The Visual Computer
https://doi.org/10.1007/s00371-022-02518-x

ORIGINAL ARTICLE l‘)

Check for
updates

Controlling strokes in fast neural style transfer using content
transforms

2

Max Reimann'(® - Benito Buchheim' - Amir Semmo?(® - Jiirgen Déllner! . Matthias Trapp’

Accepted: 3 May 2022
© The Author(s) 2022

Abstract

Fast style transfer methods have recently gained popularity in art-related applications as they make a generalized real-
time stylization of images practicable. However, they are mostly limited to one-shot stylizations concerning the interactive
adjustment of style elements. In particular, the expressive control over stroke sizes or stroke orientations remains an open
challenge. To this end, we propose a novel stroke-adjustable fast style transfer network that enables simultaneous control
over the stroke size and intensity, and allows a wider range of expressive editing than current approaches by utilizing the
scale-variance of convolutional neural networks. Furthermore, we introduce a network-agnostic approach for style-element
editing by applying reversible input transformations that can adjust strokes in the stylized output. At this, stroke orientations
can be adjusted, and warping-based effects can be applied to stylistic elements, such as swirls or waves. To demonstrate the
real-world applicability of our approach, we present StyleTune, a mobile app for interactive editing of neural style transfers
at multiple levels of control. Our app allows stroke adjustments on a global and local level. It furthermore implements an
on-device patch-based upsampling step that enables users to achieve results with high output fidelity and resolutions of more
than 20 megapixels. Our approach allows users to art-direct their creations and achieve results that are not possible with
current style transfer applications.

1 Introduction In this domain, Neural Style Transfers (NSTs) have gained

large popularity, primarily due to their ability to transfer

Image-based artistic rendering methods stylize images with
expressive stylistic effects [37], often resembling a real-
world artistic style. Typically, these methods have been
engineered in the form of style-specific algorithms [24].
With the advent of deep network-based learning, however,
automatically learning new styles by example has enabled
impressive results [18,40]. Therefore, machine learning-
based techniques for image stylization have received sig-
nificant attention in both research and end-user targeted
applications. In particular, they have become essential tools
in mobile applications for easy-to-use, casual creativity-
targeted image editing and filtering [1].

B Max Reimann
max.reimann @hpi.uni-potsdam.de

Amir Semmo

amir.semmo @digitalmasterpieces.com

Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

DigitalMasterpieces GmbH, Potsdam, Germany

Published online: 08 June 2022

artistic styles of a reference image to target images, and to
perform on resource-constrained mobile devices. NST was
introduced as a non-interactive, one-shot stylization tech-
nique, mainly due to its underlying CNN being a black-box.
While NST has been applied both in casual and professional
image-editing applications such as Photoshop [7], they have
thus been mostly limited to so-called one-click solutions.
At this, pre-trained styles are typically applied uniformly to
the input image without providing lower-level control that
goes beyond one-shot stylizations, thus limiting the artis-
tic freedom and expression often sought by artists [16,37]
and prosumers of image stylization applications [22]. So far,
only a few approaches for interactive low-level control over
NST have been proposed, and these often only consider uni-
variate style-element adjustments, thus making composable
and individualistic editing workflows impracticable. In par-
ticular, current applications lack sophisticated control over
perceptual elements of a style, such as stroke directions or
stroke granularities.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-022-02518-x&domain=pdf
http://orcid.org/0000-0003-2146-4229
http://orcid.org/0000-0002-1553-4940
http://orcid.org/0000-0003-3861-5759

M. Reimann et al.

(a) Content & style

(b) Global transfer

(e) Content & style (f) Global transfer
Fig. 1 Multi-level adjustable style transfer. A global stylization b is
locally adjusted by increasing stroke size and intensity (c). A high-
fidelity version d is then generated by style-guided upsampling of ¢ by
a factor of 3 to a resolution of 3200 x 3200 pixels. Reversible con-

(g) Orientation adjustment

(c) Local adjustments

NI

N\ Y
AN

(h) Wavy stroke (i) Swirly stroke

tent transformations are used to adjust stroke orientation (g), and can
induce warp-based effects such as wavy (h) or swirly (i) stroke patterns.
(content image (a) © Shutterstock, used with permission)

Reversible Content
Transformation

Adjustable NST
Network

C.2
||-|
1

Orientation Control, Warping,
Local Deformation, ...

Stroke Size,
Style Intensity

Output

aglam

e L T

Interactive Local Control C.4

atch-based Upsampling C.5

— @ : Modes of Control C.1

Fig. 2 Overview of our system and contributions. Our method intro-
duces several modes of NST control through content transformations
and an adjustable NST network. The interactivity of our method is

In this work, we present an approach! for multivariate
editing of NSTs using a novel feedforward style transfer
network for global and local control over style elements.
Using this approach, style elements such as stroke granular-
ity, orientation, or intensity can be interactively adjusted and
composed, which essentially evolve NSTs into art-directable
image-stylization tools. Furthermore, we introduce the con-

1 https://github.com/MaxReimann/stroke-adjustable-nst-transforms.

@ Springer

demonstrated by a mobile application that achieves high-fidelity results
by combining local control with patch-based upsampling

cept of reversible input transformations that enable complex
and individualistic image style element adjustments (e.g.,
element warping) without the need for architecture adjust-
ments or network retraining (Fig. 1). We validate our concept
by presenting StyleTune, a mobile app for interactive editing
of NSTs. In addition to interactive multivariate control, our
app implements patch-based upsampling of edited results
to create high-resolution output renditions using on-device

https://github.com/MaxReimann/stroke-adjustable-nst-transforms

Controlling strokes in fast neural style transfer using content transforms

processing (Fig. 1). An overview of the above system, com-
ponents and contributions is shown in Fig. 2.

To summarize, this paper makes the following contribu-
tions:

C.1 A method for controlling multivariate aspects of style
transfer, such as stroke orientation, stroke size, or style
intensity with a single neural network.

C.2 A novel two-stream NST network architecture for effi-
cient and highly variable stroke-size control.

C.3 A general, network architecture-independent method
for global and local style element control in feedfor-
ward NSTs using reversible input transformations.

C.4 A mobile demonstrator app for interactive level-of-
control editing of multivariate NSTs.

C.5 An implementation of on-device processing for patch-
based upsampling of style transfer results for high-
fidelity outputs of 20 Megapixels (Mpixs).

This article represents an extension to our Cyberworlds
2021 conference paper [34]. In addition to the contribu-
tions C.1, C.2 and C.4 introduced in [34], we extend this
work by generalized reversible transformations (C.3—see
Sect. 4) and a discussion of an on-device implementation of
patch-based upsampling as a case study (C.5—see Sect. 5.3).
Furthermore, this article provides an extended evaluation
(Sects. 7.1 and 7.3) including an ablation study for the net-
work architecture (Sect. 3.5).

The remainder of this paper is structured as follows. Sec-
tion 2 reviews related and previous work on controllable
NST approaches. Section 3 describes our adjustable net-
work architecture and its modalities of control. Section 4
introduces the concept of reversible editing transforma-
tions. Section 5 gives an overview of our interactive editing
pipeline, and outlines implementation aspects of our mobile
app. Section 6 briefly explains the structure and capabilities
of the user interface provided by our mobile app. Section 7
shows and discusses exemplary results and application exam-
ples. Finally, Sect. 8 concludes this paper and provides a
prospect on future work.

2 Related work

NST, introduced in the seminal work of Gatys et al. [10],
optimizes feature statistics of a target image to match content
and style statistics which are extracted from the activations
of a Convolutional Neural Network (CNN). In particular, the
Gram matrix over a set of features of the VGG [38] network
is used as a statistical representation of style, and the differ-
ence between target and style image statistics is minimized
during optimization. However, this optimization process is
computationally expensive and thus unsuitable for interactive

and mobile environments. To alleviate this limitation, several
approaches for fast style transfer have been published [18]. In
general, these methods train an image transformation CNN
to directly generate outputs in a forward pass of the network,
such as the popular fast style transfer network architecture
introduced by Johnson et al. [19]. While this approach is only
able to represent a single style per trained network, follow-up
works introduced architectures that are able to represent mul-
tiple styles [48] or arbitrary styles [13,15,25] using a single
network.

However, increasing the style-representation capacity of
a network generally represents a trade-off in quality, mem-
ory, and run-time performance versus single-style networks
[17,35]. In mobile applications, single-style-per-network
approaches have thus remained the most suitable and preva-
lent network architecture (e.g., refer to Prisma [31] and
Becasso [32]). While most style transfer methods seek to
achieve plausible results on a global level without requir-
ing user interaction, several approaches enable control over
perceptual elements of the output to a varying degree [18].
An overarching goal has been to either directly or indirectly
control semiotic aspects originating from artwork produc-
tion [37]. Gatys et al. [10] demonstrate that adjusting the
weighting of loss terms in the optimization method can con-
trol the style content trade-off, and adding a histogram loss
term can achieve a form of color control [11]. Wu et al. [43]
add a direction-aware loss term to control the orientation of
strokes.

While these optimization-based approaches can flexibly
be extended to other forms of control by adding further loss
terms, control in feedforward network-based approaches is
generally less flexible. It is either achieved by explicitly
adapting the network architecture to allow for a particular
degree of control or by taking advantage of an inherent prop-
erty of the network. For example, arbitrary style transfer
networks such as adaptive Instance Normalization (adaIN)
[15], inherently allow control over stroke sizes by resizing the
input style image, whereas the stroke size is fixed in single-
style networks [19].

For explicit control over stroke sizes, Jing et al. [17] pro-
pose a multibranch network architecture that is trained on
multiple, discrete stroke sizes that are then encoded in a
stroke pyramid in the network. Yang et al. [45] extend the
stroke pyramid to arbitrary style transfer. Yao et al. [46]
propose an arbitrary style transfer method that furthermore
uses an attention-based mechanism for multi-stroke transfer.
Reimann et al. [36] achieve interactive control over the spa-
tial application of different styles using a multi-style network
with an additional consistency regularizer loss. Similarly,
our approach also extends the architecture of a feedforward
style transfer network with runtime controls. However, in
contrast to previous approaches, our architecture enables
multiple, complementary modes of control and the combina-

@ Springer

M. Reimann et al.

tion thereof while being more efficient with respect to runtime
and memory consumption.

3 Stroke-adjustable network

We propose an adjustable style transfer network for simulta-
neous control of stroke size and style intensity. Our network
is trained to reproduce a single style to achieve both high
quality and performance on mobile devices. In the follow-
ing, we analyze the underlying principles of our method and
give details on the architecture and training approach.

3.1 Preliminary analysis

One of the key differences between NST and algorithmic-
based stylization techniques is that elements of the style,
such as textures and strokes, are not explicitly defined but
rather implicitly learned from matching Gram matrices in the
VGG [38] feature space. The generated microstructures that
reflect perceptual elements of the style are denoted as stroke
textons [49]. They serve as an entangled and implicit repre-
sentation of several painterly concepts, such as brush size,
orientation, or applied pressure, which underlie the artis-
tic formation process of the input style image. Controlling
strokes thus refers to the local adjustment of stroke textons
[48] [17], for example, through affine transformations, defor-
mations, or intensity changes. The visual representation of
strokes is determined solely by the learned style statistics.

Previous work on stroke size control in NST [17] uses
the scale sensitivity of CNNs to encode different stroke sizes
by using multiple scaled versions of a style image during
training. As the receptive field size of neurons in the VGG loss
network varies with input resolution, the extracted feature
statistics reflect the stroke texton scale of the style image.
Similarly, also the receptive field of the style transfer network
influences the stroke size; running inference on larger images
will thus result in smaller strokes in the output.

Similar to the scale variance, CNNs are also not invariant
against the rotation of the input. For example, forwarding
a rotated image through an image recognition network can
yield different results than using the unrotated input, as neu-
rons have been trained to activate on a particular orientation.
Analogously, when passing a rotated image through a style
transfer network and rotating the output back to its original
orientation, strokes in the output will appear to be rotated
by the same amount. Our proposed method makes use of the
scale- and rotation-sensitivity of CNNs to control multivari-
ate aspects of feedforward style transfer.

@ Springer

3.2 Parameter mapping

Stroke size and style intensity control are combined in the
proposed network architecture by mapping the parameters to
different input modalities. We present this parameter map-
ping (contribution C.1) in the following. Stroke adjustments
from reversible transformations (Sect. 4), such as stroke ori-
entation control, on the other hand, are network-independent
and thus do not require any architecture considerations.

3.2.1 Stroke-size control

Our architecture makes use of the scale dependency of
receptive fields (Sect. 3.1) by predicting on dynamic input
resolutions dependent on the desired stroke size. While the
naive approach of downsampling an image according to a
stroke size factor Ag, applying a style transfer and upsampling
back to the original resolution works in principle, the output
loses details and sharpness, as Jing et al. [17] show in an abla-
tion study. The key idea (C.2) of our proposed architecture
is therefore to combine dynamic input scaling with high-
frequency details that are extracted from the original input
image (refer to Sect. 3.3). The stroke branch hereby operates
on the input—dynamically downscaled by a user-defined fac-
tor As—to effectively control the size of the receptive field,
while the high-frequency branch input resolution remains
fixed. Larger downscaling Ag generate larger, more promi-
nent strokes in the output image (Fig. 3).

3.2.2 Style-intensity control

The style intensity parameter is mapped to feature normal-
ization layers parameters, similar to approaches for arbitrary
style transfer based on instance normalization [8,15]. Specif-
ically, Dumoulin et al. [8] proposed a Conditional Instance
Normalization (CIN) layer that learns separate parameters S
and y; for each style s:

Z=Ys (x_—M(X)) + Bs,

o(x)

where (£ (x) and o (x) refer to the mean and standard devia-
tion taken across the spatial dimensions of input features x.
These CIN layers are used throughout the network, s and
ys are then selected at runtime to generate a particular style.
Further, Huang et al. [15] show that these parameters can be
adaptively extracted from an arbitrary style image at infer-
ence time, without requiring to previously train the specific
style, yielding adalN layer. Keras et al. [20] further show that
the adalN generalizes to a wider range of tasks as its param-
eterization can be used in Generative Adversarial Networks
(GANSs) to control facial feature generation.

Controlling strokes in fast neural style transfer using content transforms

Fig.3 Results obtained by
variations of stroke size Ag and
style intensity A1 parameters

Ar =0.01

To represent style intensity in the network, similar to
Babaeizadeh et al. [2], we predict the set of all CIN param-
eters ® = {«q, B1, 2, B2, ...} from a given style intensity
factor A1. Hereby, @ is linearly regressed as:

O =Wir+b,

where weights W and biases b learned during network train-
ing. Increasing the style intensity A1 € [0, 1] generally yields
more visible texture marks, stronger abstraction of content
and more prominent strokes in the output (Fig. 3).

3.3 Network architecture

Our proposed adjustable NST network architecture is shown
in Fig. 4. The network encoder consists of two branches, a
dynamic/low resolution branch for learning the stylization
operation and a high-resolution branch for high-frequency
detail extraction, the outputs of both branches are then com-
bined in a feature merging module. The low-resolution input
branch is based on the fast style transfer architecture of John-
son et al. [19] using residual-blocks [14], where instance

normalization layers are replaced by CIN layers for style
intensity control. Inputs to the low-resolution branch are
downsampled by the stroke size factor Ag, outputs of the
branch are then dynamically upsampled back to the origi-
nal resolution. The branch that receives the high-resolution
image consists of a set of relatively lightweight layers that
extract high-frequency details. Outputs of both branches are
merged together by concatenating features and passing them
through two convolutional layers. While more sophisticated,
bilateral methods of merging the information streams are
possible, they do not necessarily yield better results, as we
show in an ablation study (Sect. 3.5).

3.4 Network training

During network training, we use the style loss £¢ and con-
tent loss L. as defined by Gatys et al. [10] over layers of
a VGG-19 network [38] pre-trained on ImageNet. The net-
work is trained on the MS-COCO dataset [28] (cropped and
rescaled to 512 x 512 pixels) for 4 epochs using the Adam
optimizer [21]. To learn different stroke sizes, the stroke
size factor Ay that determines the downsampling of the input

@ Springer

M. Reimann et al.

| v

’ Downsampling ‘ 5x5 conv, 32 Style Intensity 4,

t CIN

} B
High-Resolution Stroke
Input Image 7~ Size kg

3x3 conv, 64, /2
CIN <«—— FC

3x3 conv, 128, /2

High-Resolution

Input Image 7 CIN 4,—
l repeates Y
3x3 conv, 32 3x3 conv, 64, x2

CIN CIN <]

v v

3x3 convy, 32 3x3 cony, 64, x2
CIN CIN <«

v

’ Dynamic Upsampling

Decoder D
Feature f; Merging ‘

v

3x3 cony, 32

v

9x9 cony, 3

v

Output Image 1,

Fig. 4 Adjustable style transfer network architecture. The encoder E
processes a low-resolution version—downsampled by stroke size As—
and high-resolution version of the input content image /¢ in two separate
branches. Resulting features f; are merged in the decoder D. Residual
blocks (depicted in orange, showing kernel size, channels and scaling
factor) use CIN layers, where normalization constants «, 8 are predicted
from the style-intensity factor Ay using a fully-connected layer

image is alternated between factor 2 and 4 and the corre-
sponding style image is scaled by the same factor. While the
network only observes discrete scaling steps during training,
Ag can be chosen from a continuous range during inference.
Furthermore, style intensity is sampled from a uniform dis-
tribution A1 € U (0, 1) during training, and the style loss term
is weighted by the same amount, i.e., L = L. + A1Ls. Model
training is implemented using PyTorch [33].

3.5 Feature merging ablation

Merging high-resolution and low-resolution information
streams can be formulated as learning joint bilateral upsam-

@ Springer

pling [23], i.e., high-resolution image features act as local
detail guidance to the outputs of the stylization branch. Sev-
eral methods for joint information filtering in CNNs have
been published, such as deep joint filtering [26] or Deep
Guided Filters (DGF) [44], which is also evaluated on photo-
graphic style transfer, as well as pixel adaptive convolution
[39]. To compare to our baseline, we trained our network
using these three methods in the feature merging module,
respectively. Only DGF were able to execute at an accept-
able resolution for style transfer (> 10242 pixels), especially
with respect to the memory limitations of mobile devices.
In Fig. 5, we compare baseline concatenation to the DGF
[44]. The convolutional DGF;, variant is applied with the
high-resolution image as guidance (Fig. 5b) and the style
image as guidance (Fig. 5¢). We also compare to the DGF¢
variant with learned guidance maps (Fig. 5d). Although the
DGF upsampling methods can transfer colors and coarse
structures from the candy style image, they are not able
to produce complex style elements. Given the additional
runtime penalty they incur, we thus find that simple concate-
nation of features (Fig. 5a) yields results with more expres-
siveness than sophisticated bilateral upsampling methods
such as DGF.

4 Reversible transformations

As CNNs are not invariant against input transformations
such as scale and rotation, these could be used as a mecha-
nism to manipulate style transfers, as discussed in Sect. 3.1.
Specifically, we hypothesize that there is a set of reversible
geometric image transformations that can modulate stroke
textons by application to the input image and reversal in
the style transfer output (contribution C.3). Editing using
reversible transformations is formally defined as

Io = R™'T(RIc),

where T is a style transfer network and R is the reversible
transformation. Note that 7 is not constrained to the network
architecture introduced in Sect. 3 as it relies solely on image
manipulation to the network input and output images, and
can thus be applied to any feedforward style transfer net-
work. Modulation of outputs is only possible if the images
transformed using R create differing neuron responses in T’
compared to their untransformed inputs. For instance, for
affine global transformations R, the neuron responses can
only be affected by rotation, scaling and shearing, while
translation or mirroring, on the other hand, is of no effect
due to the shift invariance of CNNs. In addition to affine
transformations, nonlinear global and local transformations
of structure can be used for output modulation. As such, in
the following we further describe stroke rotation as an exam-

Controlling strokes in fast neural style transfer using content transforms

(a) Concat (b) DGF

(c) DGF reverse

(d) DGF map

Fig.5 Effect of different branch-merging operations on scale-adjusted transfer by the Candy style example

(a) No warping (b) Wave warp

o 2 e

(c) Swirl - “Delaunay” style (d) Swirl - “Starry Night” style

Fig. 6 Reversible global warping can be used for stroke manipulation. In b, wavy strokes are created by reversible sinusoidal warping. In ¢, d, a

stroke swirl is created by using a reversible swirl warp

(a) Content & Style

(b) 7 = 0° rotation (c) 7 = 45° rotation

Fig.7 Stroke orientation change by a reversible content rotation

ple of a global affine transformation and global and local
(non-parametric) image warpings as examples of reversible
local structure transformations (Fig. 6).

4.1 Stroke orientation

As CNNss are not rotationally invariant, reversible input rota-
tions can be used to adjust stroke texton orientations. Thus,
the reversible transformation R is a rotation matrix R; around
angle 7, with cropping and padding applied as necessary. To

achieve a local orientation editing given our adjustable net-
work (Sect. 3), strokes in the output image can be oriented
with respect to angles t; for i different local orientation edits
as follows:

fi = E[pad(RyIc) |
Io =crop [D (X, R; ')]

where the input image Ic is rotated by 7; degrees using Ry, .
Whitespace resulting from the rotation is filled using reflec-
tion padding. To obtain stroke features f; for a particular
rotation, this image is then passed through the encoder E. The
induced rotation by 7 is then reverted (f, =R, 1). Fea-

tures f‘, of different stroke orientations can then be blended
using a spatial mask and passed through the decoder D to
obtain a stylized image I;, the result is cropped back to the
original extent. In the resulting image /o, stroke textons are
thus oriented by angle 7 (Fig. 7).

@ Springer

M. Reimann et al.

set source points set target points warp output

\(\- x

Reversible Warping output

Fig.8 Perspective adjustment of style elements using thin-plate spline
warping. Users can adjust the warp using landmark mappings (green
dots)

4.2 Global warping

A global pixel mapping is a form of image warping, that
relates the source image coordinates u, v to destination coor-
dinates x, y using a global, parametric function R.

For example, a sinusoidal wave function can be applied to
the style elements (c.f. Fig. 6b) using the following mapping:

. (27mv
x(u,v) =u—+asin| — | +2smw and y(u,v) =v,
p

where a is the amplitude, p is the period, and s is the phase
shift. Interpolation of parameters over time can be used to cre-
ate animated outputs. Inversion of the mapping is achieved
by x ' (u, v) = 2u—x(u, v). Similarly, other mapping func-
tions such as swirl (c.f. Fig. 6¢) can be used to transform style
elements. Warping functions thus posess a high degree of
controllability over geometric arrangement of strokes. Using
our proposed adjustable network (Sect. 3) as the style trans-
fer network 7 in the reversible transformation furthermore
enables an additional level of control over strokes through
stroke size and intensity adjustment (As and Ap). For this,
both the high-resolution and low-resolution input images are
transformed by the warping function.

4.3 Local (non-parametric) warping
While global mappings can generate a range of interesting

effects, they are limited to predefined function mappings
and cannot be adopted by the user to transform local image

@ Springer

content, e.g., based on landmarks. For this, we implement
non-parametric warping using thin-plate spline interpolation
as proposed by Bookstein et al. [5], which can be controlled
given source and destination landmarks as shown in Fig. 8.
As thin-plate splines are generally not invertible analyti-
cally, we use an iterative solver [12] based on Newton’s
method for inverting the transform. However, not every warp
is reversible; if the information loss is too high (e.g., many
pixels folded onto a single pixel), solving the inverse fails.
In this case, the last landmark added by the user is reverted,
and a warning is shown.

5 Interactive NST control on mobile devices

We integrate the previously introduced concepts for multi-
level stroke control into a holistic pipeline for interactive style
transfer. Figure 9 shows an overview of the components and
data flow. To demonstrate the applicability of this approach
in an end-user-focused context, we implement the StyleTune
app for interactive style transfer editing (contribution C.4).
It enables control over strokes configurations in NST on a
global and local level, in particular over stroke size, orienta-
tion, intensity, and local deformations using the previously
described approaches.

5.1 Overview of processing stages

The editing and processing pipeline in StyleTune (Fig. 9)
comprises the following main stages:

Stroke-Feature Computation: Stroke features f; are com-
puted for different stroke parameters based on the content
input image Ic using the encoder network E trained on
the style image Is. Before passing Ic through the net-
work, a reversible transformation R can be applied (e.g.,
rotation by angle 7).

Real-time Preview Generation: To enable interactive local
adjustments, a real-time preview Ip is generated by
image-based blending of intermediate results /; obtained
from the decoder network D according to the spatial mask
Ivi. Any applied input transformations R are inverted
(R™") after blending.

Local-adjusted NST Generation: To seamlessly blend
between several different stroke-size edits, model-space
blending of features f; based on Iy is performed, The
resulting stroke feature map F is then jointly decoded by
D and again followed up by transformation inversions
R7L

High-resolution Upsampling: Optionally, high-resolution
outputs can be obtained through patch-based upsampling
[41] of Io. The upsampling step is executed on-device
and progressively refines the image.

Controlling strokes in fast neural style transfer using content transforms

Input Data Stroke-Feature Computation

Encoder TSR (T freidag
Network E I SN

Content Image I Stroke Features f;

Decoder
Network D

Real-time Preview Generation

g e R W

Intermediate Images I;

Image-based
Blending

Feature
Combine ; f;

P

Style Image I

Spatial Mask 7,

Local-adjusted NST Generation

Decoder L Patch-based
Network D ek b NST
Output Image 1,

High-res Output Generation

Fig.9 Overview of the processing stages, components, and data flow for the interactive editing approach

5.2 Local editing of image regions

While encoder and decoder execution is fast at approx. 100
ms for 1 Mpix images, the response time would not allow for
a smooth and interactive experience. Therefore, intermediate
results /; and features f; are pre-generated for several stroke
sizes or rotations. The spatial mask /y is created interactively
by the user and continuously blends pre-computed results
according to I in image space to generate a preview Ip.

While the presented adjustable network architecture works
well for global adjustments and large-scale local adjustments,
patterns on different stroke levels are generally not placed
consistently, i.e., a swirly brushstroke from Van Gogh’s
“Starry Night” might be generated at differing locations when
generating images at different stroke scales. This limita-
tion originated from the feedforward networks’ activation
and stylization response depending on the scale of the input
(Sect. 3.1). To overcome this limitation in StyleTune, we add
the architecture of Jing et al. [17] as an option for detail
control in scenarios where strokes are expected to flow seam-
lessly between different local adjustments. Style transfer
models are converted to CoreML [29] and weights are quan-
tized to 16 bit for optimized execution on mobile devices
supporting i0S. The app implementation is based on Apple’s
Swift, CoreML, and Metal Application Programming Inter-
faces (APIs) for Graphics Processing Unit (GPU)-based
processing. Neural network operations that are not part of
the CoreML standard are implemented using Metal shaders,
e.g., for local feature merging.

5.3 Patch-based upsampling

In a final step, high-resolution images can be created using
the patch-based upsampling algorithm introduced by Texler
et al. [41]. The output of the previous processing and edit-
ing steps is hereby used as a guidance image to reconstruct
a high-resolution output using patches from the style image.
Specifically, we implement a variant of this method to run

(a) 1 iteration

(b) 3 iterations

Fig. 10 PatchMatch [3] iterations in patch-based upsampling (zoomed
in). Higher iterations enhance content details and transfer more fine
granular strokes from the style image

on-device using mobile GPU-optimized operations (contri-
bution C.5), which is described in the following.

Error metric The patch-based reconstruction is optimized
according to a patch-similarity error metric E. It uses a pair
of guidance channels, the source guide image Gs, initialized
with a blurred version of the style image Is, and the target
guide image G, initialized with a subsampled version of the
style transfer result /p. Following Texler et al. [41], the error
metric for matching two patches p € Gs and g € Gr is
defined as

E(Is, Ir, Gs, Gr, p,q) =
IIs(p) — IR(@)I* + 2 Gs(p) — GT (@I,

where IR is the resulting image that is updated by the patch-
based algorithm iteratively. Here, the first term promotes
texture coherence by directly matching colors in the style
image to the output image, while the second term matches
patches in the guidance space, and A, is a parameter used to
weight both terms.

Optimization Texler et al. use an Expectation Maxi-
mization (EM) approach based on StyLit [9] and efficient
patch-match queries [3,4] to optimize the error metric. The
optimization is run in a course-to-fine manner on different

@ Springer

M. Reimann et al.

(a) Adjusting stroke sizes globally

(b) Adjusting orientation of strokes

(c) Local retouches of stroke granularity

Fig. 11 Screenshots of StyleTune: After selecting a style, stroke sizes can be adjusted globally. The user can then adjust the stroke orientation, and
retouch parts of the image with different stroke sizes using brush metaphors

Fig. 12 Processing pyramid levels of patch-based upsampling, displayed as progress to the user

pyramid levels, with a subsampling factor of 2 between each.
The result of the optimization is a Nearest Neighbor Field
(NNF) that assigns a source patch to each target patch. In
a final step, the NNF is upscaled to the original resolution
of the style image (in many cases 4K and more) and, using
a majority voting step [42], the output image is synthesized
from high-resolution style image patches.

On-device implementation We implement patch-based
upsampling in Swift and use Apple’s Accelerate library for
efficient CPU processing and Metal shaders for GPU-based
processing. Following StyLit [9], nearest-neighbor retrieval
is accelerated using Barnes et al. [3] PatchMatch algorithm. It
is processed in three phases: initialization, patch propagation
pass, and random search pass; each is executed as a separate
Metal kernel. To efficiently generate pseudorandom numbers
on the GPU, a Metal-based implementation [47] of Monte-
Carlo random number generation [30] is used. We use a patch
size of 5 pixels, set A; = 2, and, in contrast to StyLit [9], use
only 3 patch-match iterations to reduce computation time.
Using even fewer iterations can achieve acceptable results in
some cases, as Fig. 10 shows. However, it also often leads to
washed-out textures and low contrast. Intermediate images
are continuously updated to visualize the progress for the
user.

@ Springer

6 User interface of mobile application

Figure 11 illustrates the three-step process used to create
the final stylization result using StyleTune. In the following,
the interactive image editing and enhancement workflow is
described. The user experience is designed to accommodate
editing on multiple levels of control [16].

Selection of content and style images After loading or
capturing an input image /¢, the user chooses a style image /s
among a variety of trained styles (Fig. 11a). The application
then applies the selected NST model to the content image.
The resulting style change is presented as a real-time preview
image Ip at 1Mpix resolution, allowing users to navigate
styles and select a style for further editing quickly.

Adjustment of stroke size and orientation Once a style
transfer model has been selected, users can interactively
adjust the stroke size Ag on a global level by using a slider.
Furthermore, interactive adjustments of global stroke rota-
tion can be made in an additional editing view (Fig. 11b).
After entering the local editing view, preview results are pre-
generated for several stroke sizes or rotations, which incurs
a brief loading time. Users can then locally apply different
stroke sizes or orientations using a painting brush metaphor,
which blends precomputed results in image space. Stroke
edits can be merged in feature space on-demand to create
seamless stroke transitions (Fig. 11c).

Controlling strokes in fast neural style transfer using content transforms

Ours

Fig. 13 Comparing global stroke size adjustment from lowest to high-
est level, predicted on an image with edge length of 2048 pixels. The
AAMS network [46] predicts stroke sizes using self-attention, depicted

(a) Content and Mask (b) Global Transfer & Style

(c) Local Adjustments (d) Global Transfer & Style

stroke attention map
(stroke sizes)

are zoom-ins on smallest and largest generated strokes. Our approach
can represent a higher range of stroke sizes than the adaptive network
of Jing et al. [17] and AAMS

(e) Local Adjustments

Fig. 14 Comparison between global stylization and locally adjusted versions produced using StyleTune

Creation of high-resolution images In a final step, the
composition can be rendered at a very high resolution using
patch-based upsampling [41]. Upsampling is executed on-
device and continuously displays the progressive refinement
of the output image, as shown in Fig. 12. Once the final
image has been rendered, it can be explored using zoom and
pan gestures e.g., to reveal fine-grained details such as canvas
structure and paint bristles that have been transferred from the
style image. Users can then export and share their creations.

7 Results
7.1 Qualitative comparison

Figure 13 compares results of our method for stroke size
adjustment to that of Jing et al. [17] and the Attentionaware

Multistroke Style Transfer (AAMS) of Yao et al. [46], which,
to our knowledge, are the only previous works for explicit
stroke size control. For moderate stroke-sizes, our results are
similar to other single style transfer networks (e.g., those of
Johnson et al. [19] and Jing et al. [17]), which are still consid-
ered state-of-the-art quality-wise compared to arbitrary style
transfer approaches [18]. As Fig. 13 shows, our architecture
for multivariate control is able to represent a broader range of
stroke sizes. AAMS swaps elements from the style image to
the target image, which can lead to unwanted artifacts such as
an eye from the style image appearing on the mountain (c.f.
first column). The common, single branch NST architectures
[17,19] also produce much more diminutive and subtle stroke
size elements when applied to high-resolution images as
they are typically trained on low-resolution images (usually
256 x 256 pixels) and retain this stroke scale. Diminishing
stroke sizes at large resolutions are often not desirable, as

@ Springer

M. Reimann et al.

—~—As=10 =—As=20
0.7

0.6 /

//
/ /
0.2 /

A_s=4.0 —~adaptive

0.5

°
~

Seconds

bt
w

720 1024 2048

Image resolution (squared, pixels)
(a) Network inference time

Fig. 15 a Performance comparison of our adjustable architecture and
the stroke-adaptive network of Jing et al. [17]. Performance of our archi-
tecture varies with the stroke scale As. Tests were performed using a
Nvidia GTX 1080Ti GPU and averaged over 100 runs; b Performance

users typically want to create large texture marks for visual
effects on high-resolution images as well. Aside from the
much higher computational cost to train on large resolu-
tion images, the stylization capacity of the network—mainly
driven by its receptive field size—is often not sufficient to cre-
ate large texture marks at common image resolutions of edge
length 1024 and above. Our architecture mitigates this by
downscaling inputs to the stylization branch according to the
desired stroke size and adding back high-frequency details
after stylization. In theory, arbitrarily large stroke sizes A5 can
be set; however, in practice, large stroke sizes (Ag > 8) tend
to lose sharpness as the style-branch resolution decreases.
A further advantage of our approach is that the architecture
can represent size-consistent strokes across different output
image resolutions. Therefore, users can efficiently perform
editing on lower-resolution previews and export them to a
higher-resolution final image.

7.2 Exemplary editing results

In Fig. 14, StyleTune was used to locally retouch the face
and hair of the person. By using smaller stroke granularities
and reducing the style intensity, the face is less obstructed by
stroke texture marks, and a visually more pleasing result is
achieved. Additionally, the higher luminance directs the gaze
and creates a focal point in the image. Orienting the strokes
along flowlines of the hair in Fig. 14c, furthermore increases
the image’s depth due to the improved visual separation of
foreground subject and background. The local guidance tools
offered by StyleTune thus enable a form of art direction,
where semiotic aspects of the style are individually placed

@ Springer

-e-1 Iteration -»-3 lterations
30
25 /
20
12}
2 /'/
815
[0
n
10 -
5 4.//.
0 T T)
1024 2048 4096 8192
Edge length

(b) Patchbased upsampling runtime

of our metal-based implementation of patch-based upsampling [41] for
different input sizes on a MacBook Pro 2017. Runtime can be influenced
by the iteration count of the PatchMatch [3] algorithm

and adjusted and represent a step toward semiotics-based loss
functions [37].

7.3 Performance considerations

Our proposed network architecture has similar runtime per-
formance characteristics to other feedforward neural style
transfers, such as the architecture of Johnson et al. [19] or
Jing et al. [17]. Furthermore, the runtime depends on the
stroke-size settings, as larger Ag inversely create smaller styl-
ization branch input images. As Fig. 15 shows, inference with
stroke sizes Ag > 2 performs equally as fast or faster than the
adaptive network of Jing et al. [17]. The runtime performance
of patch-based upsampling scales linearly with edge-length
(Fig. 15b), using fewer iterations of PatchMatch [3] offers a
trade-off between runtime and visual quality.

Tests on mobile were executed using an iPad Pro 3rd
generation equipped with an Apple A12X Bionic and 4GB
Random Access Memory (RAM). On input image resolution
of 1024 x 1024 pixels, global style transfer required approx.
0:5 s and pre-computation of ten stroke sizes using the style-
encoder network required approx. 5 s. While the image-based
blending of previews is computed in real-time, blending and
decoding strokes in feature space required approx. 3 s. Empir-
ically, ten levels of strokes sizes provide fine-granular and
visually smooth level transitions when exploring styles using
the global stroke-scale slider. For local editing, on the other
hand, as low as three levels are sufficient for most editing
purposes, as stroke scales are often used to create visual con-
trasts between stylized areas. For patch-based upsampling,
mobile execution is approx. 30% slower compared to desktop
processing on MacOS (Fig. 15b).

Controlling strokes in fast neural style transfer using content transforms

7.4 Limitations

While our introduced network architecture and editing modes
enable more degrees of artistic freedom for feedforward
neural style transfer, there are still some limitations to over-
come. For the adjustable network architecture, the previously
described inconsistency in style element placement presents
a limitation for use-cases that involve local, fine detail edit-
ing. Further, the possibility of combining rotations and stroke
scale edits in StyleTune makes it necessary to recompute
all intermediate stroke-scale results if the stroke rotation
is changed, which can limit exploratory workflows as they
require instant feedback for a sophisticated user experience.
While the presented non-parametric warp-based reversible
editing can achieve a large variety of effects without requir-
ing any changes to the network, using it as an editing tool
in practice remains challenging due to the counter-intuitive
effects of reversible warping on style elements. Finally,
patch-based upsampling of style transfer results noticeably
alters their global appearance in ways that the user may not
intend.

8 Conclusions and future work

This work introduces a method for multivariate stroke con-
trol over feedforward neural style transfer. We propose a new
style transfer architecture for simultaneous stroke size and
style intensity control. Furthermore, we introduce the con-
cept of reversible input transformations that can adjust ele-
ments of the style, such as the stroke orientation, regardless
of style transfer architecture. To demonstrate the real-world
applicability of our approach as a tool for expressive style
transfer editing, we implement a mobile app that enables
interactively adjusting and retouching the aforementioned
stylistic aspects. The use cases and results show that our
method provides more expressive control than comparable
state-of-the-art methods and new modes of expression that
were previously not possible. Furthermore, we demonstrate
the potential of patch-based upsampling as part of a style
transfer editing pipeline to generate high-resolution output
renderings and demonstrate that a mobile on-device imple-
mentation can provide interactive feedback to the user. To
this end, we believe this work provides a further step toward
making style transfer a more expressive tool for art-directed
image stylization in casual and professional applications.

As future work, we plan to further explore making style
elements locally persistent across multiple scales and deepen
the integration of stroke editing patch-based upsampling by
adding a neural representation of stroke size and orientation.
Furthermore, the proposed approach may be generalizable to
3D data [6,27].

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was partially funded by the German Federal Min-
istry of Education and Research (BMBF) through grants 011S18092
(“mdViPro”) and 011S19006 (“KI-LAB-ITSE”).

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amato, G., Behrmann, M., Bimbot, F., Caramiaux, B., Falchi, F.,
Garcia, A., Geurts, J., Gibert, J., Gravier, G., Holken, H., et al.: Alin
the media and creative industries. arXiv preprint arXiv:1905.04175
(2019)

2. Babaeizadeh, M., Ghiasi, G.: Adjustable real-time style transfer. In:
8th International Conference on Learning Representations, ICLR
2020 (2020)

3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patch-
match: a randomized correspondence algorithm for structural
image editing. ACM Trans. Graph. 28(3), 24 (2009)

4. Barnes, C., Zhang, FL., Lou, L., Wu, X., Hu, S.M.: Patchtable:
efficient patch queries for large datasets and applications. ACM
Trans. Graph. 34(4), 1-10 (2015)

5. Bookstein, F.L.: Principal warps: thin-plate splines and the decom-
position of deformations. IEEE Trans. Pattern Anal. Mach. Intell.
11(6), 567-585 (1989)

6. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: Stereoscopic neural
style transfer. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6654-6663 (2018)

7. Dapkus, D.: How to transfer styles to images with Adobe Pho-
toshop. https://creativecloud.adobe.com/de/discover/article/how-
to-transfer-styles-to-images-with-adobe-photoshop

8. Dumoulin, V., Shlens, J., Kudlur, M.: A Learned representation for
artistic style. In: ICLR (2017)

9. FiSer, J., Jamriska, O., Luka¢, M., Shechtman, E., Asente, P., Lu, J.,
Sykora, D.: Stylit: illumination-guided example-based stylization
of 3d renderings. ACM Trans. Graph. 35(4), 1-11 (2016)

10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using
convolutional neural networks. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2414-2423. IEEE
Computer Society (2016)

11. Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann, A., Shechtman,
E.: Controlling perceptual factors in neural style transfer. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1905.04175
https://creativecloud.adobe.com/de/discover/article/how-to-transfer-styles-to-images-with-adobe-photoshop
https://creativecloud.adobe.com/de/discover/article/how-to-transfer-styles-to-images-with-adobe-photoshop

M. Reimann et al.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

2017, Honolulu, HI, USA, July 21-26, 2017, pp. 3730-3738. IEEE
Computer Society (2017)

Gobbi, D.G., Peters, T.M.: Generalized 3d nonlinear transforma-
tions for medical imaging: an object-oriented implementation in
VTK. Comput. Med. Imaging Graph. 27(4), 255-265 (2003)

Gu, S., Chen, C., Liao, J., Yuan, L.: Arbitrary style transfer with
deep feature reshuffle. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8222-8231 (2018)
He, K., Zhang, X.,Ren, S., Sun, J.: Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770-778 (2016)

Huang, X., Belongie, S.: Arbitrary style transfer in real-time
with adaptive instance normalization. In: 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 1510-1519. IEEE
Computer Society (2017)

Isenberg, T.: Interactive NPAR: what type of tools should we cre-
ate? In: Proceedings of the NPAR, Expressive '16, pp. 89-96.
Eurographics Association, Goslar, DEU (2016)

Jing, Y., Liu, Y., Yang, Y., Feng, Z., Yu, Y., Tao, D., Song, M.:
Stroke controllable fast style transfer with adaptive receptive fields.
In: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 244-260 (2018)

Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style
transfer: a review. IEEE Trans. Vis. Comput. Graph. 26(11), 3365—
3385 (2020)

Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time
style transfer and super-resolution. In: Computer Vision—ECCV
2016—14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part II, Lecture Notes in Com-
puter Science, vol. 9906, pp. 694-711. Springer (2016)

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila,
T.: Analyzing and improving the image quality of StyleGAN. In:
Proceedings of the CVPR (2020)

Kingma, D.P, Ba, J.: Adam: a method for stochastic optimiza-
tion. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings (2015)

Klingbeil, M., Pasewaldt, S., Semmo, A., Déllner, J.: Challenges
in user experience design of image filtering apps. In: Proceedings
SIGGRAPH ASIA Mobile Graphics and Interactive Applications.
ACM, New York (2017)

Kopf, J., Cohen, M.F,, Lischinski, D., Uyttendaele, M.: Joint bilat-
eral upsampling. ACM Trans. Graph. 26(3), 96-102 (2007)
Kyprianidis, J.E., Collomosse, J., Wang, T., Isenberg, T.: State of
the “art”: a taxonomy of artistic stylization techniques for images
and video. IEEE Trans. Vis. Comput. Graph. 19(5), 866-885 (2012)
Li, Y, Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Univer-
sal style transfer via feature transforms. In: Advances in Neural
Information Processing Systems (2017)

Li, Y., Huang, J.B., Ahuja, N., Yang, M.H.: Deep joint image filter-
ing. In: European Conference on Computer Vision, pp. 154—169.
Springer (2016)

Liang, Y., He, F, Zeng, X.: 3d mesh simplification with feature
preservation based on whale optimization algorithm and differen-
tial evolution. Integr. Comput.-Aided Eng. 27(4), 417-435 (2020)
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollar, P., Zitnick, C.L.: Microsoft COCO: common objects
in context. In: Proceedings of the ECCV, pp. 740-755. Springer,
Cham (2014)

Marques, O.: Machine Learning with Core ML, pp. 29-40.
Springer, Cham (2020)

Mohanty, S., Mohanty, A.K., Carminati, F.: Efficient pseudo-
random number generation for Monte-Carlo simulations using
graphic processors. J. Phys.: Conf. Ser. 368, 012024 (2012)
Moiseenkov, A., Poyaganov, O., Frolov, I., Usoltsev, A.: Prisma.
Version: 4.3.4. https://prisma-ai.com/ (2021)

@ Springer

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Pasewaldt, S., Semmo, A., Ddllner, J., Schlegel, F.: BeCasso:
artistic image processing and editing on mobile devices. In:
SIGGRAPH ASIA 2016, Macao, December 5-8, 2016—Mobile
Graphics and Interactive Applications, p. 14:1. ACM (2016)
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch:
An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems 32, pp. 8024—
8035. Curran Associates, Inc. (2019)

Reimann, M., Buchheim, B., Semmo, A., Déllner, J., Trapp, M.:
Interactive multi-level stroke control for neural style transfer. In:
2021 International Conference on Cyberworlds (CW), pp. 1-8
(2021)

Reimann, M., Klingbeil, M., Pasewaldt, S., Semmo, A., Trapp, M.,
Déllner, J.: MaeSTrO: a mobile app for style transfer orchestra-
tion using neural networks. In: 2018 International Conference on
Cyberworlds, CW 2018, Singapore, October 3-5, 2018, pp. 9-16.
IEEE Computer Society (2018)

Reimann, M., Klingbeil, M., Pasewaldt, S., Semmo, A., Trapp, M.,
Déollner, J.: Locally controllable neural style transfer on mobile
devices. Vis. Comput. 35(11), 1531-1547 (2019). https://doi.org/
10.1007/s00371-019-01654-1

Semmo, A., Isenberg, T., Dollner, J.: Neural style transfer: a
paradigm shift for image-based artistic rendering? In: Proceed-
ings International Symposium on Non-Photorealistic Animation
and Rendering (NPAR), pp. 5:1-5:13. ACM, New York (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. In: 3rd International Conference
on Learning Representations, ICLR 2015. San Diego, CA, USA
(2015)

Su, H., Jampani, V., Sun, D., Gallo, O., Learned-Miller, E., Kautz,
J.: Pixel-adaptive convolutional neural networks. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11166-11175 (2019)

Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S.,
Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., Niener,
M., et al.: State of the art on neural rendering. In: Computer Graph-
ics Forum, vol. 39, pp. 701-727. Wiley Online Library (2020)
Texler, O., FiSer, J., Luka¢, M., Lu, J., Shechtman, E., Sykora, D.:
Enhancing neural style transfer using patch-based synthesis. In:
Proceedings of the NPAR, Expressive ’ 19, pp. 43—50. Eurographics
Association, Goslar, DEU (2019)

Wexler, Y., Shechtman, E., Irani, M.: Space-time completion of
video. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 463-476
(2007)

Wu, H., Sun, Z., Zhang, Y., Li, Q.: Direction-aware neural style
transfer with texture enhancement. Neurocomputing 370, 39-55
(2019)

Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast end-to-end trainable
guided filter. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1838-1847 (2018)

Yang, L., Yang, L., Zhao, M., Zheng, Y.: Controlling stroke size
in fast style transfer with recurrent convolutional neural network.
In: Computer Graphics Forum, vol. 37, pp. 97-107. Wiley Online
Library (2018)

Yao, Y., Ren, J., Xie, X., Liu, W,, Liu, Y., Wang, J.: Attention-aware
multi-stroke style transfer. In: IEEE Conference on Computer
Vision and Pattern Recognition. CVPR, pp. 1467-1475. Computer
Vision Foundation/IEEE, Long Beach, CA, USA (2019)

Youssef, V.: Loki: a random number generator for Metal (2017).
https://github.com/YoussefV/Loki

Zhang, H., Dana, K.: Multi-style generative network for real-time
transfer. In: Computer Vision—ECCV 2018 Workshops, pp. 349—
365. Springer (2019)

https://prisma-ai.com/
https://doi.org/10.1007/s00371-019-01654-1
https://doi.org/10.1007/s00371-019-01654-1
https://github.com/YoussefV/Loki

Controlling strokes in fast neural style transfer using content transforms

49. Zhu, S.C., Guo, C.E., Wang, Y., Xu, Z.: What are textons? Int. J.
Comput. Vis. 62(1), 121-143 (2005)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Max Reimannis a Ph.D. candidate
at the visual computing group of
the Hasso Plattner Institute at the
University of Potsdam, Germany,
where he received his master’s
degree in 2018. His research inter-
ests include image and video pro-
cessing, and computer vision for
scene understanding. He is partic-
ularly interested in deep-learning-
based image and video styliza-
tion techniques, and how to evolve
these into interactive tools for
casual creativity.

Benito Buchheim is currently pur-
suing his master’s degree in IT-
Systemsstanding interest in com-
puter graphics and visual com-
puting, and in his current role
as a student research assistant at
the institute’s visual computing
group, his research focuses on deep-

learning-based stylization i
techniques such as neural style techniques.
transfer.

Amir Semmo received his doc-
toral degree in 2016 at the Hasso
Plattner Institute in Potsdam, Ger-
many, on the topic of non-
photorealistic rendering for 3D
geospatial data. Since 2019 he
is the Head of R&D at Digital
Masterpieces GmbH in Potsdam.
His principle research topics are
related to image and video pro-
cessing, computer vision and GPU
computing. He is particularly inter-
ested in expressive and artistic
rendering under the umbrella of
interactive casual creativity, and
stylization of multi-dimensional image and video data.

Jiirgen Ddllner obtained his doc-
torate in computer science at the
University of Miinster (1996) on
modeling and rendering in com-
puter graphics and habilitated after
stays abroad. Since 2001 he is
professor for analysis, planning
and construction of complex sys-
tems at the Hasso Plattner Insti-
tute of the University of Pots-
dam. His work focuses on visual
computing, especially in the areas
of geospatial analytics, software
analytics and video analytics. His
visual analytics group has so far

given rise to a number of software technology start-ups.

Matthias Trapp studied com-
puter science at the University of
Potsdam and the Hasso Plattner
Institute, Germany (2000-2007)
where he received his Ph.D. in
Computer Science (2013). Dur-
ing his post-doctoral studies, he
was heading the junior research
group on “4D-nD Geovisualiza-
tion” (2012-2017). Since 2017,
he is a senior researcher at the
Hasso Plattner Institute. His major
research areas are computer graph-
ics, image and video processing,
geovisualization, software visual-

jzation, and information visualization with a focus on GPU-based

@ Springer

	Controlling strokes in fast neural style transfer using content transforms
	Abstract
	1 Introduction
	2 Related work
	3 Stroke-adjustable network
	3.1 Preliminary analysis
	3.2 Parameter mapping
	3.2.1 Stroke-size control
	3.2.2 Style-intensity control

	3.3 Network architecture
	3.4 Network training
	3.5 Feature merging ablation

	4 Reversible transformations
	4.1 Stroke orientation
	4.2 Global warping
	4.3 Local (non-parametric) warping

	5 Interactive NST control on mobile devices
	5.1 Overview of processing stages
	5.2 Local editing of image regions
	5.3 Patch-based upsampling

	6 User interface of mobile application
	7 Results
	7.1 Qualitative comparison
	7.2 Exemplary editing results
	7.3 Performance considerations
	7.4 Limitations

	8 Conclusions and future work
	References

