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Abstract—Software product line development for Android apps
is difficult due to an inflexible design of the Android framework.
However, since mobile applications become more and more
complex, increased code reuse and thus reduced time-to-market
play an important role, which can be improved by software
product lines. We propose five architectural styles for developing
software product lines of Android apps: (1) activity extensions, (2)
activity connectors, (3) dynamic preference entries, (4) decoupled
definition of domain-specific behavior via configuration files, (5)
feature model using Android resources. We demonstrate the
benefits in an early case study using an image processing product
line which enables more than 90% of code reuse.

Keywords-Software Product Line; Android; Reuse; Image Pro-
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I. INTRODUCTION

While mobile applications (apps) grow in popularity and
complexity [1], [2], [3], the question of how to apply estab-
lished software engineering principles, in particular software
product lines (SPLs), to Android app development has not yet
been discussed substantially [1].

SPL engineering in general, i.e., the managed process of
creating product families, has been widely adopted in pro-
fessional software development [4]. Practical benefits include
large-scale productivity gains, mass customization, improved
time-to-market, higher customer satisfaction, and higher de-
velopment morale [5]. Therefore, SPL engineering can be
considered as one of the major accelerators in the software
development process.

Almost half of the professional mobile developers consider
Android their primary platform and 80% of the mobile ap-
plications professionally target the Android platform [2]. The
source code of Android apps is inherently complex [1]. Apps
with higher complex code are rated higher by users, because
of more features offered to the users [6], [3]. To manage
variations of a feature set and tailor each concrete app to
a different target group, Android developers demand mobile
adaptions of SPLs [7], [8]. Furthermore, SPL engineering
would encourage developers of mobile applications to focus on
common requirements, design, and resources across different
hardware [7]. Therefore, all benefits resulting from large-scale
reuse consequently apply to the multi-billion dollar market of
Android apps.

Current Android apps substantially apply software reuse

concepts [9], [10]. However, on the current state of our knowl-
edge, this reuse is not supported by architectural styles for app
SPLs. This is a challenge, because the Android development
framework lacks support for creating flexible apps with a large
variety of variation points. Reasons include the following:
(1) Android does not directly support a general reuse model,
since Android fragments restrict the reuse to features that
have a user interface (UI); (2) preference entries for settings
offered to end-users are static for each project. Therefore, it is
difficult to have a different set of preferences for each concrete
app; (3) aspect-oriented programming for Android lacks tool
support. Therefore, implementing a feature model for the SPL
is difficult.

The main contributions of this paper are: (A) a proposal of
five architectural styles [11], [12] which simplify large-grained
reuse by targeting the challenges mentioned above. They can
be used by developers to easily create Android app SPLs; (B) a
case study of their utilisation in an image processing app SPL
demonstrating a large amount of reuse. With respect to this,
we discuss three concrete apps produced by the case study
SPL: (1) an app for watercolor painting; (2) an app for pencil
hatching; (3) an app for rapid prototyping of image stylization
effects used for teaching image processing classes.

II. BACKGROUND

This section briefly explains concepts of SPLs and Android
development that are used in the remainder of the paper.

Software Product Lines: ”A software product line is a set
of software-intensive systems sharing a common, managed set
of features that satisfy the specific need of a particular market
segment or mission and that are developed from a common
set of core assets in prescribed way” [5]. SPL development
requires a clear separation of generic code and product-specific
code [13]. Therefore, an SPL comprises two main parts: (1) the
core assets containing an architecture shared by the products in
the SPL, common software components for systematic reuse,
design documents, test cases, requirements specifications and
domain models; (2) the concrete products containing the
configurations and extensions for specific instantiations of the
SPL architecture [5]. SPLs enable large-grained reuse [4],
therefore modularity principles such as separation of concerns
play an important role in SPL architectures [14]. According
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Fig. 1: Overview of the proposed architectural styles: (1) activity extensions, (2) activity connectors, (3) dynamic preference
entries, (4) separated behavior description, and (5) feature model using Android resources. The infrastructure for the architectural
styles is implemented inside the core assets. Concrete apps contain only the configuration and extensions of the variation points.

to Svahnberg and Bosch [13], architecture-based support for
variability in SPLs are:

V1: Inheritance is used when a feature needs to be
implemented differently for a product or a product
should extend a type defined in the core assets.

V2: Extensions and extension points are used when parts
can be extended with additional behavior. Design
Patterns [15] are a common way to build extensions
points into an SPL [13].

V3: Parametrization is used when parameters can be
referenced inside the core asset code and instantiated
with a concrete value in the concrete products. A
parameter has an initial value which can be adjusted
by the concrete products.

V4: Configuration is used to connect modules and com-
ponents to each other. Configuration is the process
of assembling a product by selecting and connecting
modules and components out of the core assets.

V5: Generation is used when a higher level language can
be applied to define concrete component properties.

Android Development: The Android framework contains
special concepts for app development: An activity is an
Android window that is shown to the user and should be
focused on one task a user can perform. Activities should be
loosely coupled and should not contain business logic in order
to separate the user interface from the domain code. An intent
is an object wrapping an operation to be performed to start
a new activity or service. It can contain data (e.g., an image)
that is passed to the target activity or service.

III. ARCHITECTURAL STYLES

An overview of the proposed architectural styles is shown
in Fig. 1 and discussed in the remainder of this section. To
simplify development of concrete apps, we propose to define
the core assets of the SPL in one or more Android library
modules used by the concrete apps, which are implemented
using Android application modules. The proposed solutions
delay the feature configuration to the start up time, because the
configuration of Product Flavors, the Android mechanism for
compile-time configuration, is not suited for SPLs. The reason
is, that feature configuration with Product Flavors takes place
in the Gradle file of the module that defines the feature, but

should take place in the concrete app that uses the features to
modularize the product configuration.

A. Activity Extensions

Problem: Android does not directly support a general
reuse model, since Android fragments must have a UI. To
reuse common functionality, that does not have its own UI, a
reuse model is required that is tailored to activities.

Solution: An activity extension is an object that is re-
sponsible for a single feature offered to the end-user and can
be associated to different activities. Usually, it is a variation
of the Observer design pattern [15] receiving multiple events
to respond to. Examples of transition events are the creation
of the options menu in order to add menu items, destruction
of the activity, or events specific to the domain of the SPL.
Furthermore, the parent activity can request its extensions
to perform actions such as triggering the visibility of their
respective UI elements. This supports seamless integration of
the extensions in the life cycle of the parent activity.

Consequences: This approach provides internal white
box reuse [16] of the activity extensions. It enables extension
variability (V2) for Android app SPLs. Furthermore, it im-
proves separation of concerns, because each activity extension
contains one single feature which is loosely coupled from the
corresponding activities. However, they can introduce higher
code complexity, because the resulting behavior can depend
on the order of adding activity extensions.

Example: The SPL of the case study offers a button
for choosing presets for the parameter configuration of the
image processing effects. This feature is modularized in an
activity extension to add it to multiple activities. Furthermore,
the functionality for on-screen painting, the menu entry for
opening the settings dialog, for printing the current image,
and for social media communication are activity extensions.

B. Activity Connectors

Problem: To provide a custom work flow for concrete
apps, the SPL should support refinements of the intents
connecting activities. This means that the SPL should enable
the substitution of base activities with specialized activities or
calls to external services (e.g., the Android gallery, the camera
or other apps).



Solution: An activity connector is a transition in the
activity state machine starting in a sender activity, triggered by
a transition event, and resulting in a target activity. Activity
connectors are implemented using a dictionary that maps the
pair of sender activity and transition event to an intent that
starts a target activity. By overriding existing transitions or
adding new ones, concrete apps can manipulate the behavior
defined in the core assets.

Consequences: This concept enables configuration vari-
ability (V4) of Android app SPLs. It decouples the activity
classes, because no activity class directly depends on any other
activity. The centralization of all activity transitions results
in improved separation of concerns and enhanced readability
of the activity code. However, the code can become more
complex because of additional infrastructure of the activity
state machine.

Example: Our case study SPL uses activity connectors for
all transitions between activities in three levels of abstraction
of variation points: (1) a hook method returning the concrete
activity to start for each conceptional activity, that can be
overridden by concrete apps in order to exchange a complete
activity without changing the transition logic; (2) a hook
method for each standard transition of the SPL getting context
information as input and returning an intent as output; and
(3) providing the ability to add new transitions to the state
machine.

C. Dynamic Preference Entries

Problem: In Android, user-visible settings are statically
defined in an XML (eXtensible Markup Language) file which
does not provide a visibility flag. Therefore, all apps in the SPL
would have the same preference entries. In order to provide
variability of preference entries, an Android app SPL should
support custom preference entries for each concrete app.

Solution: We propose to define preference record objects
each representing one end-user visible preference entry. Each
consists of an action to be performed when the value changes,
a default value, a preference fragment for presentation, and
a wrapped Android preference object. This is similar to the
Active Record [17] design pattern but using Android shared
preferences instead of databases. Concrete apps can register
custom preference records using a Singleton [15] maintaining
a list of preference records. Each entry in the list is shown
in the preference activity and loaded from shared preferences
during start-up.

Consequences: Dynamic preferences facilitate the pro-
duction of apps for different target groups. This approach en-
ables extension variability (V2) by defining which preference
entries should be shown for each concrete app. However, this
can slightly impact the start-up time, if a large number of
preference entries are defined in the SPL.

Example: The SPL of the case study offers preference
entries for image processing experts, for developers, and for
novice use, which can be chosen during the implementation
of a concrete app.

D. Separated Behavior Description

Problem: Many apps share a common domain or business
process while each app should be tailored to the needs of a
different target group.

Solution: We propose to inject the behavior and the
content of the concrete apps by separately defining it using a
high-level configuration language. An interpreter reading the
files generates the domain objects and injects them into the
SPL.

Consequences: This concept enables generation variabil-
ity (V5) for Android app SPLs and provides a loose coupling
of the core assets and the concrete product. Therefore, it facili-
tates an SPL with large variability and many possible products
by simplifying the construction of new apps. However, the
implementation and maintenance of the XML interpreter is
additional effort. If the SPLs is used to generate a large
amount of apps, this efforts pays off due to fast implementation
using an high-level XML representation. However, backward
compatibility for older XML files after the evolution of the
XML schema needs to be considered in SPL engineering.

Example: Our case study SPL uses an XML effect file
to define the image processing pipeline [18] for an effect (e.g.
watercolor, pencil hatching) with user-definable parameters
that are generated from the effect file and automatically
presented in the UI. Furthermore, XML files are used to
generate an OnBoarding activity for each app.

E. Feature Model using Android Resources

Problem: SPLs usually provide a feature model defin-
ing which features are contained in each concrete product.
However, product flavors, the static configuration mechanisms
offered by Android, do not support modularization of the
feature selection and feature configuration.

Solution: To provide a feature model for Android apps,
we propose to define a configuration file in the Android
resources of the core asset module. This resource file contains
variation points and default values for each of them. These
values can be referenced inside the core assets. To override
values in a concrete app, developers can redefine them in
the configuration resource file within concrete apps modules.
Therefore, Android uses the configuration of the concrete
app, if defined, and the default values defined in the library
otherwise.

Consequences: This approach provides internal black
box reuse [16] and enables parametrization variability (V3)
of the concrete apps. It supports coarse-grained activation of
features [19].

Example: Our case study SPL uses the configuration
XML file to activate/deactivate activity extensions for the
corresponding activities. Furthermore, the definition which
preferences entries are shown in each concrete app is imple-
mented using Boolean flags within the configuration file.

IV. PRELIMINARY EVALUATION

We evaluate the presented approach by applying it to
the case study SPL, which currently comprises three image



processing apps derived from the framework described in [20].
Large-grained reuse is one of the core advantages of SPLs,
therefore we evaluated the case study by measuring the amount
of reuse [16]. Furthermore, we describe how the architectural
styles support variability in order to demonstrate that they offer
enough variation points for practical development.

Amount of Reuse: At total, this SPL comprises 61,723
lines of Java code (excluding comments, generated code, and
XML files) in 524 classes. The reason, why this project is
much larger than usual Android apps, which consist of 5,600
lines of code (LOC) on average [1], is that currently GPU-
supported image processing is a niche in the Android market.
511 classes (60,482 LOC) are part of the SPL core assets.
Hence, the internal reuse factor for the Java code in the whole
SPL is 98%. XML files are not considered and can not be
compared with Java code because of differences in structure
and complexity. The domain-specific XML files for defining
the effects (e.g., watercolor effect & pencil hatching effect)
comprise almost 1,000 lines for complex effects. However,
even if the XML files for both effects are nominally added
to the overall LOC, the amount of reuse would still remain
at 95%. Furthermore, this case study contains only one SPL
and therefore not necessarily provides information on the
application of the architectural styles to other domains.

Variability: The domain-specific XML files containing
effect specifications support state-of-the-art image stylization
effects such as pencil hatching, watercolor, oil painting, car-
toon, bloom, and others [20]. Hence, the resulting apps can
vary in domain-functionality such as the visual effect, its
parameters and presets by changing the effect file. Some of
our concrete apps are tailored to novice users by providing a
simple and discoverable UI using a painting metaphore while
the prototype app is tailored to image processing experts by
offering many preferences and more advanced functionality
for rapid prototyping of new image processing effects strongly
varying in the presented UI. The activity extensions enabling
the users to share the results across several social platforms
can be deactivated for user studies to focus on the main
functionality. The extension for image deformation that is used
for artistic purpose (e.g., cartoon looks) can be deactivated for
other apps.

V. RELATED WORK

This section briefly distinguishes the proposed architectural
styles from similar research.

SPLs for Mobile Devices

Previous SPLs have been developed for mobile platforms,
e.g., role playing games [21], mobile browsers [22], and data
collection apps [23]. These approaches are mainly focused
on case studies only, but do not discuss abstract concepts
of wider applicability. However, not much research has been
performed on how to tailor SPL architectures to mobile
platforms. Several papers on SPLs for mobile devices focus
on the heterogeneity of mobile devices [24], [25], [26], [27].
They provide variability across different hardware. In addition

to this, our architectural styles provide variability of domain
features by dealing with the lack of SPL support by frame-
works for mobiles platforms and helping developers in creating
an extensible architecture tailored to Android.

Architectural Styles and Design Patterns

Since the introduction of design patterns [28], [15] and
architectural styles [11], [12], a variety of domain-specific
patterns have been written down, e.g., in the field of con-
currency [29], distributed systems [30], and resource manage-
ment [31]. However, to the current state of our knowledge, no
design patterns or architectural styles have been introduced or
discussed for mobile SPLs.

VI. DISCUSSION

Modularity: The architectural styles provide separation of
concerns (e.g., by keeping together the code for preferences,
for one feature modularized in an activity extension or the
domain-specific use case encoded in an XML file).

Feature configuration during run time: Our SPL archi-
tectures dynamic preference entries and feature model config-
urations are loaded during run time which increases the size
of the executable, because Android resources are evaluated
during run time. Hence, all features and alternatives of the
core assets library are compiled into the executable Android
package (APK). This increases the download time of the apps.

Software Complexity: Similar to other SPL architectures,
the proposed styles can lead to a more complex architecture
than single concrete apps would have. The flexibility that
is essential for a configurable architecture often results in
more abstract code which can raise challenges in dealing with
temporal dependencies.

VII. CONCLUSION AND FUTURE WORK

We have proposed five architectural styles for creating SPLs
with the Android framework and contributed to the question
how to adopt SPLs for mobile applications [7]. Our concept
used all five kinds of variability postulated by Svahnberg
and Bosch [13]: inheritance via sub-classing conceptional
activities, extensions via activity extensions and dynamic pref-
erence entries, parametrization via the feature model using
Android resources, configuration via activity connectors and
generation via parsing domain-specific XML files. Our case
study shows that established software principles for SPLs can
be adjusted to mobile application development. This is one
next step towards the general question how to tailor software
engineering principles to mobile applications.

To avoid feature configuration during run time, further
research can be performed with respect to compile time
configuration of concrete apps according to feature-oriented
programming [32], [33] for Android apps.
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