
Service-based Processing of Gigapixel Images

Florian Fregien
Hasso Plattner Institute,

Digital Engineering Faculty,
University of Potsdam,

Germany
florian.fregien@student.hpi.de

Sebastian Pasewaldt
Digital Masterpieces GmbH

Potsdam, Germany
mail@digitalmasterpieces.com

Jürgen Döllner
Hasso Plattner Institute,

Digital Engineering Faculty,
University of Potsdam,

Germany
juergen.doellner@hpi.de

Matthias Trapp
Hasso Plattner Institute,

Digital Engineering Faculty,
University of Potsdam,

Germany
matthias.trapp@hpi.de

ABSTRACT
With the ongoing improvement of digital cameras and smartphones, more and more people can acquire high-
resolution digital images. Due to their size and high performance requirements, such Gigapixel Images (GPIs) are
often challenging to process and explore compared to conventional low resolution images. To address this problem,
this paper presents a service-based approach for GPI processing in a device-independent way using cloud-based
processing. For it, the concept, design, and implementation of GPI processing functionality into service-based
architectures is presented and evaluated with respect to advantages, limitations, and runtime performance.

Keywords: Gigapixel Images, Image Processing, Web Technologies, Service-based Processing

1 INTRODUCTION
Nowadays, the acquisition of digital images is an es-
sential part of everyday life. With respect to this,
the acquisition technologies have been constantly im-
proving, resulting in an increase of spatial and tempo-
ral resolution and precision. Especially the increased
(spatial) resolution demands for efficient and scalable
approaches for their processing and display. Besides
desktop-publishing, advertising and marketing, high-
resolution images play an important role in the field
of cultural heritage [15], medical analysis [11], and
geospatial science [20].

1.1 Problem Statement
One example of such high-resolution images are GPIs,
which often comprise several billion pixels. Acquisi-
tion of such images is usually more complex and its
processing and exploration places high demands on a
system [8]. Standard consumer hardware is often not
sufficient to process and display GPIs due to the high
memory requirements. This is especially true for mo-
bile devices such as smartphones that are limited in pro-
cessing performance and memory.

To approach this problem, specific software is required
for managing and distributing performance-intensive

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Figure 1: Exemplary screenshot of our service-based
application for the exploration and processing of GPIs.
It shows the components of our web-based front-end
that displays the results of a color grading technique
that is applied to a GPI comprising approximately
30000 × 20000 pixels. The provisioning and process-
ing of the GPI was performed using back-end services.

processing tasks. Regarding this, advances in cloud-
computing technology and cloud-based microservices
represent a suitable alternative to monolithic on device
software systems.

In the context of this work, the technical challenges of
integrating a system for processing GPIs into a cloud-
based platform is addressed. For this purpose, the rep-
resentation and storage of GPI have to be addressed
first. Further, microservices architectures for image
processing are be extended to support GPI, e.g., using
a tile-based approach. Furthermore, interfaces are be
developed and implemented that enable the communi-
cation between front-end and back-end systems.



1.2 Approach and Contributions
This paper describes how the exploration and process-
ing of GPIs can be integrated into to service-based ar-
chitectures (Figure 1). Therefore, it investigates how
such images can be stored and processed in the back-
end and accessed by a web-based front-end. It describes
the specifics of integrating point-based, neighborhood-
based, and global image processing techniques in such
a system.

The remainder of this paper is organized as follows.
Section 2 describes the concept of GPIs as well as pre-
vious and related work on the topic of service-based
image processing. Section 3 describes a microservice
architecture for processing GPIs. It covers the storage
of the images in the back-end, how they can be pro-
cessed by an image processor, and how the interaction
with a front-end is performed in order to display the im-
ages efficiently. Section 4 describes the implementation
of these concepts and how the processing of the images
for point-based, neighborhood-based, and global opera-
tions is enabled. Section 5 then evaluates the implemen-
tation in terms of runtime and discusses the advantages
and disadvantages of the implementation compared to
a traditional on-device monolithic approach. Finally,
Section 6 summarizes the paper and present future re-
search ideas.

2 RELATED WORK
2.1 Gigapixel Images
While smartphone cameras can capture images with
several million pixels, a specific camera setup and soft-
ware pipeline for automatic composition allows images
with several billion pixels to be captured, even with a
standard camera and lens [8, 3]. In this work, we refer
to the work of Kopf et al. [8], who describe how the
acquisition and display of GPIs can be implemented.
To integrate a GPI-viewer into a service-based archi-
tecture, three main requirements are considered: (1) a
lossless display to ensure that all information could be
extracted, (2) smooth panning & zooming, and (3) re-
sponsiveness for an efficient navigation in a GPI [14].

An image pyramid is suitable for storing and loading
the image content, whereby the layers are divided into
tiles of a smaller number of pixels (Figure 2) [1]. Tile-
based approaches enable memory-efficient viewing and
processing of GPIs [13]. A GPI viewer loads the tiles
closest to the current display first and stores them in a
cache. When the user interacts via panning or zoom-
ing, the required tiles are loaded from the cache and, if
necessary, additional tiles are loaded from the memory.
When the cache is full, the tiles furthest away from the
current view are removed from it again.

The tile-based approach enables further improvements
such as parallel processing of image tiles [4]. Such ap-

(a) (b)(a)(a) (b)(b)

Figure 2: Concept of image pyramid and tiled image:
(a) shows an image pyramid for a GPI. The highlighted
layer represents the current zoom level and is used for
display; (b) shows the subdivision of the image layer in
different tiles. The red bordered rectangle illustrates the
viewport and the visible portion of the GPI. Only the
tiles contained in the rectangle have to be processed.

proaches can also be used to implement image analysis
or image segmentation techniques for GPIs [7].

2.2 Technologies for GPIs
There are different software libraries available for
fetching and displaying GPIs, i.e., for handling such
in back-end as well as front-end. The open source
project OpenSeadragon [2] is based on the Deep
Zoom technology, which was originally developed by
Seadragon Software and later by Microsoft Live Labs
and Google [6]. It is developed in JavaScript (JS) and
can be integrated into an existing web application. It
supports multiple formats for zooming images and
offers various interaction options for users of desktop
and mobile devices, including zooming and panning.
We forked the project for adjustments required by our
microservice platform.

2.3 Microservice Infrastructures
In recent years, microservices have become increas-
ingly popular. Unlike monolithic systems, microser-
vices are autonomous modules that perform various
tasks with respect to the business logic. The advantages
of using microservices are (1) increased scalability of
the components, (2) easy deployment and maintainabil-
ity as well as, (3) the possibility to introduce various
technologies into one system [18].

For our work, we are extending a microservice platform
for cloud-based visual analysis and processing that was
first presented by Richter et al. [16]. Based on that,
Wegen et al. [19] present an approach for performing
service-based image processing using software render-
ing to balance cost-performance relation.



3 CONCEPT

3.1 GPI Representation

Tile Size Overlap

0_0.jpg

Figure 3: Tiled image
as used in DZI format.

The presented service-based
application for image pro-
cessing is primarily used to
stylize photos. We chose the
Deep Zoom Image (DZI) for-
mat that uses an image pyra-
mid to generate a scale-space
of the image. If a user re-
quests to view the entire im-
age for overview, it must be
possible to display it on a
screen with resolution lower
than this of the GPI. A smaller version of the image is
better suited for this purpose, as it is also small enough
to be loaded into Random Access Memory (RAM). Us-
ing the DZI format, the reduction of the resolution per
layer is always halved until reaching a 1×1-pixel im-
age. The individual layers are further divided into tiles
using a given resolution and overlap (Figure 3). The re-
dundancy introduced by the overlap avoid errors during
processing and display.

Since GPIs have a high spatial resolution, the file size
tends to be usually large. With a lossy compression
method as used by Joint Picture Experts Group (JPEG)
file format, the file size can be kept small. For an image
with several Gigapixels (GPs), the file size is still in the
Gigabyte range [8]. For this reason, it is feasible not
to store these images in a local file system, but to store
them in a cloud-based storage solution such as Amazon
Web Services (AWS) or Firebase. For our implementa-
tion, we decided to use AWS. This allows us to provide
a system that is easily scalable and the required storage
can be made available as required.

A DZI consists of several files, which are organized and
stored in a well-defined structure. For this reason, and
to keep communication between different services to
a minimum, it makes sense to send these files in one
“package” if possible. Of course, additional operations
are necessary for a complete DZI, such as requesting
the complete DZI for an export functionality or delet-
ing it. Furthermore, we also need to be able to perform
operations on individual files of a DZI, such as request-
ing the definition file or individual tiles for display or
image processing. This is a difference to the saving of
normal images that we have to consider during the later
implementation (Section 4.2).

3.2 Service-based Architecture
To enable processing and exploration of cloud-stored
GPIs, a suitable infrastructure is required to enable
communication between the following components.

3.2.1 Resource Resolver Service (RRS)
Direct access to a third-party storage management sys-
tem with a vendor-specific Application Programming
Interface (API) is difficult to maintain and extend. To
approach this, the RRS service is responsible for man-
aging the files in a storage and abstracts from the ven-
dor specific APIs. It accepts and stores complete DZIs
encoded as archives (e.g., ZIP) to preserve the respec-
tive folder structure. Thus, a DZI can be transferred
with a single message to the service, which can then
unpack the archive and store the individual files in the
cloud. It also request all files from the storage, com-
press them into an archive, and deliver them to other
services within the system. Furthermore, the RRS can
deliver individual files from an archive or accept indi-
vidual files to add them for an archive export.

3.2.2 Resource Manager Service (RMS)
The RMS serves as an interface between data storage
and other services and manages access via user roles. It
acts as a gateway and regulates what can be requested
from and sent to the RRS service. Specific to GPIs, this
service ensures that only valid files are uploaded, i.e., it
supports the concept of multi-resolution images to de-
cide whether a request is valid or not. Further, it ensures
that only authorized users have access to individual files
or to the complete DZI. Finally, if both conditions are
met, the service forwards all requested Create, Read,
Update, Delete (CRUD) operations to the RRS.

3.2.3 Image Processor Service (IPS)
This service connects the services above and serves as
an interface to a front-end. It forwards data requests to
the RMS and sends processing requests to the Graph-
ics Processing Unit (GPU)-Processor. The processed
results are stored using the RMS and delivered to the
front-end for display. Furthermore, it can perform sim-
ple image transformations, such as cropping or resizing.
The IPS is also responsible for converting images into
the DZI format, compositing of DZI tiles, and exporting
a GPI.

3.2.4 GPU-Processor
The GPU-Processor is responsible for processing GPI
tiles with hardware-accelerated graphics APIs such as
OpenGL or Vulkan. For it, (1) tiles are loaded as tex-
tures into the Video Random Access Memory (VRAM),
(2) the processing operations defined as Visual Comput-
ing Assets (VCAs) are applied as shader programs [5],
and (3) the results are read back into RAM and returned
as a response.

3.3 Interactive Exploration of GPIs
A front-end for processing GPIs should support at least
the following functions: (1) selection and upload to the



1

2 3

4

Figure 4: Proposed front-end for displaying and pro-
cessing GPIs with the following components: (1) Image
Canvas, (2) Operations View, (3) Options View, and (4)
Pipeline View.

cloud, (2) display and processing, (3) presentation of
options for export and download, as well as (4) options
to select, compose, and configure different processing
operations and their parameters. The following compo-
nents provide these functionality (Figure 4):

Image Canvas: To address functions 1 to 3, a GPI can
be selected and uploaded in a background task. Sub-
sequently, image tiles are requested and displayed
accordingly by supporting panning & zooming. For
it, the Image Canvas decides which tiles from which
image pyramid level should be displayed. Further-
more, actions such as downloading a DZI as an
archive, converting it into a normal image, replac-
ing the image, or displaying image metadata can be
performed. It also provides explicit control of the
zoom levels and full-screen display.

Operation View: To implement function 4, the Oper-
ation View depicts a list of processing operations
applicable to an GPI. Upon operation selection, it
is added to the processing pipeline and the Option
View is updated accordingly. Simultaneously, pro-
cessing is triggered and the result is displayed.

Option View: The Options View displays the various
parameters for a selected operation. The user can
adjust these as desired and trigger GPI processing
subsequently. For easy selection of visually appeal-
ing parameter values, presets can be selected.

Pipeline View: To allow more complex image trans-
formations, the system allows for combining differ-
ent operation within a pipeline. For it, the Pipeline
View can be used to add and select additional op-
erations from the Operation View. Further actions
include clearing the pipeline, and importing or ex-
porting the pipeline.

3.4 GPI Processing Workflow Overview
This section describes how the above components inter-
act to process GPIs (cf. Figure 5).

POST /image

validate DZI

convert to DZI

Styles Suite Image Processor Resource Manager Resource Resolver AWS Cloud Storage

alt

[is a .zip file]

[is an image file and is greater than 130 MP]

POST /resource

POST /resource

store resource

success
resource ID

store resource metadata

resource ID
image ID

(a) DZI Uploading

POST /image/{id}/dzi

create new ZIP with DZI file

Styles Suite Image Processor Resource Manager Resource Resolver AWS Cloud Storage

GET /resource/{id}/dzi

GET /resource/{id}/{name}/{name}.dzi
get DZI file

DZI file
DZI file

get DZI name from DB

DZI file

image ID

loop

[for every pipeline step]

POST /resource
POST /resource

store resource

success
resource ID

store resource metadata

resource ID

(b) GPI Preparation

POST /image/{id}/{tileUrl}/transform

save DZI tile in
local filesystem

Styles Suite Image Processor Resource Manager Resource Resolver AWS Cloud Storage

GET /resource/{id}/{tileUrl}

GET /resource/{id}/{name}/{name}_files/{tileUrl}
get DZI tile

DZI tile
DZI tile

get DZI name from DB

DZI tile

tileUrl

loop

[for every pipeline step]

POST /resource/{target}

POST /resource/{target}
store tile in DZI

success
tileUrl

tileUrl

GPU-Processor

process DZI tile

success

GET /image/{id}/{tileUrl} GET /resource/{id}/{tileUrl}

GET /resource/{id}/{name}/{name}_files/{tileUrl}

get DZI name from DB

get DZI tile

DZI tile
DZI tile

DZI tile
DZI tile

(c) DZI Processing

Figure 5: Sequence diagrams for the data flow and com-
munication of the respective microservice components
for uploading a DZI (a), data preparation for processing
(b), and the actual DZI processing (c) (please zoom).

3.4.1 GPI Upload and Display
First, the user selects a GPI file via the Image Canvas.
The selected file is then sent to the IPS. If the image
is available as an archive, it is checked whether it is a
valid DZI by validating the definition file and ensuring



that all required tiles are present. If the image has been
uploaded as a normal image, the IPS checks if it ex-
ceeds a certain number-of-pixels and converts it to the
DZI format if necessary. In our implementation, this
limit is 130 Megapixels, which is approx. 16K reso-
lution. The valid DZI is then transmitted to the RMS,
which forwards it to the RRS. The RRS provides the
DZI with an Identifier (ID) and unpacks all files from
the archive and stores them under this identifier in the
cloud storage.

The ID is sent back to the RMS, which then stores the
image in a database with metadata, such as name of the
image and ID of the owner. The image ID is then sent
back to the IPS, which sends it to the front-end (Fig-
ure 5a). Subsequently, the front-end requests the DZI
definition file using the ID. The definition file can then
be passed to the Seadragon viewer in the Image Can-
vas. Based on the information from the definition file,
the Seadragon viewer computes which image layers and
which tiles are available per layer. During interaction,
the viewer identifies the tiles to be displayed and re-
quest these accordingly. If all required tiles have been
requested, they are displayed to the user in the Sead-
ragon viewer as if they were a complete image.

3.4.2 GPI Data-Preparation

A user can create a processing pipeline comprising sev-
eral operations with different parameters to be applied
to the DZI in a non-destructive way. To keep the com-
putation effort low, the individual tiles are only pro-
cessed on demand. First, a copy of the DZI is created
by the IPS for each operation in the pipeline. For it,
the IPS requests the respective file from the cloud stor-
age and compresses it into a new archive. This is then
stored as a new DZI at the RMS and RRS, the resulting
ID is sent to the front-end and stored for the respec-
tive pipeline steps. In this way, processed tiles can be
written to the new DZIs. Since the original resolution
of the image, the tile resolution, and the overlap in the
processing steps do not change, the definition file is also
the same between all images in the pipeline (Figure 5b).

3.4.3 GPI Processing

Now the definition file of the last pipeline image, which
is the result image, can be requested. After reading the
definition file, the Seadragon viewer now requests the
required tiles that are currently not yet available in the
result DZI. For each tile of the requested tiles, the fol-
lowing steps are executed: For each pipeline step, the
ID of the previous pipeline image and the tile (level,
tile name) is sent to the IPS together with the opera-
tion specification (ID, parameters). In addition, the ID
of the current pipeline step is sent as the “target” to be
able to store the processed tile in the respective pipeline
DZI. The IPS now requests the tile from the RMS

(and the RMS from the RRS) and sends it to the GPU-
Processor together with the operation information. The
GPU-Processor applies the operation to the tile. The
IPS sends the result back to the RMS to save the tile
for the given “target” DZI. When all pipeline steps for
a tile have been completed according to this principle,
the result tile is finally requested from the IPS via RMS
and RRS and subsequently displayed by the Seadragon
viewer (Figure 5c).

4 IMPLEMENTATION DETAILS
This section covers development technology (Sec-
tion 4.1), Representational State Transfer (REST)
routes for communication between front- and back-
end (Section 4.2), as well as specifics of image
processing details (Section 4.3) of our prototypical
implementation.

4.1 Back-end & Front-end Technology
For the implementation of the service-based architec-
ture for processing GPIs, the following technologies
are used. The respective microservices are developed
using JS and executed by the JS runtime environment
NodeJS. It offers various modules for handling local
file systems or for executing programs as child pro-
cesses. Further, Express is used to define web service
APIs based on REST. The Axios library enables the
microservices to communicate over HyperText Trans-
fer Protocol (HTTP). The IPS service communicates
with the GPU-Processor via the WebSocket protocol.
For high-level image processing, such as reading image
metadata or converting images to DZI format, the Sharp
library is used [10]. For it, a C++ binding for the VIPS
image-processing library [12] provides an API that can
be used in NodeJS. As a low-level image processing
library, libvips implements more complex operations
such as converting a DZI into a normal image by merg-
ing the individual tiles. To implement the web applica-
tion front-end, the Angular framework (based on Type-
Script) is used in combination with an adapted fork of
the open source library OpenSeadragon.

4.2 Interfacing Front-end & Back-end
This section describes the REST-interface offered by
the IPS to handle GPIs using the following routes:

GET /image/:id This route returns a DZI ad-
dressed by a given ID as a ZIP archive. The IPS
service uses the ID to request the image from the
RMS. As a parameter, the ID must be specified as a
Universally Unique Identifier (UUID).

POST /image This route takes as parameter a file
which is either a normal image or an DZI archive.
In the case of a normal image, the size of the image



is checked. If it exceeds a limit, the image is con-
verted to DZI format using the Sharp library, which
provides the tile() function for conversion. Then
the DZI is transferred to the RMS for cloud storage.
The resource ID, obtained by the RMS response, is
forwarded to the IPS as a request response.

GET /image/:id/dzi This route returns the defi-
nition file of a DZI using a given ID. This request is
forwarded directly to the RMS.

GET /image/:id/:level/:tile This route re-
turns a specific tile of a DZI using a given ID. The
name of the DZI is also added here by the RMS. Be-
side the ID of the DZI the tileUrl, which consists
of the level of the tile in the image pyramid and the
tile coordinates in the form x_y.format (where
format is element of {png,jpeg, . . .}), has to be
specified.

POST /image/:id/dzi This route copies a DZI
of a given ID and removes all files except the def-
inition file from the copy. For it, the IPS service
requests the definition file of the DZI with the ID
specified in the path, compresses this file into a new
archive, and uploads it back to the RMS for storage.
The resulting ID is forwarded as response.

PUT /image/:id/dzi Similar to the POST route,
all files except the definition file (i.e., all tiles) are
deleted from the DZI under the ID given in the path.

GET /image/:id/export This route exports the
DZI using the given ID to a normal image and de-
livers it as response. It is assumed that at least all
tiles of the maximum level of the image pyramid are
present. How the tiles are joined to form an image is
discussed in Section 4.3.3.

POST /image/:id/:level/:tile/transform
This route is used to process a tile in the GPU-
Processor. The tile with the given tileUrl is
requested from the DZI with the given ID at the
RMS. Further parameters are sent as FormData
object in the body of the request.

4.3 GPI Processing Operations
4.3.1 Operation Types
There are different types of operations that the GPU-
Processor can apply: point-based, neighborhood-based,
and global operations.

Point-based Operations: For point-based operations,
a pixel is only computed based on the original
pixel. An example of a point-based operation
is “Grayscale”. In a simple implementation, the
average of the Red, Green, and Blue (RGB) values

(a) Mean Blur operation (kernel of 4 pixels) applied to a DZI level.

(b) Vignette operation (with a radial size of 0.58 and a radial smooth-
ness of 0.21) applied to one level of a DZI without UV correction.

(c) Vignette operation (with a radial size of 0.58 and a radial smooth-
ness of 0.21) applied to one level of a DZI with UV correction.

Figure 6: Left column shows the original image, middle
column shows the operations applied to the single tiles,
and right column shows the results after compositing.

of the pixel is computed and assigned to all three
channels. Since point-based operations do only
operate on one pixel at a time, they can directly be
applied to tile-based processing without adjusting
the implementation.

Neighborhood-based Operations: These operations
use not only the values of a pixel, but also the values
of pixels that are in the neighborhood of that pixel.
The computation is based on a kernel that can be of
any size and weight to determine how the pixels in
the neighborhood are contributing. As an example
operation, we consider the “Mean Blur” filter. In
this operation, the average of all RGB values of the
pixels affected by the kernel is computed and set as
RGB value for the output pixel. For a larger kernel,
the effect is usually stronger, but the computation
also takes longer, because more pixels have to be
requested.

With tile-based processing, such operations cannot
be used as straightforward as for the point-based op-
erations. A pixel at the edge of a tile needs informa-
tion from the neighboring tile for correct computa-
tion because the kernel overlaps. To solve this prob-
lem, we can take advantage of the overlap option
in the DZI format. The overlap, which is set when
an image is converted to a DZI, appends a certain
number of overlap-pixels of the neighboring tile (cf.
Figure 3). This allows the kernel to access the neigh-
boring pixels for the edge of the tile if the overlap is



 

 

 

 

 

0

200000

400000

600000

800000

1000000

1200000

Image 1

Ti
m

e 
in

 m
ill

is
ec

o
n

d
s

Convert to DZI Composition

Image 2 

Processing 1 Tile

Image 3

Processing Maximum Tiles

Image 4 

Processing All Tiles

(a) Test Case 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

20000

40000

60000

80000

100000

120000

140000

Image 1 Image 2 Image 3 Image 4

Ti
m

e 
in

 m
ill

is
ec

o
n

d
s

Convert to DZI Composition Processing 1 Tile Processing Maximum Tiles Processing All Tiles

(b) Test Case 2

Figure 7: Duration of operations in milliseconds.

greater than or equal to the kernel radius. Figure 6a
shows how to apply the Mean Blur filter to an image
consisting of four tiles.

Global Operations: A global operation considers
the entire image, e.g., tone-mapping or composit-
ing/blending. Operations that render a texture over
the input image use UV coordinates to determine
the size and position of the texture. Since the
UV coordinates must be in the interval [0,1], the
image size is needed to scale the absolute pixel
coordinates. Here the coordinate origin is in the
lower left corner of the image and in the upper right
corner is the point (1,1). An exemplary operation
for this category is the “Vignette”.

4.3.2 Tile-based Processing
If all tiles are processed individually and such an op-
eration is applied, it will only be computed in relation
to these tiles, because the UV coordinates will be de-
termined relative to the size of the tile. This leads to
unwanted results, as shown in Figure 6b. To approach
the problem, the UV coordinates are recomputed rela-
tive to the entire image prior to performing the opera-
tion. For it, we pass the original size of the image and
the absolute position of the tile to the GPU-Processor.

To compute the correct UV coordinates, two steps are
required: (1) the normalized coordinates in [0,1]2 must
be scaled relative to the tile resolution by the origi-
nal size and (2) the coordinates must be translated so
that they are relative to the tile in the complete image.
For efficiency, these computations are performed on the
GPU using vertex shader as follows. First, two quanti-
ties that do not depend on vertex coordinates are com-
puted and and represented as uniform variables: (1) the
relative tile resolution is obtained by dividing the abso-
lute tile resolution in pixels by the size of the original
image; (2) similar, absolute coordinates of the tile are
converted into relative coordinates. In the vertex shader,
these are used by uniform variables for texture sam-
pling, e.g., u_TileSize and u_TilePosition.

For it, first the tile position is flipped, because the origin
of the tiles is in the upper left corner, but the origin of
the UV coordinates is in the lower left corner. Subse-
quently, the UV coordinates are scaled to the tile using
u_TileSize and translated by a tile-offset. During
rasterization, the coordinates are passed to the fragment
shader(s) that perform the processing. Figure 6c shows
the result for the image of Figure 6b using the converted
UV coordinates.

4.3.3 Tile Compositing
The export route converts a DZI into a normal image
by using the NodeJS library Sharp in combination with
libvips. For it, (1) the number of tiles exist at the max-
imum level of the image pyramid is computed, (2) all
respective tiles are requested from the RMS, and (3)
stored in the local file system. Subsequently, a child
process is spawned for each tile, using libvips to re-
move the overlap from the tiles. Finally, all tiles are
joined to a single output image.

5 RESULTS & DISCUSSION
5.1 Runtime Performance Evaluation
In this section, the runtime performance of our imple-
mentation is evaluated regarding two aspects: (1) the
time consumed to process GPIs and (2) how the tim-
ings depends on different operations regarding the tile
resolution and overlap. For both test cases, we use a
dedicated GPU-server equipped with a Xeon E5-2637
v4, 3.50 GHz processor (8 cores), 64 GB RAM, and a
NVIDIA Quadro M6000 24 GB VRAM.

5.1.1 Test Case 1
Setup: For this test, we measure the runtime for the
following operations: (1) image conversion to DZI for-
mat, (2) processing of a single tile, (3) processing of
all tiles at the maximum level, (4) processing of all
tiles of the DZI, and (5) compositing and exporting the
tiles to a complete image. For processing, we use a
point-based operation, i.e., color adjustments via color



Table 1: Input data for Test Case 1

Image 1 Image 2 Image 3 Image 4

Resolution (Pixels) 34561 × 15620 35690 × 28030 34861 × 44360 64172 × 45559

Gigapixel 0.54 GP 1.00 GP 1.55 GP 2.92 GP

Size (MB) 129.4 894.9 939.6 1601.6

look-up tables [17]. Table 1 shows the four test im-
ages and their metadata. The tile resolution is 512 pix-
els and the overlap is 2 pixels. The timings were de-
termined using the functions console.time() and
console.timeEnd(). Three consecutive measure-
ments were obtained for each operation and the average
was calculated subsequently.

Results: Figure 7a shows the duration of the oper-
ations in milliseconds. The operations “Convert to
DZI”, “Processing Maximum Tiles”, and “Processing
All Tiles” are linear with respect to the input size of the
image. The operation “Processing Single Tile” is con-
stant at about 500 ms. This also meets the expectation,
since the tiles are all the same size and should therefore
be processed at about the same speed. The “Compo-
sition” operation also appears to be linear in the size
of the images, but Image 2 is an outlier in this mea-
surement. The reason for this must be the file format,
which impacts gathering and transmission times. Even
if all images are in JPEG format, they can have differ-
ent compression rates, which can increase the file size
of the image and its complexity. The file size (Table 1)
also shows this: Although Image 2 has just under twice
as many pixels as Image 1, the file size is almost seven
times higher. Furthermore, Image 3 has about 50 %
more pixels than Image 2 and yet their file sizes are
almost the same. However, according to the measure-
ments, this difference does not play a role when con-
verting to the DZI format. This is probably due to the
fact that only small parts are removed from the image
and stored in a tile. Composition, on the other hand, is
the process of merging a large image from all the tiles,
which means that the actual saving of the image is more
time-consuming.

5.1.2 Test Case 2

Setup: For the second test case we used a GPI of 13206
× 6676 pixels (0.088 GP, 53.3 MB). For test purposes,
we decided to use an image with a smaller resolution.
We converted this image to the DZI format with differ-
ent parameters for tile resolution and overlap. The test
sizes are shown in Table 2. For these four variants, we

Table 2: Input resolution in pixels for Test Case 2.

Image 1 Image 2 Image 3 Image 4

Tile Resolution 256 256 512 512
Overlap 1 16 1 16

tested the same operations as in Test Case 1 and com-
puted the average from three subsequent measurements.

Results: Figure 7b shows the absolute duration of the
operations in ms, while Figure 8 shows the file sizes
of the four DZIs. The measurement results show that
the processing of a tile takes between approx. 300 ms
to 400 ms. A greater overlap has the consequence that
both the file size and the duration of the operations in-
crease. This is because a higher overlap increases the
redundancy of the pixels and therefore more has to be
stored and calculated. It is noticeable that converting to
a DZI was about one second faster with the 512 pixels
tiles than with the 256 pixels tiles. The other operations
– “Processing Maximum Tiles”, “Processing All Tiles”,
and “Composition” – were even over 60 % faster for the
512 pixels tiles than for the 256 pixels tiles. Because the
duration of the operations is directly proportional to the
number of tiles, the operations for Image 3 and 4 are
faster because there are fewer tiles due to the larger tile
resolution.

5.2 Discussion
5.2.1 Service-based vs. Monolithic Approach

In the following, we will briefly discuss the advan-
tages and disadvantages of our service-based imple-
mentation compared to a classic approach with only one
service. The described microservice infrastructure en-
abled the development of a modular system following
the Separation-of-Concerns pattern [9]. This allows to
multiply different parts of the system as required, thus
enabling parallel processing that increases performance
compared to a monolithic system. Through the con-
nection to the cloud storage service AWS, additional
storage is available that can be expanded on demand. A

25,8

30,6

24,4

26,6

20

22

24

26

28

30

32

Image 1 Image 2 Image 3 Image 4

Figure 8: Test Case 2 – File size of converted images in
DZI format in Megabytes.



disadvantage of the proposed approach, however, is that
GPIs are required to be sent through several services,
which increases the overall traffic and increases run-
time. In our test system all services run on one server
only, i.e., that this server is no less busy than a server
on which everything would run as one service anyway.
In other words, the potential of our implementation in
terms of performance only becomes apparent when the
services are used as a distributed system with several
servers.

5.2.2 Tile Resolution and Overlap

In our implementation of DZI format conversion, con-
stant values for tile resolution and overlap are used.
Changing these parameters later is time-consuming,
since the DZI would first have to be reassembled and
then converted back into the DZI format. This requires
to find suitable values for both parameters to process the
tiles as efficiently as possible and to avoid artifacts, e.g.,
due to kernel sizes of neighborhood operations larger
then the actual overlap. The tile resolution should not
be chosen too small, because this increases the number
of tiles and thus the effort when converting from and to
DZI format. However, the overlap should be as small as
possible because it only contains additional (redundant)
data.

The results of Test Case 2 show that choosing a higher
tile resolution can have a positive effect on runtime
and memory consumption. This is because the higher
tile resolution means that fewer tiles are created dur-
ing the conversion, and therefore fewer steps per oper-
ation have to be performed. However, with a difference
of less than 100 ms, the runtime for processing a 512
pixels tile is remarkably close to the runtime for a 256
pixels tile. This means that if the tile resolution is not
too large, the runtime can be reduced without having to
make major losses when processing a tile.

A higher value for the overlap increases runtime and file
size, since more pixels are stored redundantly. A key
factor in the choice of the overlap is the kernel size of
neighborhood-based operations. If a kernel requires n
neighboring pixels in each direction, the overlap should
be at least n, to process the edge pixels of the tile cor-
rectly.

5.2.3 Context-sensitive Global Operations

Using tile-based processing, our implementation allows
for the application of global operations to a DZI. The
approach converts the UV coordinates transparent to the
processing shaders. However, this approach does not
work for global operations that require random access
to all parts of an GPI, e.g., “Mirroring”. To approach
this problem, one could give the GPU-Processor more
image context about a DZI, so that it can request addi-
tional tiles if required.

6 CONCLUSIONS & FUTURE WORK
This paper describes how service-based architectures
for image processing can be extended to allow the pro-
cessing of GPI. It shows how the storage of GPIs in the
DZI format can be implemented with a cloud-based ap-
proach and microservices for transfer, preparation, and
tile-based processing. For it, the differences between
specific features of point-based, neighborhood-based,
and global operations are discussed. A runtime anal-
ysis shows that efficient processing and display of GPIs
is possible in a service-based infrastructure. This work
can serve as a basis for further research and develop-
ment in this area.

While the presented approach and prototypical imple-
mentation is sufficient for processing and exploration of
GPIs, the system can be extended further. To enable the
processing of high-resolution panoramic images, the
support of additional projection methods (e.g., equirect-
angular or stereographic) are required. A service-based
approach has the advantage that even less powerful de-
vices can process images using potentially complex op-
erations. However, this has the disadvantage that ad-
ditional network traffic is generated by the communi-
cation between the individual microservices, which can
result in waiting times for the user. Further, the service-
based architecture allows the various microservices to
be multiplied as required, thus enabling parallel pro-
cessing of requests. This can also be exploited for pro-
cessing GPIs, e.g., by processing different tiles in par-
allel. This however results in further challenges, e.g.,
how the tiles are transferred or how tile-access is man-
aged between different processors.

ACKNOWLEDGMENTS
We thank Josafat-Mattias Burmeister for his support.
This work has been funded by the German Federal
Ministry of Education and Research (BMBF) through
grants 01IS18092 (“mdViPro”) and 01IS19006 (“KI-
Labor ITSE”).

7 REFERENCES
[1] Edward Adelson, Charles Anderson, James

Bergen, Peter Burt, and Joan Ogden. Pyramid
methods in image processing. RCA Eng., 29, 11
1983.

[2] OpenSeadragon Contributors. Openseadragon
2.4.2, 2021. last visited: 03/30/2021.

[3] O. S. Cossairt, D. Miau, and S. K. Nayar. Gi-
gapixel computational imaging. In 2011 IEEE
International Conference on Computational Pho-
tography (ICCP), pages 1–8, 2011.

[4] Zhenlong Du, Xiaoli Li, Xiaojian Yang, and
Kangkang Shen. A parallel multigrid poisson pde
solver for gigapixel image editing. In Yunquan



Zhang, Kenli Li, and Zheng Xiao, editors, High
Performance Computing, pages 89–98, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[5] Tobias Dürschmid, Maximilian Söchting, Amir
Semmo, Matthias Trapp, and Jürgen Döllner. Pro-
sumerFX: Mobile Design of Image Stylization
Components. In Proceedings SIGGRAPH ASIA
Mobile Graphics and Interactive Applications
(MGIA), pages 1:1–1:8, New York, 2017. ACM.

[6] Paul Khouri-Saba, Antoine Vandecreme, Mary
Brady, Kiran Bhadriraju, and Peter Bajcsy. Deep
zoom tool for advanced interactivity with high-
resolution images. SPIE Newsroom, page 1, 05
2013.

[7] Enrico Kienel and Guido Brunnett. Tile-based
Image Forces for Active Contours on GPU. In
P. Alliez and M. Magnor, editors, Eurographics
2009 - Short Papers. The Eurographics Associa-
tion, 2009.

[8] Johannes Kopf, Matt Uyttendaele, Oliver
Deussen, and Michael Cohen. Capturing and
viewing gigapixel images. ACM Transactions on
Graphics (TOG), 26:93, 08 2007.

[9] Phillip Laplante. What Every Engineer Should
Know About Software Engineering. CRC Press,
2007.

[10] libvips Contributors. libvips, 2021. last visited:
03/30/2021.

[11] Yun Liu, Krishna Gadepalli, Mohammad
Norouzi, George E. Dahl, Timo Kohlberger, Alek-
sey Boyko, Subhashini Venugopalan, Aleksei
Timofeev, Philip Q. Nelson, Gregory S. Corrado,
Jason D. Hipp, Lily Peng, and Martin C. Stumpe.
Detecting cancer metastases on gigapixel pathol-
ogy images. CoRR, abs/1703.02442, 2017.

[12] K Martinez and J Cupitt. Vips ? a highly tuned
image processing software architecture. In IEEE
International Conference on Image Processing
(01/09/05), pages 574–577, 2005. Event Dates:
Sept. 2005.

[13] Mayur Patel. Memory-constrained image-
processing architecture. Dr. Dobb’s Journal
(DDJ), 22:24, 26–29, 07 1997.

[14] Dominik Perpeet and Jan Wassenberg. Engineer-
ing the ideal gigapixel image viewer. In Advanced
Maui Optical and Space Surveillance Technolo-
gies Conference (AMOS 2011), Maui, Hawaii, 12
2011.

[15] Nancy Proctor. The google art project: A new
generation of museums on the web? Curator:
The Museum Journal, 54(2):215–221, 2011.

[16] Marvin Richter, Maximilian Söchting, Amir
Semmo, Jürgen Döllner, and Matthias Trapp.

Service-based Processing and Provisioning of
Image-Abstraction Techniques. In Proceedings
International Conference on Computer Graph-
ics, Visualization and Computer Vision (WSCG),
pages 97–106, Plzen, Czech Republic, 2018.
Computer Science Research Notes (CSRN).

[17] Jeremy Selan. Using Lookup Tables to Acceler-
ate Color Transformations. In GPU Gems, pages
381–392. Addison-Wesley, 2004.

[18] Markos Viggiato, Ricardo Terra, Henrique Rocha,
Marco Tulio Valente, and Eduardo Figueiredo.
Microservices in practice: A survey study. CoRR,
abs/1808.04836, 2018.

[19] Ole Wegen, Matthias Trapp, Jürgen Döllner, and
Sebastian Pasewaldt. Performance Evaluation and
Comparison of Service-based Image Processing
based on Software Rendering. In Proceedings
International Conference on Computer Graph-
ics, Visualization and Computer Vision (WSCG),
pages 127–136, Plzen, Czech Republic, 2019.
Computer Science Research Notes (CSRN).

[20] Jia Yu, Zongsi Zhang, and Mohamed Sarwat.
Geosparkviz: A scalable geospatial data visual-
ization framework in the apache spark ecosys-
tem. In Proceedings of the 30th International
Conference on Scientific and Statistical Database
Management, SSDBM ’18, New York, NY, USA,
2018. Association for Computing Machinery.


	Introduction
	Problem Statement
	Approach and Contributions

	Related Work
	Gigapixel Images
	Technologies for GPIs
	Microservice Infrastructures

	Concept
	GPI Representation
	Service-based Architecture
	Resource Resolver Service (RRS)
	Resource Manager Service (RMS)
	Image Processor Service (IPS)
	GPU-Processor

	Interactive Exploration of GPIs
	GPI Processing Workflow Overview
	GPI Upload and Display
	GPI Data-Preparation
	GPI Processing


	Implementation Details
	Back-end & Front-end Technology
	Interfacing Front-end & Back-end
	GPI Processing Operations
	Operation Types
	Tile-based Processing
	Tile Compositing


	Results & Discussion
	Runtime Performance Evaluation
	Test Case 1
	Test Case 2

	Discussion
	Service-based vs. Monolithic Approach
	Tile Resolution and Overlap
	Context-sensitive Global Operations


	Conclusions & Future Work
	REFERENCES

