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Abstract—A fundamental task in 3D geovisualization and
GIS applications is the visualization of vector data that can
represent features such as transportation networks or land
use coverage. Mapping or draping vector data represented by
geometric primitives (e.g., polylines or polygons) to 3D digital
elevation or 3D digital terrain models is a challenging task.
We present an interactive GPU-based approach that performs
geometry-based draping of vector data on per-frame basis
using an image-based representation of a 3D digital elevation
or terrain model only.

Keywords-Geometry Draping, Geovisualization, GPU-based
Real-time Rendering

I. INTRODUCTION

A. Motivation

Draping has a number of applications in geovisualization.
Most prominent are the mapping of Geographic Information
System (GIS) features such as transportation networks or
planar polygon features. There are basically two types
of draping primarily used: Texture-based Draping (TBD)
denotes a perspective or panoramic rendering of a 2D texture
superimposed onto a 3D surface. For example, an aerial
photograph might be draped over a Digital Elevation Model
(DEM) to facilitate terrain visualization.

In contrast thereto, Geometry-based Draping (GBD) de-
notes the process of fitting a given 2D point, line, or polygonal
geometry, the Draping Source (DS) onto a 3D surface,
denoted as the Draping Target (DT). A DS can be represented
by a 2D mesh, a set of 2D lines, or 2D point data with
additional appearance variables such as color or texture. We
extend the classical notion of draping sources by considering
2.5D representations.

B. Limitations of Existing Approaches

Previous work describes basically three different classes
of approaches and their combinations for draping feature
geometry on top of a DEM (cf. Figure 1). Table I compare
these classes with respect to their ability to convey the
characteristics of the DS. None of the existing approaches
is able to convey all.

(a) 3D DTM (b) Desired result. (c) Projective texturing.

(d) Stencil based. (e) Shadow volumes. (f) Geometry draping.

Figure 1: Comparison of draping approaches.

Geometry-based Draping (GBD): Rendering a poly-line
on terrain by sub-sampling points along the poly-line requires
adjustment in response to terrain Level-of-Detail (LOD)
switches and the coplanar geometry can lead to z-fighting [1].
Thus, it often requires additional tessellation of the DS, which
impacts the runtime performance depending on geometric
complexity of the DS. Therefore, on-demand simplification
(run-time overhead) or multi-scale representation (memory
overhead) approaches can be used.

Texture-based Draping (TBD): This common approach
for polygon draping requires the creation of a rasterized
polygon representation (texture) and its subsequent terrain
rendering using multi-texturing [2]. It avoids the complexity
and drawbacks of draping geometry, with no tessellation
required, no polygon-offsets, and no z-buffer concerns.
Creating the texture in a pre-processing step limits the texture
resolution to the available Video Random Access Memory
(RAM) (VRAM), leading to aliasing as the viewer zooms in;
generating the texture on-demand [3] can become expensive
and does not prevent aliasing on steep slopes or blurry feature
edges.

Stencil-based Draping (SBD): This rendering approach is
based on a intermediate geometric representation (shadow
volume) computed from the draping source. Thereby, input
primitives (lines and triangle) are extruded in a pre-processing
step (or during rendering using geometry shader functionality)
and then rasterized with stencil buffering enabled [2]. Using
subsequent multi-pass rendering with stencil testing, the DT
can be colored according to the stencil buffer content.



Table I: Overview of existing draping approaches and how
they preserve the different aspects of draping sources.

Aspect of DS to Preserve GBD TBD SBD

Color 3 3 3
Texture 3 3 7
Geometry 3 7 7
Height 7 7 7

Rendering multiple DSs requires multiple intermediate rep-
resentations that must be recompute if the DT is changed or
modified. Using shadow volumes leads to smearing on steep
slopes and dashing when viewed lengthwise [4].

Recent advances in Graphics Processing Unit (GPU)-
based tessellation enables real-time GBD for dynamic DS
and DT. Further, it supports the application of adaptive
hardware-accelerated terrain tessellation in combination with
dynamic DS, e.g., for the rendering and visualization of
moving objects over dynamic surfaces.

C. Problem Statement

Existing approaches require a re-computation and update
step if DT and DS are of dynamic nature, i.e., comprising
animated geometry based on data set that are changing
temporarily. That can include the support of LOD rendering
of 3D Digital Terrain Model (DTM) at different tessellation
levels. To enable high-quality draping and rendering of
dynamic DSs and DSs, it is feasible to implement this
using an image-based representation of the draping target,
e.g., the rasterized 3D DTM [5]. Here, the basic research
question is how to find the correspondence between the image-
based representation of a digital 3D DEM or DTM and the
geometric of the features that should be mapped in real-time.
This question becomes more immanent if LOD rendering is
considered, i.e., the correspondence must be computed for
different geometric representations. Further, it can desirable
to re-use already draped geometry (draped source) later on
in subsequent processing and rendering stages, for example
within GIS or 3D geovirtual environments.

D. Approach & Contributions

This paper presents a novel interactive approach to the
challenges stated above. The real-time rendering technique
is based on an image-based representation of DTs (G-
Buffer) [5] or its extensions (e.g., K-Buffer [6]) to effectively
decouple the rendering of the DT and DS geometry. Instead
of computing intermediate data representations, our approach
projects each vertex of the input geometry onto the image-
based representation using a binary search algorithm [].
To achieve sufficient vertex density, the tessellation and
subdivision of a DS can be refined adaptively using hardware-
accelerated techniques [].

The presented approach has a number of advantages. Since
it requires only G-Buffer information, it is (1) independent of
the specific rendering technique for the draping target (e.g.,

Table II: Overview and classification of related work with
respect to draping approaches. Hybrid approaches are high-
lighted by gray rows.

Approach GBD TBD SBD

Kersting & Döllner [3] •
Wartell et al. [1] •
Schneider et al. [7] • •
Agrawal et al. [8] •
Sun et al. [9], Deng et al. [10] •
Schneider & Klein [11], Dai et al. [12] •
Schilling et al. [13] •
Sun et al. [14], Wang et al. [15] • •
Yang et al. [16] • •
Vaaraniemi et al. [17] • •

terrain renderer or similar), and thus (2) it is not require to
respect underlying implications LOD rendering techniques
and (3) is suitable multi-scale and view-dependent approaches.
The draping process is based on geometric computation on
graphics hardware and thus features a lower memory footprint
compared to pre-processed geometry-based approaches. This
basically allows to store intermediate or the final results for
further processing.

To summarize, this paper presents the following contribu-
tions: (1) it presents a novel rendering technique for draping
polygonal geometry onto virtual terrain models, and (2) it
allows for decoupling the rendering of digital surface models
from feature rendering.

The presented approach has various applications for geo-
visualization of spatial-temporal feature data. The major use-
case represents the mapping of features geometry to 3D DEM
or DTM. It further can be used to complement approaches for
rendering of transportation networks to mountainous regions.
An additional application scenario lies in the domain of
Computational Geometry: the computation and visualization
of distances between possible dynamic polygons. In such
application the distance between DS vertices and the DT
is computed using the vertex projection approach and then
visualized on the DS surface, e.g., using color coding.

The remainder of this paper is structured as follows.
Section II reviews and discusses related work w.r.t. interactive
geometry draping and 3D DTM. Section III introduces the
concept of image-based geometry draping and describes im-
plementation details of an prototypical interactive rendering
technique and evaluates it run-time performance. Finally,
Section IV concludes the paper and presents ideas for future
research.

II. RELATED WORK

Despite computing the draped polygonal representation on
using a pre-processing step [13] or using screen-space
approaches that are limited to line geometry [4] only, there are
basically two major GPU-based approaches to the problem
of mapping polygonal geometric data to terrain models:
texture-based and stencil-based using stencil buffers. For



the sake of completeness we also review geometry-based
draping based on Central Processing Unit (CPU). Table II
summarized major characteristics of the approaches reviewed
in the following.

Geometry-based Draping (GBD): This class of ap-
proaches directly modify the vector data to fit the surface of
the terrain representation and render the results using separate
geometric primitives. Wartell et al. show how to overlay 2D
poly-lines on top of terrain models [1]. The overlay poly-
lines are rendered independently from other image data due
to rasterization artifacts. They present the triangle clipping
Directed Acyclic Graph (DAG) data structure, which allows
rendering the projected polylines together with a quad-tree
based terrain model. They address the challenging problem of
combining progressive terrain meshes, which change at nearly
every frame as described by e.g., Hoppe 1998 or Lindstrom
and Pascucci 2002, with 3D polyline data, which also needs
to adapt accordingly. Agrawal et al. use a similar technique
for combining a textured terrain model with polyline data [8].
In this approach, the terrain is organized as block-based
LOD structure derived from a height raster, which allows for
efficient memory paging and using optimized data structures
such as triangle-strips. Due to this block-based simplification
and visualization scheme (nine tiles are visible at one time),
height values can be sampled up for each line segment from
the underlying mesh with the highest resolution. Over meshes
with lower resolutions, these height values must be corrected
accordingly.

Texture-based Draping (TBD): This approach rasterizes
vector graphics into an texture to subsequently project it
on the virtual 3D terrain model using hardware-accelerated
projective texturing [18], [19]. Here, raster-based GIS layers
can be overlaid and combined to a single texture layer.
Additionally, hardware-accelerated techniques such as mip-
map filtering can be used to optimize rendering speed and
memory consumption [20]. There are basically two classes
of this approach: static and dynamic TBD. Static TBD
approaches create static multi-resolution texture pyramids
in a pre-processing step. This requires large amounts of
VRAM and out-of-core techniques for texture handling as
well as suffers of sampling artifacts due to lack of texture
resolution [4]. To overcome these limitations, Kersting and
Döllner proposed on-demand texture pyramids [3]. In contrast
to static method, texture pyramids are created for arbitrary
resolutions on a per-frame basis using render-to-texture
capabilities of a hardware rasterizer. The advantage of this
method is that large amounts of texture data that would be
necessary for every possible resolution do not need to be
computed.

Hong et al. present an approach that renders vector data
over 3D terrains using view-dependent perspective texture-
mapping [21]. Since it is based on texturing only, the
major advantage of using TBD is its independent of LOD-
Rendering algorithms for DTs. However, the view-dependent

pre-processing of texture data requires VRAM and can not
guarantee high visual quality.

Stencil-based Draping (SBD): Schneider and Klein
proposes a solution which extrudes the vector data to
polyhedral and uses these to create a stencil buffer mask [11],
similar to shadow volumes [2]. It is algorithmically complex,
but avoid the limitations of conventional geometry and
texture-based approaches for feature draping [12], since its
independent from target geometry. Vaaraniemi et al. adapted
this techniques for the rendering high-quality cartographic
roads on high-resolution DEMs [17]. Due to the intermediate
shadow-volume representation, the major limitations of SBD
are: (1) re-computation of stencil volumes is required for
dynamic DSs. Stencil volumes can be computed on CPU,
which can become costly for draping targets of high geometric
complexity, or using geometry shader [17]; (2) limited control
of target appearance, especially texturing and shading, and
(3) specific interaction techniques are required.

Hybrid Draping Methods: Further, research presented
hybrid methods combining some or all of the above methods
for the sake of rendering quality and rendering performance
by benefiting from the advantages of both techniques. For ex-
ample, Schneider et al. combine texture-based and geometry-
based approaches for real-time rendering of geometrical
complex vector data on 3D terrain models [7]. Further, the
texture-based approach is extended using a perspective re-
parametrization similar to that applied in perspective shadow
mapping [22], yielding quality superior to standard texture
mapping, while an geometry-based approach is used for high-
quality visualizations. The approach is basically limited to
static draping targets, because the 3D geometry is created
from the 2D vector data for each LOD of the terrain and
completely incorporated into the terrain quad-tree hierarchy
of the LOD in a pre-processing step. A similar approach is
used by Sun et al. for the interactive manipulation and display
of large-scale vector data in 3D landscape maps [14], [15].
Further, Yang et al. combine geometry-based and stencil-
based draping for an efficient rendering for large vector data
on large terrain models [16].

III. REAL-TIME SCREEN-SPACE GEOMETRY DRAPING

This section describes details of our prototypical implemen-
tation based on Open Graphics Library (OpenGL) [23] and
OpenGL Shading Language (GLSL) [24]. Figure 2 shows an
overview of draping visualization pipeline of our approach. It
mainly comprises the three stages described in the remainder
of the section (Sections III-A to III-C).

A. Terrain Rendering and G-Buffer Generation

This stage creates an image-based representation of the 3D
DTM geometry. Such G-Buffer [5] can be generated within
a single rendering pass using forward rendering with Render-
To-Texture (RTT) functionality in combination with Multiple-
Render-Targets (MRTs). It basically generates a color buffer
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Figure 2: Schematic Overview of data and processing components for screen-space geometry draping pipeline.

storing the terrain albedo color, a normal buffer storing
world-space normal vectors for later shading, as well as
an position buffer (floating point precision required), which
is required by the geometry projection stage. Thus, this
approach makes no assumptions of the on the actual terrain
rendering algorithm used, e.g., it supports LOD and multi-
scale rendering techniques.

The screen-space approach assumes the following image-
based data [5] acquired from a terrain renderer: (1) albedo or
color of textured terrain (Red-Green-Blue (RGB)), (2) surface
normal N , and (3) the position in P in world-space coordi-
nates. These buffers can be generated in single-rendering pass
using MRT. For a more compact representation, normal in
eye-space (x, y component only), and world-space position
(zP component only) can be stored together with the RGB
using 2D texture arrays for an effective access during runtime.
This representation can also be used for deferred shading or
stylization (Section III-C).

B. Screen-space Geometry Projection

This section describes the basic components of draping
polygonal geometry by only using G-Buffer information
of the DT. For simple integration of the proposed approach,
it is assumed that the DS is represented using geometric
rendering primitives, i.e., points, lines, or triangles. The main
task is basically projecting the vertices of these primitives
to the image-based representation of the DT on a per-vertex
basis using vertex shader. Figure 3 shows an overview of the
projection concept. The basic idea is to find the intersection of
a line L through V with the image-based DT representation
obtained by the previous stage. Listing 1 shows a GLSL
code for performing a binary search for such an intersection
point. It takes the world-space normal and depth texture as
well as a number of samples used together with a sampling

VIn

VOut

DT

DS

L

Figure 3: The position of the output vertex VOut on the
draping target (DT ) is the result of draping the respective
input position Vin of the draping source (DS ) by performing
an binary depth-intersection search along a line L.

step size required for averaging as input. The matrix MVP

represents the model-view-projection transformation used for
rendering [2].

C. Image-based Compositing in Screen-space

This final rendering pass combines the results of both previous
rendering passes into a single output image. Further, deferred
shading and lighting is applied based on the obtained G-
Buffer data from the 3D DTM and the projected DS.

This step produces the final image by basically performing
compositing based on the G-Buffer information of the 3D



// Convert to normalized screen coordinates
vec4 toNSC(const in vec4 v) {
return vec4(0.5 * (v.xyz / v.w) + 0.5, v.w);
}

vec4 vertexDraping(
const in sampler2D positionTex, // Position G-Buffer
const in vec4 Vin, // Vertex to drape
const in int samples, // #Samples for smoothing
const in float sampleStep) // distance for smoothing
{
float texSize = float(textureSize(positionTex, 0).x);
float pixelSize = 1.0 / texSize;
vec2 stepSize = vec2(sampleStep/texSize);
// Construct line to search along
vec4 lineStart = MVP * vec4(Vin.xy, 1.0, 1.0);
vec4 lineEnd = MVP * vec4(Vin.xy,-1.0, 1.0);
vec4 Vout = Vin;
// Binary search for line-terrain intersection
float first = 0.0, last = 1.0;
while(first <= last)
{
// Compute mid-point
float mid = first + (last-first) / 2.0;
// Compute texture coordinates along line
vec4 texCoords = toNSC(mix(lineStart, lineEnd, mid));
vec4 sample = vec4(0.0); // Sample terrain
for(int s = -samples; s < samples; s++) {
for(int t = -samples; t < samples; t++) {
sample += texture(positionTex,

texCoords.st + vec2(s,t) * stepSize);
}
}
// Smooth samples obtain from G-Buffer
sample = sample / float(samples * samples * 4.0);
// Compute height from normalized representation
float terrainHeight = (2.0 * sample.z - 1.0);
Vout = vec4(Vin.xy, terrainHeight, 1.0);

if((last-first) < pixelSize) // Termination criteria
return Vout;
// Perform intersection test
float depthScene = toNSC(MVP * Vout).z;
if(depthScene >= texCoords.z)
first = mid;
else
last = mid;
}
return Vout;

}

Listing 1: GLSL implementation of draping algorithm.

virtual terrain and the G-Buffer information of the projected
feature. By sampling the G-Buffers at the respective fragment
positions, the compositing is basically performed by using
α-blending. This approach facilitates integration with modern
deferred renderer and allows for feed-back to G-Buffer input
for multiple draping.

D. Performance Evaluation

We tested the rendering performance of our prototypical
implementation using a 3D DEM (DT) represented by a
regular grid of 67 330 vertices and 131 072 triangle primitives
(indexed). The performance test was conducted using a
NVIDIA GeForce GTX 970 GPU with 4 096MB VRAM on
a Intel Xeon CPU with 2.8GHz and 12GB RAM rendering
at a viewport resolution of 1280×720 pixels. The application

Table III: Rendering performance results for draping sources
different geometric complexities.

# Vertices # Triangles Frames-per-Second (FPS)

2 500 4 800 310.6
4 900 9 522 226.3

10 000 19 602 152.1

runs in windowed with vertical synchronization turned off.
The run-time performance mainly depends on the geo-

metric complexity of the 3D scene and decreases w.r.t. the
geometric complexity and number of DSs. Table III shows
the obtained measurements in Frames-per-Second (FPS),
averaged over 500 frames for DSs of different geometric
complexity (also in indexed representation).

IV. CONCLUSIONS AND FUTURE WORK

This paper presents a novel hardware-accelerated interactive
visualization technique for draping vector features to 3D
digital terrain models in screen space. For future work,
the presented approach can be complemented with adaptive
hardware-accelerated subdivision of sparse feature geometry
to ensure sufficient vertex density.
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