
COLiER: Collaborative Editing of Raster Images

Ulrike Bath, Sumit Shekhar, Jürgen Döllner, Matthias Trapp
Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, Germany

ulrike.bath@student.hpi.de, sumit.shekhar@hpi.de, juergen.doellner@hpi.de, matthias.trapp@hpi.de

Abstract—Various web-based image-editing tools and web-
based collaborative tools exist in isolation. Research focusing
to bridge the gap between these two domains is sparse. We
respond to the above and develop prototype groupware for real-
time collaborative editing of raster images in a web browser. To
better understand the requirements, we conduct a preliminary
user study and establish communication and synchronization
as key elements. The existing groupware for text documents,
presentations, and vector graphics handles the above through
well-established techniques. However, those cannot be extended
as it is for raster graphics manipulation. To this end, we
develop a document model that is maintained by a server
and is delivered and synchronized to multiple clients. Our
prototypical implementation is based on a scalable client-
server architecture: using WebGL for interactive browser-
based rendering and WebSocket connections to maintain syn-
chronization. We evaluate our work qualitatively through a
post-deployment user study for three different scenarios.

Keywords-Human-centered computing, Collaborative inter-
action, Image processing, Web-based interaction

I. INTRODUCTION

Collaboration between visual artists dates back to as early as
late 16th century (Fig. 1a). In the modern era, this practice
continued resulting in various masterpieces [1]. However, its
adaptation in the digital domain is progressing only slowly
(Fig. 1b). Even though there exist collaborative applications
mimicking a shared whiteboard – allowing for doodling
and/or simple manipulations of a shared image. A system
for real-time collaborative editing of raster-based images
at different levels of functionality or control – similar to
common image editing desktop applications (e.g., Adobe
Photoshop or GIMP) – does not exist to the best of our
knowledge [2].

In general, multi-user systems where the actions of one
user must quickly be propagated to the other collaborator are
referred to as real-time groupware [3]. During recent years,
various instances of such systems emerged into today’s dis-
tributed, collaborative working environments. For example,
systems such as Google Workspace or Microsoft Office 365
Online edition, various massively multiplayer online games,
or NVIDIA’s Omniverse platform for 3D contents. All such
systems have in common that (1) a document instance or a
shared context is hosted by a server(s), is (2) synchronized
using a service, and (3) can be manipulated by multiple
participants. The most relevant characterizing aspects of a

(a) Madonna in Floral Wreath (b) Collaborative Collage

Figure 1: (a) An early example of collaboration between Jan
Brueghel the Elder and Peter Paul Rubens approx. 1617.
(b) A collage created collaboratively using our web-based
system. It comprises the blending of multiple layers, vector
strokes, and image processing operations (e.g., vignetting
and pixelation).

real-time groupware system, according to Ellis and Gibs [4],
are as follows:

• Interactive and real-time (Aspect-1): i.e., response
times must be short and notification times must be
comparable to response times.

• Distributed (Aspect-2): i.e., in general, one cannot
assume that the participants are all connected to the
same machine or even to the same local area network.

• Volatile and Ad-hoc (Aspect-3): i.e., participants are
free to come and go during a session and generally are
not following a pre-planned script. It is not possible to
tell a priori what information will be accessed.

• Focused (Aspect-4): i.e., during a session there is high
degree of access conflict as participants work on/modify
the same data.

A popular application that fulfills all of the above criteria is
Google Docs. The cloud-based service provided by Google
has revolutionized the way people edit documents collabora-
tively. However, when editing text, most standard algorithms
do not consider the complete structure of the document and
make use of per-line diffing and merging.

Challenges: The above approach cannot be extended
for images in a straightforward manner: while Aspect-1 and
Aspect-2 largely pose specific technical challenges (e.g.,
undo/redo functionality and latencies), Aspect-3 and Aspect-
4 reflects on the spatial, structural, and temporal features



of collaborative raster-image editing. Existing collaborative
whiteboard applications maintain their state by tracking the
brush strokes of individual clients. They allow users to
doodle/sketch on top of the image but hardly provide any
tools for image editing itself. In particular, these are missing
an integrated approach for the manipulation of the raster data
using different image filtering operations. On the other hand,
existing web-based image editing tools are not collaborative.
A system that is quite close to what we aspire is the Google
Draw, a functionality provided as part of Google Workspace.
Even though it allows users to collaboratively edit attributes
of a shared image, the range of per-pixel edits is limited.

We adopt a human-centered design process to identify the
challenges associated with a real-time collaborative image
editing system. To this end, we design and conduct a pre-
liminary user study with twenty-seven participants through
a questionnaire. The answers to the above questionnaire
identify key design principles mainly focused on communi-
cation and synchronization. We prototype and iterate on the
design of our collaborative system. To understand whether
our strategies achieve the design goals, we perform a post-
deployment user study with six different groups (two or three
persons each). Our system was successful to a large extent.
Moreover, participant’s experiences and perspectives offer
further guidance for improvement.

Approach & Contributions: We aim to create a web-
based collaborative image editing application that provides
a wide range of edits. To this end our contributions are:

1) A web-based application that allows multiple users to
collaboratively edit images, while satisfying Aspect-
1 to Aspect-4 properties. The Web-App consists of
a responsive Graphical User Interface (GUI) which
makes it possible for users to access the application
via a smartphone or a tablet.

2) A browser-based rendering framework that enables
a wide range of image manipulations along with
sketching/doodling functionality.

3) Results of our preliminary and post-deployment user
studies that identify key design principles for a real-
time collaborative image editing system.

For it, we choose the following approach. Sec. II reviews
and analyzes related work and existing tools on collaborative
editing of graphics. Based on these, a preliminary user
study on the current state of real-time collaborative image
editing and associated tasks is conducted (Sec. III). Sec. IV
describes a system overview of our prototypical implementa-
tion of basic server and client functionality. Sec. V evaluates
the implementation through a post-deployment user study.
We summarize our findings and potentials for future work
and research in Sec. VI.

II. BACKGROUND & RELATED WORK

The challenges associated with collaborative image editing
has two aspects: the conceptual/design level and imple-

mentation level, which nowadays demands web-based ap-
proaches using services. The existing web-based applications
mainly address sketching and/or designing functionalities.

Collaborative Graphics Editing: One of the earliest
study towards the desired characteristics of a collaborative
graphics editing system was performed by Sun and Chen [5].
They propose a formal specification for conflict resolution,
versioning, and consistency maintenance for such systems.
Design analysis of visual analytic tools has been explored
by Heer and Agrawala [6], where they propose techniques to
improve shared context and awareness, and provide sugges-
tions to increase engagement. As a specific instance, Salvati
et al. [7] and Calabrese et al. [8] analyze collaborative
mesh manipulation by robustly sharing and merging version
histories in real-time. In recent work, Gao et al. [9] map the
two-dimensional drawing area into the linear structure and
correspondingly transform the two-dimensional graphical
operations to linear operations for collaborative editing. In
order to prevent consistency conflicts, Wu et al. [10] pro-
pose the Common Graphics Collaborative Editing (CGCE)
algorithm. Both Gao et al. and Wu et al. implement their
solution using the latest web-based technologies, however,
their system only allows for sketching or primitive geometric
figure manipulation. For the purpose of cooperative image
editing, Zhai et al. [11] develop a method using wireless
communication over mobile phones. Nevertheless, they only
consider simple atomic operations of import, export, update,
and commit. Novakova et al. [12] developed a tool specif-
ically for collaborative sketching, suitable for architectural
communication. In comparison, our layer-based rendering
framework can handle a variety of image edits and also
provides brushing and sketching functionality.

Web-based Sketching and Designing: Web-based col-
laborative whiteboards allow users to ideate and collabo-
rate visually, e.g., Aggie.io or Draw.chat. In comparison,
collaborative design tools are more recent and focused on
creating new designs by arranging images as multiple layers,
e.g., Figma, Canva, or AdobeXD. However, both types of
applications have hardly any image editing functionality.
The existing web-based image editing applications can be
used for per-pixel processing, but are not collaborative in
nature, e.g., Photopea or Pixlr. In a very recent development,
Adobe now allows for asynchronous collaboration for raster
and vector images. Nonetheless, our goal is to provide
a real-time synchronous collaborative environment. Tab. I
compare existing web-based photo-editing and whiteboard
applications regarding the following aspects:

• Layer (Yes/No): The application does support layer-
ing of multiple images. This allows for an increased
function scope and assumes a complex data model.

• Direct Manipulation (Yes/No): The application does
support direct manipulation of image contents, e.g.,
using brushing or transform functionality.

• Undo/Redo (Yes/No): The support of undo/redo func-



Table I: Comparison of various web applications for the editing of raster images with respect to different features.

Application Layer Direct Manip. Undo/Redo Image Filtering Data Type Resp. GUI Collaboration Type
canvaspaint.org No Yes Yes None Raster Yes None
pixlr.com Yes Yes Yes Destructive Raster No None
photopea.com Yes Yes Yes Destructive Raster No None
draw.chat No Yes Yes None Vector No Synchronous
aggie.io Yes Yes Yes None Raster Yes Synchronous
Google Draw No No No Non-destructive Raster Yes Synchronous
Adobe Creative Suite Yes Yes Yes Destructive Both Yes Asynchronous

tionality facilitates error-tolerance while using direct
manipulation metaphors.

• Image Filtering (None/Destructive/Non-destructive):
An application supports the usage of single or multiple
destructive/non-destructive image filtering operations.

• Data Type (Raster/Vector/Both): The application can
handle raster, vector, or both types of input data.

• Responsiveness (Yes/No): The GUI of the application
support responsive layout of components, thus supports
desktop and mobile devices with varying screen sizes.

• Collaboration Type (None/Synchronous/Asyn-
chronous): A collaborative application enables
multiple clients to modify image data simultaneously.
This requires communication between clients and
modeling of messages reflecting the editing process.

Our web-based collaborative system provides sketching and
designing functionality along with image manipulations.
Moreover, we enable synchronous collaboration among
users. It provides all features compared in Tab. I while
operating on layered raster images.

III. ANALYSIS AND PRELIMINARY CONSIDERATIONS

This section reports on a preliminary user study (Sec. III-A),
conducted to analyze the major requirements for real-time
collaborative image editing and elaborate potential conflicts
to be addressed in collaborative editing (Sec. III-B).

A. Preliminary User Study

To better understand the design requirements of a real-time
collaborative image-editing application, we designed and
conducted a preliminary user study using a questionnaire.
Subsequently, we analyzed results and major findings, iden-
tified main use cases, and created GUI design sketches.

Participants and Study Design: We selected partici-
pants who have experience in collaborative image editing
with existing technologies. They belong to a broad range
of background and have performed image editing: for ca-
sual creativity and/or as a professional activity. A total of
27 participants answered the 17 questions. The questions
broadly addressed the following aspects: (i) How do you
perform collaborative image editing tasks? and (ii) What
are the challenges associated with it?. The challenges thus
identified are used as the basis for designing our system.

Summary on Challenges in Collaboration: The foun-
dation of any collaborative task is efficient communication,
which also reflects in our survey answers: “Communication
is everything, it is sometimes hard to get an artistic idea
thru” (P7). “Communicating who edits what and how”
(P9). The lack of communication is not only restricted to
high-level requirements and task sharing but also low-level
details such as data/edits synchronization: “Staying in sync,
keeping a history of changes, knowing what the partners
already have done” (P5). “Handling data conflicts, know on
which parts or region my teammates are currently working
on, handling different versions...” (P10). To mitigate the
above problems, users make use of existing communication
channels. However, such an approach seems to be quite
inefficient in terms of both data and time: “It takes a lot
of time sending images back/forward and see when progress
is made” (P11). “Sharing huge files of raw pictures with the
team and keeping them in sync” (P6).

Design Inference: Concerning the above challenges, we
choose an integrated messaging functionality for our system.
Our WebGL-based rendering framework allows for image
edits that are visible in real-time among the collaborators,
further enabling low-level communication. The user edits
are maintained as part of session management providing
for a consistent editing environment. Data conflicts are
handled with complementary update processes on server and
client-side (Sec. IV-A). Similar to the variety of challenges
and its coping strategy, there is a range of application
scenarios where collaborative image editing can be used:
“logo creation”, “poster designing”, “creative editing”, etc.
We support such varying application scenarios by providing
Visual Computing Asset (VCA)-based image editing along
with a mouse/pen/touch-based sketching interface.

B. Potential Conflicts in Collaborative Editing

There are several potential conflicts arising in real-time col-
laborative image editing systems, especially if these support
a variety of tools being applied to multiple layers. Specific
to our approach this concerns challenges arising from (i)
limited attention-bandwidth and (ii) synchronous as well
as (iii) asynchronous editing conflicts. Considering users
operating in the same sessions, our system offers tools to
approach the above challenges.

Limited Attention-bandwidth: While performing edit-
ing tasks, such as painting or designing, a user focuses on
the immediate effect of the current tool. Thus, the user has

canvaspaint.org
pixlr.com
photopea.com
draw.chat
aggie.io


Synchronisation Layer

Store

1 1
2

3 4

56
4

Server

Figure 2: Sequence of client-server communication: (1) user
modifies project, (2) modified parameters are processed in
synchronization layer, (3) a change request is sent to server,
(4) server updates document (5) if successful, updates are
sent to all clients, (6) synchronization layer updates the local
store, (7) changes are applied in the GUI.

Content ViewUI Components

Session Handler

SyncService

Toolbar
VCA 

Control
Ponter

Tracking RendererCanvas
Layer 

Control

Document
Instances

Document
VCAs 

Mutations

Getter

C
lie

n
t

Se
rv

e
r

C
lie

n
t 

St
o

re

Client 
Handler

Document
Handler

Pointer
Synchronizer

Stroke
ModuleSession …

Figure 3: Overview of the client-server architecture used
for our system. The server synchronizes and propagates
project modifications among clients through different session
handlers. A user can modify the project through the GUI
components and the content view. The cyclic update process
on the client-side prevents version conflicts.

a limited attention-bandwidth and is usually not aware of
the changes performed by other users in the document. For
example, adding new layers impacts the layer order and
often interrupts the user’s workflow, and can quickly lead
to confusion. To counterbalance this, a document version
history is offered that enables users to comprehend the
performed changes over time.

Synchronous Editing Conflicts: There are various
causes for conflicts in synchronous data editing, e.g., users
use the same/different tool on a given layer or a layer is
about to be removed that is used by others users. Instead
of making tools modal, we choose to raise awareness by
indicating that another user is using the same tool or has
selected the same data using visual feedback. For this pur-
pose, colored hints (lines) visualize which user(s) currently
select a layer and tool respectively (Sec. IV-C3). Moreover,
the cursors of all users are depicted in the respective avatar
color (Sec. IV-A2).

Asynchronous Editing Conflicts: These conflicts are
often caused if several users simultaneously edit the same
layer or due to interruptions of unfinished tasks, e.g., a user
is interrupted in its current workflow but wants to continue
his/her work later on. This can cause conflicts if other users
are not aware of this state and meanwhile perform a task on
the same data. To approach this, we introduced an exclusive-
lock functionality for a layer, i.e., a user can forbid editing of
a layer for everyone except himself (Sec. IV-C4). To avoid
deadlock scenarios, a layer can be exclusive-unlocked by
others users. In this case, the user who initiates the exclusive-
lock is notified accordingly.

IV. SYSTEM OVERVIEW

We develop our system as a Single-Page Application (SPA)
that can be used on desktop systems and on mobile devices.
It enables sketching, image adjustments, and creation of
image collages among multiple clients in real-time. An
overview of our system with a depiction of a client to server
communication and vice versa is presented in Fig. 2. To
achieve this distributed structure of a real-time groupware
system, we develop an extensible client-server architec-
ture (Fig. 3). The server is mainly responsible for session
handling and synchronization, and maintaining communica-
tion among clients (Sec. IV-A). The client transmits and
consumes messages (Sec. IV-B) which represent editing
actions and perform client-side rendering (Sec. IV-C).

A. Server Components and Functionality

The main task of the server component is to maintain the
session documents, manage and provision its state, and
handle the communication between the clients.

1

Document Metadata1

1

*

Pipeline VCA1 *

Layer Properties1

1

*
*

Figure 4: High-level structure
of a session document com-
prising multiple layers with
multiple VCAs.

1) Session Document:
The document structure
(Fig. 4) is inspired by the
OpenRaster file format.
A document consists of
metadata about the project,
e.g., creation date, version,
resolution, etc. All used
images in a project are
stored as layers in an array
in the document. These layers contain property information
about the image, e.g., transformations, visibility, etc.
Images can be edited using pipelines, i.e., VCAs are
applied consecutively. The effect name of each used VCA
and its parameters are stored in an array (pipeline) in the
layer object. This enables several customization possibilities
on a per-layer level and per-VCA level.

{"module": "drawing",
"message": {
"newPath": {
"timeStamp": "1617804631471",
"clientId": "m82pY9bvAeIAAAH",
"color": "#795EB3",
"width": "10",
"path": [["M",446.99,38],

["Q",447,38,448,38],
["Q",449,38,449.5,38],
["Q",450,38,451,38.5],
["Q",452,39,452.5,39],
["L",453.01,39]]}}}

Listing 1: Exemplary
message structure of a
newPath action in the
drawing module.

2) Session Handling: At
the initial state, all stored doc-
uments are read and each one
is assigned a unique identifier.
These sessions contain differ-
ent handlers for broadcasting
client information, e.g., pointer
positions and actions, and/or
updating the document and no-
tifying clients. When a client
connects to the server, the
server responds with a session
overview. After registering for a session, the user’s socket
is subscribed to all handlers of the specific session on the
server-side. By registering to the server, the client receives its
unique server-socket Identifier (ID) that is stored in the local
storage of the browser. If the client disconnects, it re-sends
its assigned ID when reconnecting to the server and thus is



recognized again. Moreover, a unique color is assigned to
the client, which also serves as the default brush color.

Since several users can work simultaneously in one ses-
sion, we have a high degree of access-conflict. The server
treats incoming changes as “first come, first serve” and,
hence, defines the order of updates which is then sent to all
subscribed clients. The main logical conflicts are resolved at
server-side, e.g., if a user deletes a given layer while another
user edits it, the latter change request is dropped. Remaining
access-conflicts, which are not mutually exclusive, are then
handled at the client-side, i.e., the last executed update will
define the modified session state. Thus, session-handling is
important to maintain synchronization among clients, a key
requirement (Sec. III) for such a system.

B. Protocol for Client-Server Communication

For the communication between the server and multiple
clients, we design a simple protocol that suffices the fol-
lowing requirements: (i) it has a simple yet extensible
message structure to facilitate easy development and allows
the integration of future features; (ii) it is suitable for fast
message (de)serialization to reduce the run-time overhead
for clients and server. The clients employ a WebSocket
connection to send events to the server, which are then
broadcasted to the remaining clients. Both client and server
listen for events and process the incoming data accordingly.
The sent data includes information about the applied project
changes as well as other aspects such as timestamp and
client ID that allow for change-history maintenance and
enable change traceability among the users. An exemplary
message structure (based on JavaScript Object Notation
(JSON) standard format) for a newPath event is depicted in
List. 1. The above allows for efficient communication among
clients, which is a necessity (Sec. III-A) for our system.

C. Client Components and Functionality

The rendering of the raster images is performed entirely on
the client-side using WebGL 2.0. The front-end is developed
using Vue and the Vuex framework is employed for global
storage. Moreover, we make use of Fabric.js to facilitate
layer control for canvas rendering.

1) Update Logic: Since all users can potentially work on
the session document simultaneously, resulting data-conflicts
are required to be handled properly. For it, we propose the
communication process among clients as depicted in Fig. 2.
After the user changes a parameter, a change-request is
sent to the server over a synchronization service. The above
service also listens to all change-events from the server. If
the request is accepted by the server, it will notify all clients.
The service then modifies the store and the GUI is updated
accordingly. The user is not allowed to update the local store
directly to prevent version conflicts. A small update delay is
barely noticeable because of quick socket communication. In
case of a parameter-update conflict, when two users update

the same value simultaneously, the last request processed
by the server is considered the final version. However, only
one user at a time should be able to directly manipulate or
transform a layer. For it, during such operations, the layer
will be implicitly locked w.r.t. its transformation properties.

2) GUI Structure/Schematics: We assume that the target
audience is familiar with some raster-image editing software
and therefore decided to re-use GUI concepts from common
image-editing applications. Thus, tools such as brush and
selection are located in a vertical icon toolbar on the left
with additional control parameters on an upper horizontal
bar (Fig. 5). The object property panels (e.g., of layers
or VCAs) are both located on the right side of the raster
graphic. A user can directly interact with the canvas by
drawing on a layer or transforming it. Since the image
takes up most of the available space for direct editing, the
remaining GUI components are arranged compactly with
informative icons to ensure intuitive usability. Most appli-
cations for raster image editing do not support a responsive
design. For smaller screen sizes, e.g., mobile or tablet, this
is problematic, because many operations must be clearly
represented with large buttons for easy access. Therefore,
we hide certain components, which are displayed via a
responsive layout if required (Fig. 6). Since the components
themselves do not differ between screen sizes, the user can
easily switch between desktop and mobile devices without
adapting to a new GUI. The generic project tool buttons for
downloading the final image , sharing the project , or
messaging other users working on the project , are placed
on top of the editing components.

3) User-specific Visual Feedback: For a coordinated
workflow among the clients, the respective selected layer,
VCA and the tool of each user is highlighted (Fig. 5b). This
allows a user to reproduce canvas changes made by another
user. Moreover, this potentially avoids editing conflicts or
parameter overwrites as the user can see if someone else
has selected the same layer or VCA. Similar to other
collaborative web-apps, an overview of currently active users
is depicted in the upper right corner. On hovering over
the user’s icon, the respective username is displayed. We
can also get an overview of the user’s working area by
clicking on the user icon. The cursor position on the canvas
is broadcasted to the remaining clients and is displayed
with the client’s unique color identifier, assigned by the
server. The displayed cursor depends on the selected tool,
e.g., a pointer or a brush. Additionally, if a user selects
or transforms a layer, it is highlighted with the respective
client’s color. This way, all participants obtain an overview
of the active objects of other users.

4) Basic Editing Features: Within a project, layers can
be added, deleted, and reordered with simple button clicks
in the layer control panel. For each layer, visibility can be
set and the layer itself can be locked/unlocked . To
further enable collaboration we introduce an exclusive-lock



Social and Sharing Tools Editing Tools Layer Control Layer & VCA Properties

(a) Editing Tools and Views
User-specific Visual Feedback Chat Window Current Work Areas of Users Cursor Positions of Users

(b) User-specific Visual Feedback

Figure 5: Our GUI provides a variety of (a) editing tools and (b) user specific visual feedback to visually communicate the
tool and objects currently operated by other users in order to mitigate the risk for potential editing conflicts.

Figure 6: The responsive GUI layout hides editing compo-
nents if the screen size is too small. The functionality can
be easily expanded by pressing the respective button.

button . Analogous to the lock functionality, a user can
disable a layer via this button. However, the layer will be
locked for everyone except this user. Other users can see
who exclusively locked a layer and when. By unlocking
this layer, the original user gets a notification. This way,
a user can personally lock a layer and signal that he/she
does not want interference from other users. Depending on
whether the user himself/herself exclusively locked the layer
or not, this button is highlighted in a different color. Thus,
the user also has a visual overview of which layers he/she is
currently working on. Furthermore, for each layer, additional
information is displayed in the panel below. A user can
switch between the different control settings through tabs,
e.g., the layer properties or VCA. Thus, this panel can be
easily extended with additional editing features later on by
adding new tabs, e.g., viewing the respective layer version
history or comments. The main layer properties, e.g., scale,
rotation, opacity, are located in the properties tab. In the

VCA tab, the user can add, delete, and reorder VCAs in the
pipeline of the layer. Each VCA is adjustable and can be
enabled or disabled. All changes are applied to the image in
real-time. Depending on the selected tool in the left toolbar,
the user has different options to manipulate layers. The
corresponding horizontal bar above it is generic and can
thus be extended with further tools and settings. So far, the
following tools are available:

• Select: A layer can be selected and transformed with
the respective handles. Additional buttons for resizing
and centering facilitate the use.

• Brush: One can draw with customizable brush size and
color on the selected layer. Performed brush strokes can
be undone/redone using the respective tool buttons.

V. POST-DEPLOYMENT USER STUDY

Additional requirements on functionality and user experi-
ence are often identified after a prototype is deployed and
users have had a chance to try the software and provide
feedback. This valuable feedback will be used to improve the
future iterations of our prototype. For the post-deployment
study, we focused on the following three aspects: (i) do
users understand the general structure of the GUI, (ii) do
users understand the visualization metaphors to avoid editing
conflicts, and (iii) are users satisfied with the prototype.

A. Participants & Apparatus

We recruited 16 volunteers (8 male, 8 female) in 6 different
groups. The above participants use our system for the first
time and were not part of the preliminary user study to avoid
any inherent bias. Each group had a variable number of par-
ticipants between 2 to 3 and volunteers were aged between
the ages 21 and 34. While all of them had experience with
computers, 5 had no or only little experience with image



(a) Task-1 Input (b) Task-2 Input (c) Task-3 Input

(d) Task-1 Output (e) Task-2 Output (f) Task-3 Output

Figure 7: Exemplary results obtained with our system during
sessions of the post-deployment user study.

editing applications. All of them had normal or corrected-
to-normal vision and no known visual impairments. All the
participants (except for one, who used an iPad) accessed
our SPA on a desktop/laptop system with a single monitor
using standard web-browsers (Google Chrome: 7, Mozilla
Firefox: 5, Apple Safari: 2, Microsoft Edge: 2) and a
computer mouse (two participants used trackpads).

We conducted a supervised/observed study in remote ses-
sions, each with a group of participants. We were connected
with them via an online Zoom meeting as they were guided
and monitored at the same time. Each session had a length
of approx. 60min having the following structure. First, each
group received a brief introduction into the GUI covering
only editing tools as well as layer and VCA controls (5min).
Following this, each group is asked to collaboratively solve
three tasks in sequence.

B. User Tasks

The three tasks performed by each participant group cover
the full potential of our editing system. The tasks are
ordered by increasing difficulty and took 15min to 20min
respectively for completion. Fig. 7 shows selected results
obtained during the study.

Sketching (Task-1): We provide a blank sketch as a
background layer (Fig. 7a) and the participants are asked to
color the sketch using the brush tool on the empty top layer
(e.g., Fig. 7d). The users are encouraged to use multiple
brush colors and also create their own doodle using an
additional layer. The task objective is to test if users are
able to work with layers, use the brush tool effectively,
and detect potential synchronous conflicts. We stopped this
exercise once the users were familiar with the brush tool and
working with layers; this task took 10min to 15min.

Puzzle (Task-2): We provide the users with a set of
disarranged pieces of a test image (Fig. 7b). Each piece is
represented in the form of a single layer. The task is to
rearrange these layers using rotation and translation in order

(a) Overall Satisfaction (b) Functional Satisfaction

Figure 8: The (a) overall and (b) functional satisfaction of
the participants during the post-deployment user study on a
Likert-Scale of 1 to 5, with 5 being the best.

to solve the puzzle (Fig. 7e). The task objective is to test if
users are able to use layer transformation tools effectively.
We also provide the puzzling image as a guide. On an
average, it took between 15min to 20min to complete.

Collage Creation (Task-3): Given a set of images, i.e.,
one background image and various foreground images with
alpha matte (Fig. 7c), the users should create and layout
respective layers – comprising as many foreground images
as they like – in order to create a collage collaboratively.
In addition thereto, they are encouraged to apply different
image effects (using VCAs such as contrast enhancement,
pixelation, chroma-zoom, or chromatic aberration) to each
layer. The task objective is to test if users are able to
reuse their learning from the previous tasks and also test
familiarity with blending and layer modification via VCAs.
The time for this task was limited to 15min.

C. Data Collection and Analysis

The online session of the above tasks is followed by a sub-
jective interview (of approx. 15min) with questions focusing
on performance, collaboration, and potential applications. In
addition thereto, the entire online session was video recorded
to analyze groups’ collaborative practices and also to record
their feedback. After the interview, each participant is asked
to file a post-study questionnaire based on QUIS and CSUQ
without any time constraints.

All the participants were able to perform Task-1 quite
easily and were satisfied with the system performance. It
indicates that even in the current state our system can be
used for a collaborative coloring-book application. For Task-
2, the major difficulty was maintaining the control of a
particular layer. Participants reported that the user-specific
visual feedback regarding layer selection was too subtle.
Thus, it happened that two participants were trying to move
the same layer and faced unexpected results. However, in
the subjective interview, they confirmed that such editing
conflicts could have been avoided with the layer locking
functionality. For Task-3, the major challenge was in terms
of adding effects to layers, most of the users were not able
to figure out this functionality on their own. Overall the
user feedback can be summarized into the following two
categories.



Collaboration: As expected, the novel collaborative
aspect of our system was appreciated by most of our
participants (Fig. 8a). They showed a great interest in
having this collaborative functionality integrated into the
image editing tool of their choice. Our participants from
different background suggested a broader utility of our
system in domains of engineering, architecture, teaching,
entertainment, academia, etc., thus indicating a wide user
base. However, further improvements for collaboration was
suggested mainly in terms of (i) an integrated voice com-
munication channel, (ii) hiding layers created by other team
members, and (iii) functionality known from collaborative
document editing, e.g., tagging and commenting.

Editing: Our prototype does not offer all the editing
functionality generally available in a common image-editing
application. Most of the participants who are familiar with
such tools noticed the lack of such functionality (Fig. 8b),
e.g., an eraser tool, a flood fill tool, or selective layer
manipulation (applying VCAs only on a selected region of
a layer). However, the integration of collaborative versions
of these tools is supported by our architecture.

To answer the initial questions as part of the post-
deployment user study: (i) the users understood the general
structure of the GUI, (ii) the visualization metaphors, to
avoid editing conflicts, were not intuitive in the beginning
but were easy to use after guidance, and (iii) users were
quite satisfied with our prototype, especially with respect to
its collaborative nature.

VI. CONCLUSIONS

In this paper, we designed and evaluated a web-based system
for real-time collaborative editing of raster images. To the
best of our knowledge, ours is the first system that provides
such a wide variety of image-edits in a collaborative fashion.
In order to better understand the needs for such a sys-
tem, we conducted a preliminary user study. Our prototype
leverages the power of WebGL for interactive browser-
based rendering, while synchronization is maintained via
WebSocket connections. Our interface re-uses and extends
GUI concepts from common image-editing applications. The
post-deployment user study indicates a substantial demand
for such a system. As part of future work, we would like to
address the existing limitations.

ACKNOWLEDGMENTS

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF) through grant
01IS1809 (“mdViPro”) and 01IS19006 (“KI-LAB-ITSE”)
and the Research School on “Service-Oriented Systems
Engineering” of the Hasso Plattner Institute.

REFERENCES

[1] B. R. Lee, “Analysis of digital art content created through
collaboration,” Archives of Design Research, vol. 30, no. 4,
pp. 17–25, 2017.

[2] T. Isenberg, “Interactive npar: What type of tools should
we create?” in Proceedings of the Joint Symposium on
Computational Aesthetics and Sketch Based Interfaces and
Modeling and Non-Photorealistic Animation and Rendering,
ser. Expressive ’16. Goslar, DEU: Eurographics Association,
2016, p. 89–96.

[3] W. K. Edwards, “Flexible conflict detection and management
in collaborative applications,” in Proceedings of the 10th
Annual ACM Symposium on User Interface Software and
Technology, ser. UIST ’97. New York, NY, USA: Association
for Computing Machinery, 1997, p. 139–148.

[4] C. A. Ellis and S. J. Gibbs, “Concurrency control in group-
ware systems,” in Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, ser. SIG-
MOD ’89. New York, NY, USA: Association for Computing
Machinery, 1989, p. 399–407.

[5] C. Sun and D. Chen, “Consistency maintenance in real-time
collaborative graphics editing systems,” ACM Trans. Comput.-
Hum. Interact., vol. 9, no. 1, p. 1–41, Mar. 2002.

[6] J. Heer and M. Agrawala, “Design considerations for col-
laborative visual analytics,” Information Visualization, vol. 7,
no. 1, pp. 49–62, 2008.

[7] G. Salvati, C. Santoni, V. Tibaldo, and F. Pellacini, “Mesh-
histo: Collaborative modeling by sharing and retargeting
editing histories,” ACM Trans. Graph., vol. 34, no. 6, 2015.

[8] C. Calabrese, G. Salvati, M. Tarini, and F. Pellacini, “Csculpt:
A system for collaborative sculpting,” ACM Trans. Graph.,
vol. 35, no. 4, 2016.

[9] L. Gao, D. Gao, N. Xiong, and C. Lee, “Cowebdraw: a real-
time collaborative graphical editing system supporting multi-
clients based on html5,” Multimedia Tools and Applications,
vol. 77, no. 4, pp. 5067–5082, Feb 2018.

[10] C. Wu, L. Li, C. Peng, Y. Wu, N. Xiong, and C. Lee, “Design
and analysis of an effective graphics collaborative editing
system,” EURASIP Journal on Image and Video Processing,
vol. 2019, no. 1, p. 50, Mar 2019.

[11] J. Zhai, Q. Li, X. Li, and L. Wenyin, “A cooperative image
editing tool over mobile phones,” in Proceedings of the 11th
International Multimedia Modelling Conference, ser. MMM
’05. USA: IEEE Computer Society, 2005, p. 264–270.

[12] K. Nováková, V. Jakubal, H. Achten, and D. Matejovska,
“Collab sketch: Case study on collaborative sketching,” in
Fusion - Proceedings of the 31st eCAADe Conference, 2013,
pp. 213–218.


	Introduction
	Background & Related Work
	Analysis and Preliminary Considerations
	Preliminary User Study
	Potential Conflicts in Collaborative Editing

	System Overview
	Server Components and Functionality
	Session Document
	Session Handling

	Protocol for Client-Server Communication
	Client Components and Functionality
	Update Logic
	GUI Structure/Schematics
	User-specific Visual Feedback
	Basic Editing Features


	Post-deployment User Study
	Participants & Apparatus
	User Tasks
	Data Collection and Analysis

	Conclusions
	References

