main use cases.

UC-1: The proposed visualization should be able to
support a project managers daily work in locating
experts for general concepts among the developers.
It should facilitate the detection of developers that
are active in a general concept, and it should also
be able to relate developers to each other, i.e., if a
developer leaves a project.

UC-2: On a broader perspective our visualization
should be able to monitor the distribution of knowl-
edge across an entire IT organization in order to
detect risks at an early stage.

3 RELATED WORK

Our work mainly extends ideas presented by Linstead
et al. , who were the first to mine developer expertise
using probabilistic topic models (Linstead et al., 2007;
Linstead et al., 2009). In particular, a developer’s
expertise in topics was determined using the Author-
Topic Model (ATM), a variant of LDA (Rosen-Zvi
et al., 2004), on source code files. In combination
with Multidimensional Scaling (MDS), the similarity
between the developers can be visualized as a two-
dimensional scatter plot.

Saxena and Padanekar proposed an algorithm for
mining and visualizing a developer’s expertise in ab-
stracts concepts (Saxena and Pedanekar, 2017). By
annotating a developers import statements with tags
from Q&A-forums, e.g., Stack Overflow, each devel-
oper was assigned a level-of-expertise in the concept.
Based on the underlying hierarchy of concepts, each
developer was visualized using a treemap.

Greene and Fisher developed CVExplorer, an ap-
proach for mining and visualizing technical skills for
GitHub users (Greene and Fischer, 2016). Their ap-
proach extracts the commit messages, the changed
files, and the Readme files for each repository a user
has contributed to. By comparing the commit mes-
sages and the Readme files with a white list of skills,
and extracting the programming language from the
modified files, each developer is assigned a skill level.
The skills for each developer are displayed as an inter-
active tag cloud.

Kourtzanidis et al. trained the Microsoft Language
Understanding Intelligent Service (LUIS) to identify
expertise in two front-end frameworks and three .Net
technologies (Kourtzanidis et al., 2020). The authors
developed a tool, named RepoSkillMiner, which visu-
ally communicates a developer’s profile using basic
two-dimensional charts.



Other approaches for mining aspects of developer
expertise include familiarity with source code (Fritz
et al., 2014), libraries (Teyton et al., 2013), or abstract
concepts (Teyton et al., 2014).

Skupin was the first to apply dimension reduction
techniques for the task of displaying semantic relat-
edness between natural language documents (Skupin,
2004). Applying Self-Organizing Maps on the Bag-of-
Words (BOW) of abstracts from publications results
in a two-dimensional layout that was enriched using
cartographic methods.

Kuhn et al. presented a similar method for the
software visualization domain, to capture the “seman-
tic” similarity between source code files, i.e., files
that implement a common semantic should be placed
near each other (Kuhn et al., 2008; Kuhn et al., 2010).
Their layout is determined using Latent Semantic In-
dexing (LSI), a non-probabilistic topic model (Deer-
wester et al., 1990), together with MDS on the natural
language used in the source code files.

Atzberger et al. presented Software Forest, a 2.5D
visualization, whose layout originates from LDA and
MDS applied on the comments and identifier names
found in source code files (Atzberger et al., 2021a).
By placing 3D glyphs, e.g., trees, on the plane nu-
merical attributes associated to a source code file can
be displayed. Their layout approach was later ap-
plied to the 3D case, leading to a visualization of de-
velopment activities in source code using a Galaxy
metaphor (Atzberger et al., 2021b).

4 MINING DEVELOPER
EXPERTISE FROM SOURCE
CODE ACTIVITIES

As discussed in Sec. 2, the vocabulary used in the com-
mits is a strong indicator for a developer’s fields of
expertise. This motivates the use of techniques from
the Natural Language Processing (NLP) domain for
mining developer expertise. One of the most widely
used class of algorithms for mining software repos-
itories are topic models (Chen et al., 2016). In this
section, we detail our approach on how we apply LDA,
a probabilistic topic model introduced by Blei et al.
(Blei et al., 2003), and its variant LLDA, proposed by
Ramage et al. (Ramage et al., 2009), for modelling a
developer’s expertise based on his source code activi-
ties.

Data Preprocessing For each developer, we extract
his commit history from the VCS and store the entire
set of added and deleted files in a single document.

Before applying the respective topic model, the vocab-
ulary is required to be preprocessed to remove words
that carry no meaning and to decrease the size of vo-
cabulary. We adopt the preprocessing steps proposed
by Atzberger et al. (Atzberger et al., 2021a),i.e., (1)
we remove non-text symbols, e.g., commas or semi-
colons, (2) we split words at delimiters and according
to the Camel Case convention, (3) we remove stop
words of the English language and keywords of the
programming language, and (4) we lemmatize the vo-
cabulary.
After the preprocessing is performed, we store each
document in the BOW format, thus neglecting the or-
der of the single words and just storing their frequency.
From now on, when we refer to the commit history of
developers, we always mean the preprocessed BOWs.

Latent Dirichlet Allocation for Mining Devel-
oper Similarity Given a set of documents C =
{d1, . . . ,dm}, the so-called corpus, the goal of a proba-
bilistic topic model is to extract latent topics ϕ1, . . . ,ϕK
in the corpus by examining patterns of co-occurring
words. The number of topics K is a hyperparameter of
the model and needs to be set by the user initially. The
extracted topics are given as distributions over the vo-
cabulary V , which contains the terms from the corpus
C . In most cases, the underlying “concept” of a topic
can be derived from its most probable words (Markovt-
sev and Kant, 2017). Moreover, topic models learn
representations θ1, . . . ,θm of the documents as distri-
butions over the topics. The distributions θ1, . . . ,θm
are therefore descriptions of the semantic structure of
the document.

The core assumption of LDA is that the corpus
underlies a generative process, which is given by

1. For each document d in the corpus C choose a
distribution over topics θ ∼ Dirichlet(α)

2. For each word w in d

(a) Choose a topic z ∼ Multinomial(θ)
(b) Choose the word w according to the probability

p(w|z,β)
By associating each developer with its respective

commit history, the application of LDA extracts the
hidden concepts, as well as describes each developer
as a distribution over topics, i.e., each developer is
described as a high-dimensional vector of dimension
K.

Locating Concept Expertise using Labeled LDA
Direct application of LDA does not provide labels
for the extracted topics. Especially when applied on
source code files from a single project, the interpreta-
tion of topics requires an in-depth knowledge about a



Table 1: Most relevant terms (λ = 0.6) for six exemplary concepts.

Machine Learning Mobile Cryptocurrency Database Server Data Visualization

th android fe err span chart
tensor view order db request prop

self name symbol table server series
cuda com crypto test test axis
input get binance key header pixi
model param price name http gl
license conv trade value rct datum
output activity wallet opt body react
layer fpga exchange sql response point
size wishlist block error message style

project (Linstead et al., 2009). Pure LDA is therefore
not applicable for locating expertise among developers
in general concepts, e.g., Machine Learning, Mobile,
Front-End, or Cryptocurrency.

LLDA, a variant of LDA proposed by Ramage et al.
can be used to extract labeled topics (Ramage et al.,
2009). Assuming that each document d1, . . . ,dm in the
training corpus is provided with tags as meta informa-
tion, each topic is associated with exactly one tag. Vice
versa a document can only have a non-zero value in a
topic, when it is provided with the corresponding tag.
The idea behind our approach is to generate a corpus
of labeled software projects, that serve as representa-
tives for the general concepts. GitHub Topics1 provide
a tagging system for projects hosted on GitHub. Us-
ing the GitHub API it is possible to select all projects
that are tagged as examples for a general concept. To
extract the “real” software projects, we neglect all
projects that are additionally equipped with tags from
a white list that contains words like, awesome-list,
tutorial, or interview. To ensure, that the project is
actively maintained, we further filter all projects with
less than 20 open or closed issues. The remaining
projects are sorted according their stars2 in decreasing
order. For example the first four elements of the list
of projects for the concept machine-learning, are ten-
sorflow/tensorflow, keras-team/keras, pytorch/pytorch,
and scikit-learn/scikit-learn. To reduce the training
time, we reduce the size of the corpus utilizing the sec-
ond observation discussed in Sec. 2, i.e., the size of the
vocabulary for a concept flattens after a few projects.
We stop adding documents to a concept, when the vo-
cabulary increases less than 1 % within the last five
projects.

After selecting the projects for our training corpus,

1https://github.blog/2017-01-31-introducing-topics/
2https://docs.github.com/en/get-started/exploring-

projects-on-github/saving-repositories-with-stars

we join each source code file of a project to a single
document, undertake the preprocessing steps described
in Sec. 4 and store them as a BOW. The application
of LLDA then leads to a description of concepts of
interest as distributions over the vocabulary. However,
not always the most probable words are the best indi-
cators for a concept, e.g., words that would occur in
all projects very frequently would be assigned a high
probability in all topics. In order to increase the in-
terpretability of each topic, we compute the relevance
values for each term w in each topic k according to the
formula

r(w,k|λ) = λ · log(ϕw,k)+(1−λ) log

(
ϕw,k

pw

)
, (1)

where ϕw,k means the probability of the word w in topic
k and pw is the marginal probability of the word w in
the corpus (Sievert and Shirley, 2014). Tab. 1 shows
the most relevant terms, according to a balancing factor
of λ = 0.6 for the concepts Machine Learning, Mo-
bile, Cryptocurrency, Database, and Server, and Data
Visualization. The frequency of the 50 most relevant
terms for each concept are counted in the commit his-
tory of each developer. Based on the frequency, we
assign a discrete skill level between one and five to
each developer, according to his 20 %-quantile, i.e., a
developer who belongs to the 20 % of developers who
most often use the relevant words is associated with
skill level five.

5 VISUALIZATION APPROACH

Our visualization comprise two main parts: (1) the
computation of the layout, displaying semantic relat-
edness between developers, and (2) the mapping of
data to the geometric representations for each devel-
oper. The resulting visualization can be categorized as



Figure 3: Exemplary atlas of 3D glyphs for representing developers and topics. This atlas uses a diverging 5-color scale for the
chess figures and the boardgame pawns. The pointers can be used as landmarks, e.g., for pinpointing the locations of topics.

A3 ⊕R 2, i.e., three-dimensional graphical primitives
on a two-dimensional reference space (Dübel et al.,
2014). By adding interaction techniques, e.g., Zoom,
Rotation, and Picking, the user is enabled to explore
the map as part of the knowledge mining process.

Layout Technique The objective of our layout com-
putation, is to map the similarity of two developers
by Euclidean distance on a two-dimensional reference
plane. Although the developers can be compared with
each other on the basis of their topic distributions using
the Jensen-Shannon distance, the assumption is implic-
itly made here that all topics are orthogonal to each
other, even though topics are themselves distributions
over the vocabulary. The layout approach by Atzberger
et al. circumvents this problem. In detail, given the
latent topics ϕ1, . . . ,ϕK from the corpus of commit
histories, their dissimilarities can be measured using
the Jensen-Shannon divergence and stored in a square
matrix Λ. MDS applied on the dissimilarity-matrix
Λ results in K points ϕ̄1, . . . , ϕ̄K ∈ R2, such that the
Euclidean distance between two points ϕ̄i and ϕ̄ j repre-
sents the entry Λi j in the dissimilarity matrix (Cox and
Cox, 2008). The position for a developer, described
as distribution θ =

(
θ(1), . . . ,θ(K)

)
over the topics, is

aggregated as a convex linear combination

θ̄ =
K

∑
i=1

θ
(i)

ϕ̄i. (2)

Visual Mapping Our map-related representation
shows two types of objects, topics and developers.
We decided to use modelled 3D glyphs from Sketch-
Fab3 for their representation, as shown in Fig. 3. Our

3https://sketchfab.com/

system allows the user to manually choose a visual
mapping supporting his task.

Topics are presented as pointers, reminding on geo-
graphical landmarks. Their purpose is to locate experts
in abstracts topics hidden in the source code, support
navigating through the set of developers and help creat-
ing a mental map. The only visual variable is given by
the size and might be accessed for mapping the weight
of the topic for the corpus.

Developers are depicted either using pawns or
Chess figures. Using a diverging color scheme of five
colors, qualitative data can be mapped onto the visual
attribute color (Ware, 2019). Furthermore, the type
of figure, e.g., Chess:King or Chess:Knight, can also
be used for displaying qualitative information about
a developer, e.g., his rank within the software devel-
oping. Another visual attribute is the height of each
individual figure, which can be used for quantitative
data attributes. When we visualize the skill level of a
developer, we always make use of the height of each
individual glyph.

(a) Blue Print

(a) Blue Print

Figure 4: KnowhowMap showing a tooltip for a developer
to display its position and other attributes.

https://sketchfab.com/


Implementation Aspects Our data processing
pipeline is written in the programming language
Python. We use the lemmatizer provided by the library
Spacy4. We further use the nltk package5 for accessing
the stopwords of the English language. For training
an LDA model, we use Gensim6. The training corpus,
consisting of GitHub projects, required for training
an LLDA model is created using the GitHub V3 Rest
API. We use the LLDA implementation provided by
the Python library Tomotopy7, which implements the
algorithm according to the original paper of Ramage
et al. (Ramage et al., 2009).

With respect to the visualization prototype, the
glyphs are 3D models obtained from SketchFab, that
are further processed using Blender. Each model is as-
sociated with a description file (in JSON-format), that
specifies the attributes of each object. Our rendering
component is based on a WebGL-based point-plotter
written in TypeScript (Wagner et al., 2020) that is able
to process large data sets. Further, the prototype sup-
ports various interaction techniques, e.g., Zoom, Rota-
tion, and Picking single glyphs. Via hoovering over a
glyph, the user can access additional information via
a tooltip as shown in Fig. 4. Using the open-source
project webgl-operate8, our 2.5D visualization is able
to support labeling.

6 CONCLUSIONS

Mining developer expertise is of great interest for in-
dustrial software projects, as developers are the most
important resource for any IT organization. Existing
approaches focus on mining selected aspects of de-
veloper expertise, but do not enable the user, e.g., a
project manager, to explore the distribution of skills
and knowledge in an interactive way.

To address this problem, we propose a Visual Ana-
lytics framework for mining and visualizing developer
expertise. Each developer is modelled by applying
LDA on the commit history of all developers, thus
leading to a mathematical formalization. We further
train an LLDA model on a dynamically generated cor-
pus of GitHub projects to locate expertise in general
concepts among developers. The 2D layout of our vi-
sualization is derived from LDA and MDS and reflects
the semantic similarity between developers and latent
topics. We choose 3D glyphs as graphical represen-
tation of developers and topics. It is up to the user to

4https://spacy.io/api/lemmatizer
5https://www.nltk.org/
6https://radimrehurek.com/gensim/
7https://bab2min.github.io/tomotopy/v0.12.2/en/
8https://github.com/cginternals/webgl-operate

choose a mapping between the data related to devel-
oper expertise and the visual variables of the glyphs,
e.g., color, size and shape.

However, our visualization allows different map-
pings and it is unclear which mapping is best-suited for
each individual task. There, the most important ques-
tion, that needs to be addressed in future work, is the
study of the effectiveness of our approach. We plan to
conduct a user study, by interviewing project managers
of software projects from industry. We are optimistic
that real-world feedback could help to improve our
visualization technique.

ACKNOWLEDGEMENTS

We want to thank the anonymous reviewers for
their valuable comments and suggestions to improve
this article. This work is part of the “Software-
DNA” project, which is funded by the European Re-
gional Development Fund (ERDF or EFRE in Ger-
man) and the State of Brandenburg (ILB). This work
is part of the KMU project “KnowhowAnalyzer”
(Förderkennzeichen 01IS20088B), which is funded
by the German Ministry for Education and Research
(Bundesministerium für Bildung und Forschung).

REFERENCES

Atzberger, D., Cech, T., de la Haye, M., Söchting, M.,
Scheibel, W., Limberger, D., and Döllner, J. (2021a).
Software forest: A visualization of semantic similar-
ities in source code using a tree metaphor. In Pro-
ceedings of the 16th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications – Volume 3 IVAPP, IVAPP
’21, pages 112–122. INSTICC, SciTePress.

Atzberger, D., Scheibel, W., Limberger, D., and Döllner, J.
(2021b). Software galaxies: Displaying coding activ-
ities using a galaxy metaphor. In Proceedings of the
14th International Symposium on Visual Information
Communication and Interaction, VINCI ’21. ACM.

Bird, C., Menzies, T., and Zimmermann, T. (2015). The art
and science of analyzing software data. Elsevier.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of Machine Learning Re-
search, 3:993–1022.

Bohnet, J. and Döllner (2011). Monitoring code quality
and development activity by software maps. In Proc.
2nd Workshop on Managing Technical Debt, MTD ’11,
pages 9–16. ACM.

Chen, T.-H., Thomas, S. W., and Hassan, A. E. (2016). A
survey on the use of topic models when mining soft-
ware repositories. Empirical Software Engineering,
21(5):1843–1919.

https://spacy.io/api/lemmatizer
https://www.nltk.org/
https://radimrehurek.com/gensim/
https://bab2min.github.io/tomotopy/v0.12.2/en/
https://github.com/cginternals/webgl-operate


Cosentino, V., Izquierdo, J. L. C., and Cabot, J. (2015). As-
sessing the bus factor of git repositories. In 2015 IEEE
22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 499–
503.

Cox, M. A. and Cox, T. F. (2008). Multidimensional scaling.
In Handbook of Data Visualization, pages 315–347.
Springer.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407.

Dübel, S., Röhlig, M., Schumann, H., and Trapp, M. (2014).
2d and 3d presentation of spatial data: A systematic
review. In Proc. VIS International Workshop on 3DVis,
3DVis ’14, pages 11–18. IEEE.

Fritz, T., Murphy, G. C., Murphy-Hill, E., Ou, J., and Hill, E.
(2014). Degree-of-knowledge: Modeling a developer’s
knowledge of code. ACM Trans. Softw. Eng. Methodol.,
23(2).

Greene, G. J. and Fischer, B. (2016). Cvexplorer: Identifying
candidate developers by mining and exploring their
open source contributions. In Proceedings of the 31st
IEEE/ACM International Conference on Automated
Software Engineering, pages 804—-809.

Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlham-
mer, J., and Melançon, G. (2008). Visual analytics:
Definition, process, and challenges. In Information
visualization, pages 154–175. Springer.

Kourtzanidis, S., Chatzigeorgiou, A., and Ampatzoglou, A.
(2020). Reposkillminer: Identifying software expertise
from github repositories using natural language pro-
cessing. In 2020 35th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages
1353–1357.

Kuhn, A., Erni, D., Loretan, P., and Nierstrasz, O. (2010).
Software cartography: Thematic software visualiza-
tion with consistent layout. Journal of Software
Maintenance and Evolution: Research and Practice,
22(3):191–210.

Kuhn, A., Loretan, P., and Nierstrasz, O. (2008). Consistent
layout for thematic software maps. In Proc. 15th Work-
ing Conference on Reverse Engineering, WCRE ’08,
pages 209–218. IEEE.

Limberger, D., Scheibel, W., Döllner, J., and Trapp, M.
(2019). Advanced visual metaphors and techniques for
software maps. In Proc. 12th International Symposium
on Visual Information Communication and Interaction,
VINCI ’19, pages 11:1–11:8. ACM.

Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C.,
and Baldi, P. (2009). Sourcerer: mining and searching
internet-scale software repositories. Data Mining and
Knowledge Discovery, 18(2):300–336.

Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., and Baldi,
P. (2007). Mining eclipse developer contributions via
author-topic models. In Proc. 4th International Work-
shop on Mining Software Repositories, MSR ’07, pages
30:1–4.

Markovtsev, V. and Kant, E. (2017). Topic modeling of

public repositories at scale using names in source code.
arXiv CoRR cs.PL.

Ramage, D., Hall, D., Nallapati, R., and Manning, C. D.
(2009). Labeled lda: A supervised topic model for
credit attribution in multi-labeled corpora. In Proceed-
ings of the 2009 conference on empirical methods in
natural language processing, pages 248–256.

Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smyth, P.
(2004). The author-topic model for authors and doc-
uments. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, UAI ’04, pages
487–494. AUAI Press.

Saxena, R. and Pedanekar, N. (2017). I know what you
coded last summer: Mining candidate expertise from
github repositories. In Companion of the 2017 ACM
Conference on Computer Supported Cooperative Work
and Social Computing, pages 299–302.

Scheibel, W., Trapp, M., Limberger, D., and Döllner, J.
(2020). A taxonomy of treemap visualization tech-
niques. In Proc. 15th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications – Volume 3: IVAPP, IVAPP
’20, pages 273–280. INSTICC, SciTePress.

Sievert, C. and Shirley, K. (2014). Ldavis: A method for
visualizing and interpreting topics. In Proc. Workshop
on Interactive Language Learning, Visualization, and
Interfaces, pages 63–70. ACL.

Skupin, A. (2004). The world of geography: Visualizing a
knowledge domain with cartographic means. Proceed-
ings of the National Academy of Sciences, 101(suppl
1):5274–5278.

Sommerville, I. (2016). Software Engineering, volume 10th
Edition. Pearson Education.

Teyton, C., Falleri, J.-R., Morandat, F., and Blanc, X. (2013).
Find your library experts. In 2013 20th Working Con-
ference on Reverse Engineering (WCRE), pages 202–
211.

Teyton, C., Palyart, M., Falleri, J.-R., Morandat, F., and
Blanc, X. (2014). Automatic extraction of developer
expertise. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, pages 1–10. ACM.

Trümper, J., Bohnet, J., and Döllner, J. (2010). Understand-
ing complex multithreaded software systems by using
trace visualization. In Proceedings of the 5th Inter-
national Symposium on Software Visualization, SOFT-
VIS ’10, pages 133––142. Association for Computing
Machinery.

Trümper, J., Beck, M., and Döllner, J. (2012). A visual
analysis approach to support perfective software main-
tenance. In 2012 16th International Conference on
Information Visualisation, pages 308–315. IEEE.

Wagner, L., Scheibel, W., Limberger, D., Trapp, M., and
Döllner, J. (2020). A framework for interactive explo-
ration of clusters in massive data using 3d scatter plots
and webgl. In Proceedings of the 25th International
Conference on 3D Web Technology, Web3D ’20, pages
31:1–2. ACM.

Ware, C. (2019). Information visualization: perception for
design. Morgan Kaufmann.


